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Editor’s View 
Scientific context and initial assessment.  Many of us are drawn to biology because it seems to do 
special and surprising things and have characteristics that beggar the imagination.  To me, the question 
has always been “How?” How does biology work?  This question can be posed sharply, in terms of 
mechanistic specifics, but when it’s abstracted, it demonstrates where a scientist thinks causation 
originates inside a biological system.  I’ll push this idea to a playful extreme for illustration’s sake: Choose 
a team. 
 
Team Master Regulator.  Master Regulators drive biological function. They are in the right place at the 
right time.  They exert disproportionate power over phenotype by sensing, integrating information, 
coordinating responses, and ensuring specificity.  According Team Master Regulator, large cellular 
processes are a series of precisely orchestrated hand-offs between Master Regulators of sub-processes.  
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Master Regulators are molecular-level puppeteers of supreme intelligence if the words commonly used to 
describe their activities are given the weight of fact. 
 
Team Dumb Luck.  Dumb Luck drives biological function.  This team argues that while biology might look 
special, special-looking things aren’t, in fact, surprising.  Instead, there is something about the way 
biology is wired, something about how probabilities play out in biological contexts, that allows special-
looking things to happen at some characteristic frequency without any apparent biological intention.  
Specific regulation is needed comparatively rarely; most things work because in the cell, chances are that 
they will. 
 
My own personal hunch is that despite the fact that almost all textbooks, review articles, and experiments 
lean on Master Regulators in their conception and description of biological phenomena, Dumb Luck is 
more prevalent and important than it might otherwise seem.  Demonstrating that, though, is very, very 
hard.  In a biological experiment, how are we to ensure that a Master Regulator is not lurking outside our 
field of view, sensing and responding in manner that links cause with effect? 
 
This is one place math and modeling can really shine.  We know what is and isn’t in a model because 
we’ve made deliberate choices (there are no lurkers).  The behavior of a conservatively constructed, 
minimal model can be explored in depth; parameters and architectures can be swept systematically to 
gain and develop intuition.  This sort of work can set baseline expectation for biological behavior, e.g. in 
principle, given this limited set of reasonable assumptions, Interesting Behavior X can happen in the cell. 
 
Cell Systems is deeply interested in work that develops principled baseline expectations for biological 
behavior.  That’s precisely what Schuh et al. did in this manuscript.  A recent Nature paper from Arjun Raj 
and colleagues (https://doi.org/10.1038/nature22794) found a special and surprising biological 
phenomenon: about 1 in 3000 human melanoma cells enter a physiological state that is “pre-resistant” to 
chemotherapy.  These cells express a handful of phenotypically important genes simultaneously, at a 
high level. The authors call this gene expression pattern a “rare coordinated state;” it occurs with defined 
statistics but apparently at random within the cellular population.  In present manuscript, using a very 
conservative set of assumptions, Schuh et al. demonstrate that bursty transcription is sufficient to 
generate these rare coordinated states; additional regulation is not necessary.  That doesn’t mean there 
isn’t additional regulation in the cell, it just means that in principle, there doesn’t have to be.  This 
conclusion is fundamentally important.  Score one for Team Dumb Luck! 
 
Review strategy and Editorial Decisions.  Cell Systems has an exceptional and continually growing 
community of reviewers who understand and appreciate the goals of manuscripts like these.  They 
approach reviewing manuscripts with open minds, incisive creativity, and deep expertise.  Choosing 
reviewers from this community was straightforward, but that doesn’t mean that this manuscript’s life was 
straightforward.  On the contrary.  The first round of reviews was pretty tough.  But I had a hunch that I 
was seeing something familiar and fixable that sat at the base of what looked like pervasive and quite 
damning problems. 
 
Researchers live and breathe their work.  That’s one of the things that allows science to be extraordinary, 
but it can also cause miscommunication during peer review.  The way authors conceive of their work is so 
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intimately familiar that they often forget to explain their conceptions to reviewers.  Those conceptions 
need to be explained: they’re very highly developed and well-honed.   As a result, both the authors’ and 
the reviewers’ intentions can get muddled.   
  
This happened in several places in this manuscript, but I’ll highlight two.  First, the authors were actually 
making an argument about sufficiency (i.e. “in principle, this minimal set of relationships is sufficient to 
generate this phenomenon inside the cell”) not exclusivity (i.e. “this minimal set of relationships is 
exclusively responsible for this phenomenon inside the cell”).  This wasn’t clear enough in the first version 
of the paper, and it got them into trouble.  Second, from the author’s perspective, their focus on 
symmetrical networks was deliberate, important, and correct.  This wasn’t clear to the reviewers though, 
who objected to it as biologically unreasonable and over-simplified.  Resolving this difference was a 
fundamentally important goal of the revision. 
 
After the authors took a bit of time to digest the reviews, we had really wonderful meeting-of-the-minds 
over Zoom, during which Arjun memorably described epigenetics as “spooky,” as in, “you don’t need 
spooky epigenetics to achieve rare coordinated states.”  Happily, as Reviewer 2 said of the revision, “The 
authors have taken the reviews seriously and used them to improve the manuscript enormously. Now it is 
an important contribution to the field.”  We agreed and were very glad to accept this thought-provoking 
paper. 
 
 
 
The following Transparent Peer Review Record is not systematically proofread, type-set, or edited. 
Because it reflects the version of paper that was formally accepted by Cell Systems, before copy editing 
and approval of proofs, details may vary slightly between it and the published paper.  Special characters, 
formatting, and equations may fail to render properly.  Standard procedural text has been deleted for the 
sake of brevity, but all official correspondence specific to the manuscript has been preserved. 
 
 
 

Editorial decision letter with reviewers’ comments, first round of review 

 Dear Arjun, 
 
I hope this email finds you well.  I’m enclosing the comments that reviewers made on your paper, which I 
hope you will find useful and constructive. As you'll see, they express interest in the study, but they also 
have a number of criticisms and suggestions. Based on these comments, it seems premature to proceed 
with the paper in its current form; however, if it's possible to address the concerns raised with additional 
experiments and/or analysis, we’d be interested in considering a revised version of the manuscript.   
  
As a matter of principle, I usually only invite a revision when I’m reasonably certain that the authors' work 
will align with the reviewers’ concerns and produce a publishable manuscript.  I'll be honest, though, that 
in the case of this manuscript, I'm unclear whether we're aligned.  It's not a matter of whether this 
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manuscript can be revised to meet our bar, but rather whether you want to revise it along the lines we'd 
need.  I'll do my best to articulate our vision for where we think this manuscript should go and you can 
make an informed choice about whether you'd like to keep it at Cell Systems.  As always, we can always 
talk over the phone if it's helpful, especially with respect to making that choice. 

Essentially, to move forward at Cell Systems, we'd need the revision to ring two bells: 

1. We would need to understand the mathematical basis for the phenomenon in question (e.g. its critical 
dependencies, the relationships that drive it, etc. essentially mechanistically).  One difficult thing about 
this manuscript is that you are really focussing on two phenomena rather than one: 

A) the existence of rare, coordinated states (along with clear, mathematical definitions of "rare" and 
"coordinated"), and 

B) the idea that these rare, coordinated states require a network larger than a given size and with 
a sufficient degree of connectivity. 

My instinct says that understanding how rare, coordinated states arise (that is, A) is a very difficult task on 
its own and that trying to do both A and B in a single paper is probably too much.  Cell Systems would be 
perfectly happy with a paper that focuses on A and interrogates it to the standards I've laid out below with 
the reviewers' help.  I'll note, though, that there's some distance between where this manuscript is right 
now and where the revision would need to be.  To give you a sense of where the gaps in 
understanding A are right now, here's my current read: I understand that you're able to recapitulate the 
existence of rare, coordinated states using the formalism you've chosen and I can follow your arguments, 
but I don't understand enough about how those states arise to make sense of the observation that their 
dependencies are so sharp.  Why should they be so sharp and specific?  For example, the observed 
sensitivity to 3 model parameters -- where does the sensitivity come from, why those three, why is the 
behavior insensitive to the others?  Or the observed connectivity requirements >/= specifically six -- why a 
discontinuity and why does it happen between 5 and 7? 

(As an aside, I'll also mention that I think making too much of B is risky.  We have a series of papers 
coming out this month that look at network behavior across computationally assembled "atlases" of 
networks with a fixed number of nodes (i.e. connectivities are systematically enumerated and parameters 
are swept; this approach pays homage to https://www.ncbi.nlm.nih.gov/pubmed/19703401).  That's hard 
even when the network behavior is comparatively simple and the networks are comparatively small.  I 
understand that your work aims to do something different and that you've made choices that simply and 
limit the "space" of network topologies you're looking at, but if you choose to make arguments along 
the lines of B in the revision, they'd need to meet the same standards as these forthcoming published 
papers.  Accordingly, if you want to expand on B in the revision, we'd likely need to ask at least one 
additional reviewer to take a look at that section of the manuscript.  At present, there are too many 
moving parts to make reviewing B productive, but I hope this is resolved during revision.  I'm sorry this is 
a bit unusual.) 
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2. We would need the mathematical basis of the rare, coordinated states needs to be generalizable in 
some sense. That is, the critical dependencies/relationships underlying this phenomenon shouldn't be the 
consequences of the specific, largely arbitrary choices made during modeling.  Here, the reviewers have 
a lot to say, as I've highlighted in blue below (you'll also note particularly salient comments are highlighted 
in yellow).  The reviewers' comments are part of the reason that I think focusing on A exclusively is a 
paper-unto-itself -- addressing them reasonably comprehensively in a reasonably narrow set of 
circumstances is already quite challenging. 

I hope you find this feedback helpful.  If you choose to move forward with Cell Systems, it's important that 
you and I stay on the same page.  I'm always happy to talk, either over email or by phone, if you’d like 
feedback about whether your efforts are moving the manuscript in a productive direction.  If you have any 
questions or concerns, please let me know.  More technical information and advice about resubmission 
can be found below my signature.  Please read it carefully, as it can save substantial time and effort 
later.  
  
I look forward to seeing your revised manuscript. 
 
All the best, 

Quincey 
 
Quincey Justman, Ph.D. 
Editor-in-Chief, Cell Systems 
  

 
 
Reviewers' comments: 

Reviewer #1: Arjun's lab recently made an important observation that many jackpot genes are expressed 
in cells that are predisposed to being resistance to drug therapy. One of the questions that arises from 
this surprising observation is that how are these jackpot genes turned on in a subpopulation of cells. The 
paradox is that these genes are not that correlated in their expression level in the jackpot cells, yet tend to 
be enriched in the resistant cells. This manuscript tackles this fundamental question with simulations of 
networks of coupled and stochastic genes and showed that similar behavior as observed in experiments 
are seen in symmetric networks. They further showed that the coordinated stochastic behavior arises only 
in networks with a certain level of connectivity. 
 
One of interesting findings is that entrance of the jackpot state is initiated by large burst size of one gene, 
whereas exit is not correlated with burst sizes. The authors further examined the parameter space and 
found that Kon, Koff and Kadd are the 3/7 parameters that contribute to the generation of the jackpot 
states. It is also illuminating to read the discussion about how variations of the models including non-
symmetric and negative interactions will impact the results. 
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Understanding the phase space of gene networks and how they contribute to phenotypes is important to 
understanding cell type differentiation. This is an important contribution to the field and I strongly support 
the publication of this paper. 
 
A few minor questions and comments. First, because the model can be applied to any gene 
network, would we expect to see these coordinated high states for many genes? And are the jackpot 
genes just happen to be important for drug resistance? Or are there something special about the 
architecture of these genes? 
 
Second, it might be helpful to illustrate some of the networks used in the simulation in Figure 2. It is not 
entirely clear to me all the network topologies used in the simulation. 
 
 
 
Reviewer #2: In this manuscript Schuch et al. present a theoretical framework to provide a mechanistic 
understanding of an increasingly well known phenomenon, namely the association of transient states of 
coordinated gene expression with persistent states of drug resistance in bacteria and mammalian cells. 
There is much that is interesting here but there is also much that is either missing or not properly 
reasoned which results in a missed opportunity. If the authors were to do more work, there could be 
something of general interest here. 
 
The work is introduced in an odd grand manner that sets up a very high level frame of reference for what 
ends up being a very special case of an interesting but rare situation. Going from Taleb to cancer and 
drug resistance in a few paragraphs is a good thing in a review but not in a specialized research paper 
which is what this is. Importantly, the manuscript is motivated by experimental work (Shaffer et al, 2018 
and Torre et al. 2019) but there is no proper explicit reference to the details of this work. The data 
appears to be scattered with ad hoc references to it as needed by the models. This is not right, the 
authors should state up front what are the features that are being modeled and then discuss the approach 
with reference to it. Rare states of coordinated gene expression in cancer cells may well do for the title 
but it is not enough for the development of the manuscript. The impression that one gets is that this, or a 
better organized version of this, could have been the modeling part of either of the two experimental 
works but, even for this, it would need more work. 
 
I now raise a few issues that I would expect the authors to address if they want to capitalize on what is a 
good start to an interesting topic. The list is not exhaustive but hopefully highlights some of the problems 
that the manuscript has. 
 
Introduction (which needs to be structured and elaborated in a very different manner more in accord with 
what the paper is about) 
 
As already pointed out, the introduction is very wayward with sweeping statements on many topics and 
not suitable for a research report such as this one. It also contains some surprising statements such as 
the one referring to noise based models of the same phenomenon "Specifically, the classical models 
have largely described the variability that results in relatively normally distributed counts of mRNAs of a 
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given gene per cell". This is not true as the literature shows that these models give rise to log-normal and 
gamma distributions that are far from normal and often match the experiments. It is very worrying that this 
is stated as part of the introduction as it raises issues about how much the authors understand the 
problem. 
 
In the introduction the two opposing models are introduced in different places (Fig1A and FigS1A) which 
is unhelpful and distracting. 
 
They should also justify the restriction of the model to transcription and why they don't explore 
translational coupling since it has been shown that this can alter the distribution of cell states by creating 
biases in the cell states (as defined by the presence of protein products). I appreciate that they are 
modeling transcriptional data which, as also already stated, is not properly introduced but, when dealing 
with networks, proteins and translation matter. Their model appear as only having mRNA as the product 
and the regulator. 
 
Results 
An important issue is that they need to be very precise about the definition of a 'highly correlated' state. 
This will help understand what the work is about and what is being discussed and addressed. At the 
moment it is not. We are told that experimentally there is no correlation between the genes that 
characterize the state and this seems to be supported by the ad hoc reference to data (FigS1F) but then 
their networks assume some correlation. Even the basic model in which one gene activates another has 
this correlation implicit. Need clarification and explanation. 
 
Page 7: they should justify the ergodic assumption since, intuitively, it will be broken by the entry into the 
rare stable states. They might argue that in the very large sampling they are doing this will apply 
but, does a cell have access to a similar phase space? 
 
Some of the results presented in Figure 2 raise questions. In Figure 2B we are shown a comparison 
between data and simulation in terms of the genes coexpressed in these rare states. A superficial viewing 
suggests a similarity but it is obvious that the experimental data has a tail which is lacking in the 
simulation. One can see that there is a non-zero number of cells with 8 highly expressed genes. Need an 
explanation. 
 
Figure 2C suffers from a similar problem as, in detail, the distributions are different. It would be helpful if 
to show similarity or differences, they would do a semi-log plot. 
 
Another important issues arises in 2D where one wonders if this the result is not a trivial consequence of 
the intuitive fact that as the number of nodes in the network increases, the number of states increases. 
Maybe if they normalized to network size they might get a different result. 
 
In this regard the limitation of the network size to <8 is not properly justified or explained. Looking at how 
ron is calculated (page 19 ) the limitation could be a trivial consequence of the addition that is used in the 
calculation. Above six nodes, the system migh blow up. They claim but not show that ≥8 networks will 
also display coordinated states but will they? And how does the number correlate with the experimental 
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data? Could the authors discuss? 
 
Even admitting that it was clear what exactly they are trying to model, or better find an explanation to, the 
reliance on simulations obscures some of the potential explanations. One example is on Figure 3A. 
Surprisingly there appears to be no correlation between the maintenance of expression and stopping the 
burst e.g take the 'black gene', it is surprising that the expression is maintained for so long after the first 
long burst. How can this happen? The same applies to the others. If there is a memory in the system, 
where does it come from? 
 
Along the same lines, it would be helpful if they could dig into the causes for the exit from the state and 
present some experimental data. And, of course, what determines the duration of the state? 
 
They discussion of the parameters is confusing: there are 8 parameter sets but they only discuss 3. It 
would be good to know what the others are. Also, what is the relationship of these 8 parameters from the 
simulation to the 7 free parameters of the model? One can do some work, interpret the authors and know 
what they are talking about but they should tell us. Also, they should be more explicit about the point of 
the screen. 
 
And, indeed, it would be good to have a phase space of the screens, parameters. 
 
What is the importance of the frequency of the bursts in the entry into and maintenance of the state? 
 
Discussion 
The discussion seems to be focused in reinforcing some prejudices derived from their analysis and 
providing some excuses for work that should have been done. Here is an important paragraph: 
"One limitation of our model is that we have performed quantitative analysis only on symmetric networks 
with positive interactions between nodes. It is likely that our findings hold more generally for asymmetric 
networks, as partially demonstrated for two cases of randomly selected asymmetric networks". If this is 
the way they feel, they should prove it. Also they state that "Inhibitory interactions between nodes is a 
separate and perhaps more interesting point. In principle, the model can be adapted to include inhibitory 
interactions" This is very important in light of the possibility that networks with <8 nodes will explode. They 
should definitely explore the influence of inhibitory interactions as this is a glaring omission in the 
analysis. 
 
Overall, a very interesting topic but a very casual and, to a certain degree, superficial analysis. The paper 
needs to change in structure and also have more in depth analysis and a better judgement of what is 
being explained and what are the assumptions; at the moment they seem to be very biased by their 
assumptions. 
 
 
 
Reviewer #3: The manuscript by Schuh et al investigates stochastic genetic network models that are 
capable of producing rate transient coordinated expression states as observed experimentally in 
melanoma. The authors focus on a specific class of genetic networks with transcriptional bursting and 
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computationally explore a wide range of network size, topology and parameters. They find these networks 
below a threshold of connectivity are capable of producing behaviour that is similar to experimental data. 
They also identify this model behaviour is sensitive to values of certain parameters in the model but not 
others. Interestingly, they validate using network inference on experimental data a transition from low 
connectivity to high connectivity that is associated with transcriptionally stable states. Overall, this is an 
interesting paper with novel results. However, the effect of some model assumptions and also the 
mechanistic origin of the observed behaviour is not fully clear. I have the following specific comments: 
 
- The model used has several assumptions, it is not clear what is the effect of these assumptions on the 
model behaviour. The model, ignores protein and translation, but transcriptional regulation works through 
proteins. Including proteins explicitly is computational expensive, but some exploration of this would be 
useful. Also, the models only include transcriptional activation and only consider additive interaction. 
What would happen if you relax these assumptions? 
 
- While the effect of model parameters is explored, the topology of the networks are not explored fully 
(only at the level of connectivity). Are there specific model topologies that produce the rate transient 
expression more robustly that others? Do these tend to contain positive feedbacks? 
 
- Do you have any mechanistic insight on the origin of this behaviour? Why some parameters are critical 
and some are not relevant? 
 
- The model uses non mass action kinetics. Have you used a variant of the Gillespie algorithm to handle 
this and what kind of approximation are you making? Could this affect your results. 
 
- How much do we know about the specific genetic network, their players and the wiring in melanoma. 
Could you argue the network and its parameters is in the operating regime you have obtained. 
 
- Please rephrase this sentence in the introduction, it is not clear to me what you are saying: "However, in 
this classical context, most of the cells … " 
 
- Several references are missing full journal information, e.g Shaffer et al 2018, Saint Anthoine And Singh 
2019, Corrigan et al 2016 Symons et al and Torre et al. Please check all references carefully. 

 
 
 

Authors’ response to the reviewers’ first round comments  
Attached. 
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Revised manuscript 
Attached. 
 
 
 

Editorial decision letter with reviewers’ comments, second round of review 

Hello, everyone,  
  
Thanks very much for your patience while I was sick last week.  I'm very pleased to let you know that the 
reviews of your revised manuscript are back and we’re looking forward to accepting your manuscript "in 
principle" (that is, pending our receipt of your final, properly formatted files) as soon as a few minor 
changes are made.  Congratulations!  

In addition to the final comments from the reviewers, I’ve made some suggestions about your manuscript 
within the “Editorial Notes” section, below. Please consider my editorial suggestions carefully, ask any 
questions of me that you need, make all warranted changes, and then upload your final files into Editorial 
Manager.  We hope to receive your files within 5 business days.  Please email me directly if this will 
be a problem. 

I'm looking forward to going through these last steps with you.  More technical information can be found 
below my signature, and please let me know if you have any questions.  
  
All the best, 
Quincey 

Quincey Justman, Ph.D. 
Editor-in-Chief, Cell Systems 

 

  
Editorial Notes 

Abstract:  Your abstract is too long; please give it another try.  Note that most effective abstracts have the 
following structure: 

[One sentence of background.]  However, X.  [X essentially presents the problem that you will 
solve.]  Here, we [solve X].  [A compound sentence that begins with a methodological phrase and 
ends with a phrase that describes the results that the methodology produces (e.g. “Using a 
combination of method Y and method Z, we show something new about X.”).]  [Sentences that 
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describe key results and include carefully selected details that allow the reader to place the key 
results within a broader context.] [Optional: Include a sentence that “zooms out” to suggest future 
experiments or demonstrate impact.] (150 words, maximum, *not including* the Transparent 
Peer Review statement) 

For a complementary view on how to write abstracts, read: http://crosstalk.cell.com/blog/how-to-hook-an-
audience-with-a-great-abstract. 

  

Manuscript Text:  Parts of your text were a bit confusing, so I took the liberty of suggesting quite a large 
number of specific edits.  The notes below are "called out" on a matching PDF that I'll send you 
separately in a separate email.  There are also additional edits on that PDF that don't require explanatory 
notes.  While all of my edits are formally suggestions, please note that if I'm making a suggestion, the 
relevant section of text could use improvement, even if you disagree with the specific improvements I'm 
suggesting.  Also, I apologize in advance for any distortions in meaning that my edits may inadvertently 
introduce.  Finally, note that if you make the edits I suggest, you'll meet our "length limits." Please 
don't cut your text. 

Note 1a:  I don’t think you need to limit this discussion to models; these ideas likely apply in vivo as 
well.  Hence the suggested deletion. 

Note 1b:  Replace highlighted text with, “Yet another possibility is that stochastic gene expression alone 
fails to produce rare coordinated high states in the absence of additional regulation.” 

Note 2: I found this paragraph confusing as written and suggest the following edits (a few additions for 
readability, but mostly re-organization: 

We limited our study to networks that are symmetric, i.e., networks without a hierarchical structure 
(Box 1; STAR Methods, section Networks, Figure S1C). We also excluded networks that are 
compositions of independent subnetworks (non weakly-connected networks) and networks that 
can be formed by structure-preserving bijections of other networks (isomorphic networks) (STAR 
Methods, section Networks, Box1). These choices reduce the testable space of unique networks 
by several orders of magnitude (Figure S1C) and allow for comparisons of parameters between 
networks of different sizes. They also are a conservative starting point for our analysis given 
experimental observations. In the frequency matrix for experimental RNA FISH data describing the 
rare high state in drug naïve melanoma, in which each entry corresponds to the fraction of cells 
with each gene-pair being highly expressed (Figure S1D) (Shaffer et al., 2017, 2018), we do not 
observe a clear directionality of regulation or hierarchical structure within the highly expressed 
genes. While simulated symmetric networks can recapitulate this experimental observation, 
asymmetric networks can result in frequency matrices being highly asymmetric (Figure S1E-F). 
For these reasons, we restricted our initial analysis to symmetrical networks. 
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Note 3: Ditto above for the section of text within the green highlights. I suggest: 

For example, in a particular 8-node network, we found that the distribution qualitatively captures 
the experimental observations where most cells do not exhibit high expression states, while some 
cells are in a high state for one or more genes (Figure 2B). Similarly, when we selected a gene 
and plotted its product count for the randomly selected time points, we observed a heavy-tailed 
distribution (Figure 2C, right panel), similar to the experimental observations (Figure 2C, left 
panel). These observations, while shown for a particular 8-node network, also hold true for 
simulations of other 8-node networks as well as networks of other sizes (Figure S2B). 

Note that the simulated distributions of gene product counts for each gene are qualitatively similar 
because each gene is equivalent within our symmetrical networks (Figure S2C). This is not 
biologically realistic; the experimental data in drug naive melanoma cells for mRNA counts display 
different degrees of skewness of the distribution for different genes (e.g. EGFR vs. Jun, Figure 
S3A). These experimental observations can be recapitulated in the simulated networks by 
introducing asymmetries. For example, two asymmetric networks we tested were able to produce 
rare coordinated high states (Figure S2G-S4M) and distributions of gene product counts with 
different degrees of skewness <correct? Descriptor here should match above (also 
highlighted)>(Figure S2M). When experimentally observed expression distributions (Figure S3A) 
are compared to simulated expression distributions using Gini coefficients, we observe that while 
the Gini coefficient is low for most of the simulations (99.2%, gray), it is much higher for the 
simulations that produce rare coordinated high states (red) and overlaps with experimental Gini 
coefficients observed for individual genes (Figure S3D <move to main text and incorporate into 
Figure 2>). In total, these observations suggest that a simple transcriptional bursting model is able 
to produce states which recapitulate key aspects of rare coordinated high states observed in drug 
naive melanoma. 

Notes 4a and 4b: These are super interesting points, but they should be moved to the Discussion 
(they’re hypothetical and potentially distracting). 

Note 5: I would consider replacing “auto-regulation” with “auto-activation” throughout this section.  It 
seems more specific.  Also, consider replacing the highlighted text with “network connectivity and simple 
positive feedback in the form of gene auto-activation.” (See Note 6 as well.) 

Note 6: The two statements highlighted in green are apparently contradictory.  Also, it’s unclear to me 
why you need to rank connectivity and auto-activation/regulation, especially since the data in Fig. S5E are 
(IMO) among the weakest in the paper.  Saying that both can matter is enough, and it’s likely more 
appropriate, too.  My suggested strikethroughs reflect this preference, although my edits should be 
checked carefully for accuracy and please do not follow my suggestions if they’re unintentionally 
misleading (and apologies, if so, for that).  Finally, please move S5F to the main text (incorporate into 
Figure 2) and insert a sentence summarizing the conclusions you draw from it at the end of this 
paragraph. 



 

 
 
 

Schuh et al., Gene networks with transcriptional bursting recapitulate rare transient coordinated high expression states…, Cell Systems, 2020. 

Note 7:  This doesn’t seem like a complete thought?  Add a “suggesting that…” to the end of the 
sentence to help your reader out.  The writing in this section is comparatively rough and obscures the 
message. (Edits suggested) 

Note 8: Please only use “significant” in the statistical sense.  Either add the test and the metric or delete 
the word. 

Also please note that ouse style disallows editorializing within the text (e.g. strikingly, surprisingly, 
importantly, etc.), especially the Results section.  These terms are a distraction and they aren't needed—
your excellent observations are certainly impactful enough to stand on their own.  Please remove these 
words and others like them.  “Notably” is suitably neutral to use once or twice if absolutely necessary. 

 

Figures: As mentioned above, Figs. S3D and S5F should be moved to the main text and incorporated into 
Figure 2. 

Legends:  While the Figure's title can be the "take home" message, figure legends need to provide the 
information that a reader needs to interpret your figures independently, for themselves.  You 
should not simply state what an author should conclude from the figure, or what you think the figure 
demonstrates.  All of the main text figure legends highlighted in green must be fixed. I haven't reviewed 
the Supplemental Figure Legends but please adhere to the same standard with them as well.  Please 
revise your Figure Legends to make them fulsome and complete; if you are worried about text length 
limits, please email me. 

Thank you! 

 

 
Reviewer comments: 
 

Reviewer #1: The authors have addressed all of my concerns and I recommend publication. 
 
 
Reviewer #2: The authors have taken the reviews seriously and used them to improve the manuscript 
enormously. Now it is an important contribution to the field. 
 
 
 
Reviewer #3: The reviewers have fully addressed my comments and the paper is greatly improved. 
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—— 
Reviewer #1: 
Arjun's lab recently made an important observation that many jackpot genes are expressed in cells that are predisposed                  
to being resistance to drug therapy. One of the questions that arises from this surprising observation is that how are these                     
jackpot genes turned on in a subpopulation of cells. The paradox is that these genes are not that correlated in their                     
expression level in the jackpot cells, yet tend to be enriched in the resistant cells. This manuscript tackles this                   
fundamental question with simulations of networks of coupled and stochastic genes and showed that similar behavior as                 
observed in experiments are seen in symmetric networks. They further showed that the coordinated stochastic behavior                
arises only in networks with a certain level of connectivity. 
 
One of interesting findings is that entrance of the jackpot state is initiated by large burst size of one gene, whereas exit is                       
not correlated with burst sizes. The authors further examined the parameter space and found that Kon, Koff and Kadd are                    
the 3/7 parameters that contribute to the generation of the jackpot states. It is also illuminating to read the discussion                    
about how variations of the models including non-symmetric and negative interactions will impact the results. 
 
Understanding the phase space of gene networks and how they contribute to phenotypes is important to understanding                 
cell type differentiation. This is an important contribution to the field and I strongly support the publication of this paper. 
 

We thank the reviewer for the positive comments and interest in our work. Based on their and other reviewers’                   
suggestions, we have now further expanded on our analysis of the model, specifics of which are described below. 

 
A few minor questions and comments. First, because the model can be applied to any gene network, would we expect to                     
see these coordinated high states for many genes? And are the jackpot genes just happen to be important for drug                    
resistance? Or are there something special about the architecture of these genes? 
 

We thank the reviewer for raising these conceptually deep and important discussion points. We indeed mention in                 
the discussion section that “the transcriptional bursting model predicts that every cell type is capable of entering                 
the rare coordinated high gene state ”. More specifically, in agreement with the reviewer, we posit that such                 
coordinated high states can exist in general contexts and can have various (or no) functional consequences                
depending on the gene sets involved. We have expanded the discussion section in the revised manuscript (new                 
text in red): 
 
“Given the relative generality of the scenarios that produce rare coordinated high states, the transcriptional               
bursting model predicts that every cell type is capable of entering the rare coordinated high state. Furthermore,                 
we show that canonical modes of transcription alone, namely the binding of the transcription factor at gene locus                  
to produce mRNA via recruitment of RNA Polymerase II, can lead to these states without requiring other complex                  
mechanisms such as DNA methylation, histone modifications, or phase separation. While such other mechanisms              
may still be operational in these cells to regulate their entry to or exit from these states, we posit that in principle,                      
any set of genes interacting via traditional gene regulatory mechanisms are capable of exhibiting these rare                
coordinated high states, as long as they are interacting in a certain manner (e.g. sparsely connected) with                 
appropriate kinetic parameters. In the case of melanoma cells, the transient state is characterized by an increased                 
ability to survive drug therapy leading to uncontrolled proliferation of the resulting resistant cells. It is possible that                  
these rare transient behaviors may exist across many sets of interacting genes which may or may not manifest                  
into phenotypic consequences. Another possibility the transcriptional bursting model predicts is that even within              
the same cell, distinct modules of interacting genes can lead to distinct sets of rare coordinated high states that                   
each can affect the cellular function and outcomes differently. These possibilities can be tested for by using                 
increasingly accessible single cell RNA sequencing techniques on clonal population of cells.” 

 
Second, it might be helpful to illustrate some of the networks used in the simulation in Figure 2. It is not entirely clear to                        
me all the network topologies used in the simulation. 
 

 

Response to Reviewers



We thank the reviewer for the suggestion. We have now added the network topologies associated with each                 
simulation and associated analyses in Figure 2 and all other revised main and supplementary figures. In                
particular, we have added the missing networks to the revised Figure 2A, 2E, and 2G. As an illustration, see the                    
revised panel Figure 2G below: 

 
Furthermore, all the networks used in the simulations are collectively provided in Figure S9.  

 
Reviewer #2: 
In this manuscript Schuch et al. present a theoretical framework to provide a mechanistic understanding of an increasingly                  
well known phenomenon, namely the association of transient states of coordinated gene expression with persistent states                
of drug resistance in bacteria and mammalian cells. There is much that is interesting here but there is also much that is                      
either missing or not properly reasoned which results in a missed opportunity. If the authors were to do more work, there                     
could be something of general interest here. 
 
The work is introduced in an odd grand manner that sets up a very high level frame of reference for what ends up being a                         
very special case of an interesting but rare situation. Going from Taleb to cancer and drug resistance in a few paragraphs                     
is a good thing in a review but not in a specialized research paper which is what this is. Importantly, the manuscript is                       
motivated by experimental work (Shaffer et al, 2018 and Torre et al. 2019) but there is no proper explicit reference to the                      
details of this work. The data appears to be scattered with ad hoc references to it as needed by the models. This is not                        
right, the authors should state up front what are the features that are being modeled and then discuss the approach with                     
reference to it. Rare states of coordinated gene expression in cancer cells may well do for the title but it is not enough for                        
the development of the manuscript. The impression that one gets is that this, or a better organized version of this, could                     
have been the modeling part of either of the two experimental works but, even for this, it would need more work. 

 
We thank the reviewer for pointing out the need for a more focused and precise introduction. We have overhauled                   
our introduction with these issues in mind, in particular highlighting the need to expand on the definitions and                  
features of the rare coordinated high gene expression states being modeled. In the revised manuscript, we have                 
added Box 1 which provides a detailed description of the model, associated assumptions, parameters, and               
relevant definitions of the features being modeled. We have also added Box 2, that describes the definitions of                  
metrics used to quantify the features described in Box 1. Finally, we have rewritten large parts of introduction                  
based on the reviewers' suggestions. In particular, we made the introductory paragraph concise and added               
relevant details on the experimental observations motivating our work from Shaffer et al. 2017: 
 
‘’ Rare and large heterogeneity in single cells have been reported to arise from non-genetic transcriptional               
variability, even in clonal, genetically homogeneous cells grown in identical conditions (Fallahi-Sichani et al.,              
2017; Gupta et al., 2011; Pisco and Huang, 2015; Shaffer et al., 2017; Sharma et al., 2018, 2010; Spencer et al.,                     
2009; Su et al., 2017). Importantly, cells exhibiting these non-genetic deviations are resistant to anti-cancer drugs                
(e.g., Ras pathway inhibitors) and may lead to relapse in patients. For example, in a drug naive melanoma                  
population, a small fraction (~1 in 3000) of cells are pre-resistant, meaning they are able to survive targeted drug                   
therapy, resulting in their uncontrolled cellular proliferation (Shaffer et al. 2017). These rare pre-resistant cells are                

 



marked by transient and coordinated high expression of dozens of marker genes. In other words, several genes                 
are highly expressed simultaneously in a rare subset of cells, while the rest of the population have low or zero                    
counts of mRNAs for these genes, resulting in a distribution of steady state mRNA counts per cell that peaks at or                     
close to zero and has heavy tails. The rare cells in the tails, which transiently arise and disappear in the                    
population by switching their gene expression state (Figure 1A), are much more likely to develop resistance to                 
targeted therapies. Importantly, the rare and coordinated large fluctuations in the expression of multiple genes               
persist for several generations.’’  

 
I now raise a few issues that I would expect the authors to address if they want to capitalize on what is a good start to an                           
interesting topic. The list is not exhaustive but hopefully highlights some of the problems that the manuscript has. 
 

We thank the reviewer for the critical reading of our manuscript and providing insightful comments. We believe                 
that their comments and suggestions have greatly strengthened our revised manuscript. 

 
Introduction (which needs to be structured and elaborated in a very different manner more in accord with what the paper                    
is about) 
 
As already pointed out, the introduction is very wayward with sweeping statements on many topics and not suitable for a                    
research report such as this one. It also contains some surprising statements such as the one referring to noise based                    
models of the same phenomenon "Specifically, the classical models have largely described the variability that results in                 
relatively normally distributed counts of mRNAs of a given gene per cell". This is not true as the literature shows that these                      
models give rise to log-normal and gamma distributions that are far from normal and often match the experiments. It is                    
very worrying that this is stated as part of the introduction as it raises issues about how much the authors understand the                      
problem. 
 

We completely agree with the reviewer’s suggestion on restructuring the introduction. As also mentioned in the                
previous comment, we have now streamlined the introduction and added two boxes (attached at the end of the                  
letter) to have a more focused and clear description of the experimental features and model formulation and                 
assumptions. 
 
The reviewer has also raised an important point with respect to the distribution of mRNA counts that can result                   
from stochastic gene regulation models. We agree with the reviewer that long established models of stochastic                
gene expression can indeed give rise to distributions that are far from normal, as has been well documented                  
throughout the literature. We have now eliminated any mention of the “particularity” of any kind of distribution. We                  
have now rewritten this paragraph in the main text as follows:  
 
“...In other words, several genes are highly expressed simultaneously in a rare subset of cells, while the rest of                   
the population have low or zero counts of mRNAs for these genes, resulting in a distribution of steady state                   
mRNA counts per cell that peaks at or close to zero and has heavy tails. The rare cells in the tails, which                      
transiently arise and disappear in the population by switching their gene expression state (Figure 1A), are much                 
more likely to develop resistance to targeted therapies. Importantly, the rare and coordinated large fluctuations in                
the expression of multiple genes persist for several generations. Classical probabilistic models of gene expression               
have predicted the possibility of various types of mRNA expression distributions across a population, including               
normal, log-normal, gamma, or heavy-tail distributions (Antolović et al., 2017; Chen and Larson, 2016; Corrigan et                
al., 2016; Golding et al., 2005; Ham et al., 2019, 2020; Iyer-Biswas et al., 2009; Raj and van Oudenaarden, 2008;                    
Raj et al., 2006; So et al., 2011; Symmons and Raj, 2016; Thattai and van Oudenaarden, 2001). It is unclear if                     
such models can recapitulate the non-genetic variability characterized by rare and transient high expression              
states for several genes simultaneously (from now on referred to as “rare coordinated high states”), and if so,                  
under what conditions. 
 
Might a stochastic system of interacting genes inside the cell facilitate transition in and out of the rare coordinated                   
high state? ” 

 



 
In the introduction the two opposing models are introduced in different places (Fig1A and FigS1A) which is unhelpful and                   
distracting. 
 

We agree with the reviewer that the two types of models discussed in the text should be presented side by side.                     
We have now reworded our introduction to make it less distracting and more streamlined. We have also moved                  
the constitutive-model to revised Figure 1.  
 

 
They should also justify the restriction of the model to transcription and why they don't explore translational coupling since                   
it has been shown that this can alter the distribution of cell states by creating biases in the cell states (as defined by the                        
presence of protein products). I appreciate that they are modeling transcriptional data which, as also already stated, is not                   
properly introduced but, when dealing with networks, proteins and translation matter. Their model appear as only having                 
mRNA as the product and the regulator. 
 

We completely agree with the reviewer that translation and protein production matter when studying reaction               
networks and should be explored, as also noted by Reviewer #3. We thus analyzed a model with translation to                   
show that it can also produce rare coordinated high states, demonstrating the applicability of our approach in a                  
more realistic scenario. We added the results of the analysis to the manuscript (see STAR Methods and Box 2):  
 
“We added one state (P) and two rate parameters, a protein synthesis rate rprodP and a protein degradation rate                   
rdegP, to the original transcriptional bursting model. [...] We tested three different translation scenarios: protein               
synthesis and degradation being (1) faster than (2) same as and (3) slower than mRNA synthesis and                 
degradation. For network 5.3 and parameter set 968, giving rise to rare coordinated high states in the                 
transcriptional bursting model without translation, we took a = b = 10 (faster), a = b = 1 (same) and a = b = 0.1                         
(slower) as additional parameters. We find that protein synthesis and degradation with faster (Figure S4B ) and                
same rates as mRNA degradation and synthesis, also allows for the formation of rare coordinated high states in                  
the case of translation. Only slower protein synthesis and degradation rates did not show rare coordinated high                 
states, likely because for faster protein rates, the system dynamics is determined largely by the transcriptional                
dynamics. In sum, we demonstrate that the rare coordinated high states can arise in the revised model that                  
includes translation.’’ 
 

 
 

Finally, we stress that performing the entire analysis on the revised model with translation is computationally                
extremely expensive, because adding translation increases the model dimensions and long stochastic simulations             
are required to study the rare coordinated high states. In the future, it will be important to systematically explore                   
how the addition of translation steps to our model affects the networks and parameters that give rise to these                   
states.  

 
Results 
An important issue is that they need to be very precise about the definition of a 'highly correlated' state. This will help                      
understand what the work is about and what is being discussed and addressed. At the moment it is not. We are told that                       

 



experimentally there is no correlation between the genes that characterize the state and this seems to be supported by                   
the ad hoc reference to data (FigS1F) but then their networks assume some correlation. Even the basic model in which                    
one gene activates another has this correlation implicit. Need clarification and explanation. 
 

The reviewer has raised an important point about having precise definitions of the features being modeled. We                 
completely agree with the reviewer about the confusion surrounding the ‘highly correlated’ state as it is currently                 
used in the manuscript. In the revised manuscript, we have refrained from using the word “correlation” when                 
describing the experimental observations. Specifically, we added the following in the revised results section: 
  
‘’We limited our study to networks that are symmetric, i.e., networks without a hierarchical structure (Box 1 ; STAR                  
Methods , section Networks, Figure S1C ), a simplification partially supported by the experimental observation that              
there doesn’t seem to be a clear directionality of regulation or hierarchical structure within the highly expressed                 
genes in the rare high state in drug-naive melanoma (Figure S1D ) (Shaffer et al. 2018, 2017). The lack of                   
hierarchy is inferred from the frequency matrix for the experimental RNA FISH data, in which each entry                 
corresponds to the fraction of cells with each gene-pair being highly expressed (Figure S1D ). Asymmetric               
networks can result in frequency matrices being highly asymmetric, as demonstrated by an example simulation of                
a star-shaped reaction network (Figure S1E-F).’ ’  

 
 
Furthermore, we have provided an example simulation to demonstrate the above point. We simulated a               
star-shaped network with existing asymmetry where one central node (node 1) positively regulates itself and four                
peripheral nodes (nodes 2, 3, 4, and 5). The resultant frequency matrix is highly asymmetric (left) in that there is a                     
high frequency of pairwise overlap between node 1 and all other peripheral nodes. However, the pairwise overlap                 
between the peripheral nodes 2, 3, 4, and 5 is much smaller, which is inconsistent with the frequency matrix of                    
experimental data. We also calculated the frequency matrix for a symmetric network (right) and found it to be                  
qualitatively more similar to the experimental frequency matrix, where coordinated high expression is             
gene-independent (Figure S1D-F).  

 

 
 

 



The corresponding text in the STAR Methods is as follows:  
 
“Experimental data from Shaffer et al. (Shaffer et al. 2017) implies the absence of any obvious hierarchical                 
structure within the genes, and that the driver genes may interact in a relatively non-hierarchical manner (Figure                 
S1D ). The structural embedding of a node in its network can increase or decrease its ability of being involved in                    
coordinated overexpression. For example, a centered node within a star-shaped network is involved more              
frequently in coordinated overexpression than the other nodes within the same network (Figure S1E), which is                
inconsistent with the experimental observations. To ensure for non-hierarchical behavior we define a set of               
symmetric networks (Figure S1F), where the number of in- and outgoing edges within a node and across nodes                  
is identical and either all nodes in a network have a self-loop or not.’’  
 
We have also included Box 1 that explains the model and associated definitions, which we hope further clarifies                  
the terms “coordinated” used in the text.  

 
Page 7: they should justify the ergodic assumption since, intuitively, it will be broken by the entry into the rare stable                     
states. They might argue that in the very large sampling they are doing this will apply but, does a cell have access to a                        
similar phase space? 
 

We thank the reviewer for pointing out the potential issue with our ergodic assumption, especially given the                 
unique nature of the rare coordinated high state. We run each simulation for 1 million time units, and subsequently                   
split the simulation into non-overlapping time interval of 1000 time units. For the ergodic assumption to hold, the                  
behavior in one interval should not influence the behavior in another interval, essentially showing that the                
simulated events are Markovian (Van Kampen 1992). To check whether the independence was indeed the case,                
we compared the autocorrelation values between successive time-intervals, updated STAR Methods section, and             
included a summary of the analysis in Box 2: 
 
“To show that sub-simulations of 1,000 time units are uncorrelated, we determine the autocorrelations for all 1,000                 
parameter sets of network 3.2 (Figure S9 ) for up to 1,000 lags (using the MATLAB autocorrelation function acf                  
(Price, C. (2011). Autocorrelation function(ACF)     
(https://www.mathworks.com/matlabcentral/fileexchange/30540-autocorrelation -function-acf), MATLAB Central   
File Exchange. Retrieved June 13, 2019.). For each of these, we determine the first lag at which the                  
autocorrelation is below the upper 95% confidence bound. For 88.2% of all simulations, the first lag below the                  
upper 95% confidence bound occurs before 1,000 lags. For the 26 simulations with rare coordinated high states,                 
23 show a first lag below the upper 95% confidence bound before 1,000 lags. For the remaining three simulations                   
the autocorrelation after 1,000 lags is at 0.0615, 0.0206 and 0.4363. Removing the simulation with high                
autocorrelation (0.4363) does not change the conclusions of our analysis.’’ 

 
Some of the results presented in Figure 2 raise questions. In Figure 2B we are shown a comparison between data and                     
simulation in terms of the genes coexpressed in these rare states. A superficial viewing suggests a similarity but it is                    
obvious that the experimental data has a tail which is lacking in the simulation. One can see that there is a non-zero                      
number of cells with 8 highly expressed genes. Need an explanation. 
 

We thank the reviewer for their detailed reading of our manuscript and making insightful observations. The tail in                  
the experimental data in original Figure 2B (at number of highly expressed genes = 8) was a mistake on our part                     
when preparing the figure. We apologize for the oversight. The actual experimental data does not have that long                  
of a tail, which we have corrected in the revised figure and added the percentages for clarity. Furthermore, we                   
note that the distribution from model simulation shown here does not have non-zero values for higher number of                  
genes, unlike the experimental data. The absence of of non-zero values may be because 1) The number of cells                   
obtained from experimental RNA FISH imaging data is ~5-times more than the computationally simulated cells               
used to plot the histogram (as measured by splitting the entire simulation (10 6 ) into a simulated population of                  
1,000 cells); and 2) The network underlying the experimental data likely contains a much larger set of interacting                  

 



genes, which may increase the likelihood of obtaining the non-zero values for higher number of expressed genes.                 
We have now added a discussion point in the main text: 
 
“The absence of of non-zero values may be because the network underlying the experimental data contains a                 
much larger set of interacting genes, thereby increasing the likelihood of non-zero values for higher number of                 
expressed genes.’’  
 

 
  
Finally, we emphasize that we are not aiming to fit the model parameters and the simulated data to the                   
experimental data. Instead, our goal is to capture the features that describe the rare coordinated high states                 
observed in drug naive melanoma cells 

 
Figure 2C suffers from a similar problem as, in detail, the distributions are different. It would be helpful if to show similarity                      
or differences, they would do a semi-log plot. 
 

We thank the reviewer for their insightful observations and suggestions. In the revised manuscript, we sought to                 
systematically compare the experimental and simulated data. First, we highlight that there is variability between               
the experimental distributions of genes that characterize rare coordinated high states (see the newly Figure S3A): 
 
‘’Similarly, when we selected a gene and plotted its product count for the randomly selected time points, we                  
observed a heavy-tailed distribution (Figure 2C, right panel), similar to the experimental observations (Figure 2C               
left panel and  Figure S3A ).’’ 
 
‘’ Since there is both inter- and intra-gene variability between the experimental expression distributions             
characterizing these states (Figure S3A ) ...’’ 
  

 
 

 



Furthermore, while the distributions of the same gene (e.g. NGFR, used in Figure 2C) of biological replicates have                  
heavy tails, they don’t appear exactly the same (plot not included in the revised manuscript). 

 
Therefore, we focused on performing the comparisons that capture general properties of distributions across all               
genes. We first note that comparisons on a semi-log plot are not appropriate as the majority of the points belong                    
to x = 0. Removing these points fundamentally changes the distributions and adding a small offset to them is not                    
ideal either. Therefore, we resorted to using other metrics to compare the simulated and experimental data. 
 
Our two metrics for comparative analysis take into account these considerations. First, we computed Gini indices                
for both the simulated and experimental data, which was also used to characterize experimental distributions in                
the original study (Figure 3D, Shaffer et al, 2017). A Gini coefficient of 0 implies perfect equality such that for a                     
given gene, all cells within a population have the same number of mRNA molecules, whereas 1 implies perfect                  
inequality such that one cell expresses all the mRNA molecules while others express none. We added the new                  
analysis to the results section in the revised manuscript and the STAR Methods:  
 
‘’ Since there is both inter- and intra-gene variability between the experimental expression distributions             
characterizing these states (Figure S3A ), we compared these expression distributions to simulated expression             
distributions using Gini coefficients, used to characterize experimental expression distributions in the original             
study (Shaffer et al, 2017). While the Gini coefficient is low for most of the simulations (99.2%, gray), it is much                     
higher for the simulations that produce rare coordinated high states (red) and overlaps with experimental Gini                
coefficients (Figure S3D ).’’ 
 
‘’ Additionally, we computed the Gini indices for the gene expression distributions of both the simulations showing                
rare coordinated high states and the experimental data (Figure S3A and FigureS3D ) (Shaffer et al. 2017; Jiang                 
et al. 2016). A Gini coefficient of 0 implies perfect equality such that for a given gene, all cells within a population                      
have the same number of mRNA molecules, whereas 1 implies perfect inequality such that one cell expresses all                  
the mRNA molecules while others express none. We used the MATLAB function gini (Yvan Lengwiler (2019). Gini                 
coefficient and the Lorentz curve     
(https://www.mathworks.com/matlabcentral/fileexchange/28080-gini-coefficient-and-the-lorentz-curve), MATLAB  
Central File Exchange. Retrieved October 24, 2019.) for the computations.’’  
 

 
Second, we fitted exponential distributions to the simulated and now also experimental data and compared the                
99 th percentiles. Points above the x=y line correspond to distributions with fatter tails than of the fitted exponential                  
distributions. Removing the simulations below the x=y line does not qualitatively change our downstream analysis.               
We added the following comparison to the STAR Methods section: 

 



 
‘’ Most (82%) of the 99th percentile of the simulated expression distributions are above the diagonal, hence larger                 
than the 99th percentile of the fitted exponential distributions (Figure S3C, right panel). The 99 th percentile of all                  
the nine marker genes in Shaffer et al. also lie above the diagonal in the general vicinity of the points                    
corresponding to simulations with rare coordinated high states (Figure S3C, left panel).’’ 
 
The procedure and considerations taken while fitting exponentials is described in detail in STAR Methods,               
Simulation section. 

 
 
 

Together, our additional analysis on the experimental data demonstrates that the simulated data captures its key                
features.  

 
Another important issues arises in 2D where one wonders if this the result is not a trivial consequence of the intuitive fact                      
that as the number of nodes in the network increases, the number of states increases. Maybe if they normalized to                    
network size they might get a different result. 
 

We agree with the reviewer that the increase in the number of simulations with the rare coordinated high states                   
with network size is likely a result of the increased number of possible networks for larger network sizes. We used                    
the original figure panel to demonstrate that these states can be exhibited by networks of different sizes, but we                   
see how it could be misleading. In the revised manuscript, we have provided two types of normalizations (Figures                  
S5A,B) to take into account the network size: 1) Normalization by the network size as suggested by the reviewer;                   
2) Normalization by number of networks corresponding to each network size (Figure S9). We added the following                 
to the main manuscript: 
 

‘’ Indeed, we found that, within a particular network size, the ability to produce rare coordinated high states decreases                  
dramatically (and monotonically) with increasing network connectivity (Figure 2E and Figure S5C-D ). Consistently, the              
fraction of networks per network size (normalized by either network size or total networks per network size) exhibiting rare                   
coordinated high states decreases with increasing size (Figure S5A-B ) as a larger fraction of high connectivity networks                 
exist in bigger networks (Figure S5D ).’’ 

 

 



 
 

 
 
In this regard the limitation of the network size to <8 is not properly justified or explained. Looking at how ron is calculated                       
(page 19 ) the limitation could be a trivial consequence of the addition that is used in the calculation. Above six nodes, the                       
system might blow up. They claim but not show that ≥8 networks will also display coordinated states but will they? And                     
how does the number correlate with the experimental data? Could the authors discuss? 
 

The reviewer has brought up an important discussion point about our investigation being limited to network size                 
≤8. As the reviewer also points out, the space of networks increase with network sizes, in turn making it                   
computationally prohibitive to perform extensive analysis across all possible topologies and parameters.            
Furthermore, it is possible that the rare coordinated high states may be a local feature of a subnetwork within an                    
otherwise large network. In the original manuscript, we have already shown that a network with 8 nodes exhibits                  
the rare coordinated high states. While our additional analysis in the revised manuscript shows that even a                 
network with 10 nodes exhibits these states (Figure S2D-F), we completely agree with the reviewer that these                 
additional observations don’t ascertain that even larger networks will also display these states. Therefore, we               
have modified the text in the revised manuscript at various places to moderate our claims and provide clarification                  
wherever necessary. An example statement is below: 
 
“We found that the rare coordinated high states occur ubiquitously in networks with different numbers of nodes                 
analysed (up to 10 nodes) (Figure 2D and Figure S2B-F, Figure S5A-B ). We therefore hypothesize that even                 
larger networks may also display rare coordinated high states, and can be explored in future studies.” 
 
The reviewer has also asked us to discuss how the number (network size) correlates with the experimental data                  
(also stated in the response to reviewer #3). While our lab used network inference algorithms to infer the                  
underlying networks from RNA FISH (this manuscript) and RNASeq datasets (Figure 5, Shaffer et al, 2018), we                 
lack a quantitative wiring diagram of the actual gene regulatory network. Therefore, making quantitative              
comparisons on the network size with the experimental data is not possible. 
 

Even admitting that it was clear what exactly they are trying to model, or better find an explanation to, the reliance on                      
simulations obscures some of the potential explanations. One example is on Figure 3A. Surprisingly there appears to be                  
no correlation between the maintenance of expression and stopping the burst e.g take the 'black gene', it is surprising that                    
the expression is maintained for so long after the first long burst. How can this happen? The same applies to the others. If                       
there is a memory in the system, where does it come from? 
 

We thank the reviewer for noticing the potential inconsistencies in Figure 3A and encouraging us to think                 
mechanistically about the rare behavior. We apologize for not only originally clarifying that the bursts shown in                 
Figure 3A are schematics, but also for not accurately representing the actual scenario. We have now edited                 
Figure 3A and associated figure caption to represent more transcriptional bursts: 
 
‘’ Figure 3. Rare coordinated high state [...]. 
(A) [...] The bursts below the exemplary simulation are representative schematics.’’ 

 



 

 
 

Specifically, inspired by the reviewers’ comments, we wondered whether enhanced transcriptional activity            
facilitates the maintenance of rare coordinated high states. We now state in the revised manuscript: 
 
‘’ We found a substantial increase in the transcriptional activity, as measured by the burst fraction, during the high                  
expression time-region as compared to the baseline time-region (Figure 3B ). Increased burst fraction could be a                
result of (1) longer transcriptional bursts or (2) a higher burst frequency. The former is not possible as the duration                    
of each burst is distributed exponentially according to exp(roff), which does not change between the baseline and                 
high time-region. Indeed, we found an increase in the burst frequency in high time-region, thus establishing its                 
role in the maintenance of the rare coordinated high state (Figure 3C ). The increased transcriptional bursting                
seen in the transcriptional bursting model is consistent with the experimental data using labeled nascent               
transcripts which showed that the transcriptional activity occurred in frequent bursts in cells high for a marker                 
gene (Shaffer et al. 2018).’’  

 
Along the same lines, it would be helpful if they could dig into the causes for the exit from the state and present some                        
experimental data. And, of course, what determines the duration of the state? 
 

The reviewer has raised excellent points on finding the reasons leading to the exit from the high state and to                    
present experimental data. While we do not have any experimental data on identifying the causes of exit, our work                   
in the original manuscript established two things about the exit from the state: 1) exit for successive genes from                   
the high expression state occurs independent of each other; 2) the exit from high expression state does not                  
require changes in burst durations. We believe that the weak strength of coupling between nodes in the network is                   
key to exiting from the high state, which, in turn, may also determine the duration of the state. We demonstrate                    
that weak coupling is indeed critical by analyzing the parameter radd that characterizes the strength of the positive                  
interaction between the nodes. Specifically, we show that a fixed network exhibits the transient state only for low,                  
non-zero values (<0.31) of radd , which suggests existing but weak coupling. Keeping other parameters fixed, we                
show that too high values of radd results in the disappearance of rare coordinated high states, giving way to stable                    
high states, i.e., the network can transition into the high expression state but loses the ability to come out of it                     
(Figure S6 E-G).  

 



 
We have now added the corresponding text in the revised manuscript:  
 
“The exit from the high state could be a result of weak strength of coupling (as reflected by the moderate values of                      
parameter radd) between nodes for the simulations that produce these states. Consistently, we found that too                
high values of radd results in the disappearance of rare coordinated high states, giving way to stable high states.                   
In other words, the network can transition into the high expression state but loses the ability to come out of it                     
(Figure S6 E-G).” 

 
Consistently, we see a similar effect upon increasing the network connectivity (and consequently the effective               
strength of interaction). Keeping all other things the same, we see a shift from a transient coordinated high                  
expression state to stably high expression state upon increasing connectivity (Figure 4B-E). 

 
 
They discussion of the parameters is confusing: there are 8 parameter sets but they only discuss 3. It would be good to                      
know what the others are. Also, what is the relationship of these 8 parameters from the simulation to the 7 free                     
parameters of the model? One can do some work, interpret the authors and know what they are talking about but they                     
should tell us. Also, they should be more explicit about the point of the screen. 
 

We thank the reviewer for pointing out the lack of clarity in the discussion of model parameters and apologize for                    
this oversight. In the revised manuscript, we have added a new document named Box 1 which provides a detailed                   
description of the model, associated assumptions, parameters, and relevant definitions. Specifically, we provide a              
table containing the definitions of independent (free) and dependent model parameters. Additionally, we provide a               
rationale for the definitions of dependent parameters by relaxing the definition of these parameters, as outlined in                 
the footnote of Box 1. We have also edited the results section of main text to include the model parameters and                     
direct readers to Box 1 as necessary. As an example: 
 
“The dissociation constant k of the Hill function is dependent on the parameters rprod , rdeg , and d, such that k(rprod ,                    
rdeg ,d) = 0.95 * d * rprod /rdeg . In total, the model has seven free and one dependent model parameters, as outlined in                      
Box 1 .’’ 

 
The reviewer also raised that we explicitly explain the rationale behind the screen. Based on the reviewers                 
suggestion, we have added text in the revised manuscript to include the inspiration behind analyzing the                
topologies and parameters: 

 



 
“Since the rare coordinated high states occur in <1% of all simulations (Figure S2A ), we wondered whether their                  
occurrence depends on the network topologies and/or model parameters. Specifically, what are the features of               
the topologies and parameters that facilitate the occurrence of rare coordinated high states? For the simulations                
...” 
 
“Since the transcriptional bursting model has seven free parameters (ron , roff, rprod , radd , radd , d, and n; see Box 1 for                     
details), we asked whether specific parameter combinations preferentially give rise to the rare coordinated high               
states, and if so, what features of such combinations facilitate it. The subsequent analysis is motivated by the                  
initial observation that occurence of different classes of temporal gene product profiles across different network               
sizes and connectivities appear to also depend on the parameter sets (Figure 2G). Specifically, if …’’ 

 
And, indeed, it would be good to have a phase space of the screens, parameters. 
 

The reviewer has asked to provide a phase space of screens and parameters. We first highlight that our                  
parameter space screen did not find any parameter combination that always resulted in rare coordinated high                
states. We did however find eight parameter sets that give rise to the rare coordinated high states much more                   
frequently across different network architectures than others, but not necessarily always. Resampling using the              
bounds obtained from these eight parameter sets result in >14-fold enrichment of simulations giving rise to these                 
states (Figure 2K).  
 
In response to the reviewer, we have now added the phase space for the three parameters in the revised                   
manuscript (Figure S6C).  

 
 
Furthermore, inspired by the reviewers’ comments, we have now additionally performed parameter sensitivity             
analysis which confirmed that the three parameters (ron , roff, and radd ) identified by the decision tree algorithm and                  
generalized linear model are indeed critical for producing the rare coordinated high states (Figure S6D). We also                 
found a moderate dependence on the Hill coefficient n, also confirmed by the low p-value for n from generalized                   
linear model analysis (Figure S6C). 
 

 

 



 
What is the importance of the frequency of the bursts in the entry into and maintenance of the state? 
 

We thank the reviewer for raising important mechanistic questions on the importance of transcriptional frequency               
in the entry into and maintenance of the state. Reiterating the response to the reviewers’ previous comment, we                  
have now shown that the burst frequency is substantially increased during the high time-region as compared to                 
the baseline time-region (Figure 3B,C ). Therefore, burst frequency indeed plays an important role in maintaining               
the state, an observation consistent with the experimental data in Supplementary Figure 12 of Shaffer et al. 2018.                  
We also performed additional analysis to answer whether the increase in frequency is promoted by positive                
regulatory interactions between the network nodes: 
 
“Next we wondered whether the increase in burst frequency is promoted by the interactions of genes organized                 
within the network. We compared two networks of the same size (3 nodes), where one is comprised out of single                    
unconnected (orphan) nodes and the other of an interdependent structure (network 3.2). We found that for any                 
parameter set (screened for all 26 parameter sets giving simulations with rare coordinated high states in the                 
previous analysis for network 3.2), the system with a connected network has (1) more high expression states and                  
(2) prolonged time in high expression states, as compared to unconnected nodes (Figure 3D ). Together, we find                 
that the maintenance in the high state is because of increased burst frequency, which may be a result of the                    
positive regulatory feedback intrinsic to the networks.’’  
 

 
The reviewer has also asked whether burst frequency plays a role in the entry into the high state. We posit that                     
investigating the role of burst frequency first requires identifying a time-region before the entry into coordinated                
high state, which is not possible to define formally. Furthermore, we have shown in the original manuscript that it                   
is the long duration of the transcriptional burst right before and during the entry into the state (entry time-point)                   
that drives entry into the high state. In the revised text and Figure 3, we have now added that the conclusion on                      
long duration of bursts at the entry time-point holds true when measured for all simulations that exhibit rare                  
coordinated high states (Figure 3G): 
 
‘’ Importantly, both of these conclusions hold true when measured for all simulations with rare coordinated high                
states (Figure 3G).’’ 
 

 
Discussion 

 



The discussion seems to be focused in reinforcing some prejudices derived from their analysis and providing some                 
excuses for work that should have been done. Here is an important paragraph: 
"One limitation of our model is that we have performed quantitative analysis only on symmetric networks with positive                  
interactions between nodes. It is likely that our findings hold more generally for asymmetric networks, as partially                 
demonstrated for two cases of randomly selected asymmetric networks". If this is the way they feel, they should prove it.                    
Also they state that "Inhibitory interactions between nodes is a separate and perhaps more interesting point. In principle,                  
the model can be adapted to include inhibitory interactions" This is very important in light of the possibility that networks                    
with <8 nodes will explode. They should definitely explore the influence of inhibitory interactions as this is a glaring                   
omission in the analysis. 
 

The reviewer is absolutely correct in pointing out that we have not proven our claims about the generality of our                    
findings for asymmetric networks. We have now modified the text in discussion to moderate our claim.  
 
“One limitation of the transcriptional bursting model is that we have performed quantitative analysis only on                
symmetric networks with positive interactions between nodes. While the preliminary analysis on two cases of               
randomly selected asymmetric networks shows that they do exhibit the rare coordinated high states (Figure               
S2G-S4M), it remains to be seen whether these findings hold more generally for asymmetric networks.” 
 
Similar to reviewer #3, the reviewer has also raised that we have limited our analysis to transcriptional activation,                  
not taking into account transcriptional inactivation i.e. cases where gene interactions are inhibitory. We agree with                
the reviewer that including transcriptional inactivation will reveal important aspects including whether a revised              
model can still produce rare coordinated high states, and if so, under what model conditions. At the same time,                   
including the inhibitory interactions necessitates performing the entire analysis on a large set of new parameter                
space and networks, which is computationally prohibitive, especially given the large number of relatively long               
stochastic simulations needed to search for rare events. We emphasize that the primary aim of our present study                  
was to identify whether a minimal model based on established principles of transcriptional regulation can               
recapitulate the rare coordinated high states. It is possible that these behaviors can exist under more general                 
conditions as well, and would be important for further studies to include additional layers of complexity. We                 
believe that our framework will provide strong quantitative foundations for such studies.  

 
We also agree with the reviewer that even smaller networks may explode when including the inhibitory                
interactions and have now added text in the revised manuscript, as follows:  
 
‘’ Inhibitory interactions between nodes is a separate and perhaps more interesting point. In principle, the model                
can be adapted to include inhibitory interactions. These inhibitory interactions may lead to non-monotonic effects               
of network connectivity on the occurrence of rare states, as positive and negative interactions can compete in                 
non-linear ways. Similarly, a network with both negative and positive interactions may be more prone to instability,                 
even for relatively smaller networks. Furthermore, inclusion of these interactions might also make the exit of                
genes from the high expression state dependent on one another, which occurs independently in the transcriptional                
bursting current model.’’ 
 

 
Overall, a very interesting topic but a very casual and, to a certain degree, superficial analysis. The paper needs to                    
change in structure and also have more in depth analysis and a better judgement of what is being explained and what are                      
the assumptions; at the moment they seem to be very biased by their assumptions. 
 

We thank the reviewer for their critical reading of the manuscript and providing a number of suggestions aimed at                   
improving the manuscript. We have made substantial efforts to address most of the reviewers’ comments and we                 
believe that the revised manuscript is substantially improved as a result. Briefly, these include: 1) Restructuring                
parts of the introduction and other sections; 2) Inclusion of two boxes (attached at the end of the letter) to clearly                     
lay down the model definitions and assumptions; 3) Additional analysis on network size and parameters, including                

 



protein translation steps, and comparing experimental and simulated data with new metrics; and 4) Extensive               
analysis of factors driving the entry into, maintenance of, and exit from, the rare coordinated high state.  

 
Reviewer #3:  
The manuscript by Schuh et al investigates stochastic genetic network models that are capable of producing rate transient                  
coordinated expression states as observed experimentally in melanoma. The authors focus on a specific class of genetic                 
networks with transcriptional bursting and computationally explore a wide range of network size, topology and parameters.                
They find these networks below a threshold of connectivity are capable of producing behaviour that is similar to                  
experimental data. They also identify this model behaviour is sensitive to values of certain parameters in the model but                   
not others. Interestingly, they validate using network inference on experimental data a transition from low connectivity to                 
high connectivity that is associated with transcriptionally stable states. Overall, this is an interesting paper with novel                 
results. However, the effect of some model assumptions and also the mechanistic origin of the observed behaviour is not                   
fully clear. I have the following specific comments: 
 

We thank the reviewer for their encouraging comments, and also for their suggestions that we believe have                 
significantly improved our revised manuscript. We have now significantly expanded on the model assumptions              
and tested a subset of them for their effect on the model outcomes. We have also performed additional analysis                   
on the mechanistic origins of the rare coordinated high states and expanded our investigation on network                
topologies. The specifics of our efforts are detailed in the point-by-point response below. 

 
- The model used has several assumptions, it is not clear what is the effect of these assumptions on the model behaviour.                      
The model, ignores protein and translation, but transcriptional regulation works through proteins. Including proteins              
explicitly is computational expensive, but some exploration of this would be useful. Also, the models only include                 
transcriptional activation and only consider additive interaction. What would happen if you relax these assumptions? 
 

The reviewer has brought up good points about the model and associated assumptions. In the revised                
manuscript, we have included a detailed description of the model and assumptions used to formulate the model                 
as a part of Box 1. We also provide rationale for the definitions of dependent model and classification parameters                   
by relaxing the definition of these parameters, as outlined in the footnote of Box 1. Based on the reviewer's                   
suggestion, we have relaxed four out of the five major model assumptions, and provide a summary in Box 2.                   
Details on the testing of relaxed assumptions are provided below: 
 

1. We agree with the reviewer that while computationally expensive, an exploration of including translation              
and protein production in the model will be useful. We added the following analysis to the revised                 
manuscript (see STAR Methods and Box 2):  
 
“We added one state (P) and two rate parameters, a protein synthesis rate rprodP and a protein degradation                  
rate rdegP, to the original transcriptional bursting model. [...] We tested three different translation scenarios:               
protein synthesis and degradation being (1) faster than (2) same as and (3) slower than mRNA synthesis                 
and degradation. For network 5.3 and parameter set 968, giving rise to rare coordinated high states in the                  
transcriptional bursting model without translation, we took a = b = 10 (faster), a = b = 1 (same) and a = b                       
= 0.1 (slower) as additional parameters. We find that protein synthesis and degradation with faster               
(Figure S4B ) and same rates as mRNA degradation and synthesis, also allows for the formation of rare                 
coordinated high states in the case of translation. Only slower protein synthesis and degradation rates did                
not show rare coordinated high states, likely because for faster protein rates, the system dynamics is                
determined largely by the transcriptional dynamics. In sum, we demonstrate that the rare coordinated high               
states can arise in the revised model that includes translation.’’ 
 

 

 



 
 

2. We extended our analysis on multi-gene regulation using additive interactions to also include             
multiplicative interactions, i.e. regulation where we multiply the Hill functions of the influencing genes. We               
found that network models with either additive or multiplicative mode of inter-gene regulation can, in               
principle, give rise to rare coordinated high states. We added details on the additional analysis to STAR                 
Methods and Box 2: 

 
“We also tested for multiplicative regulation, i.e. regulation where we multiply the reaction rates (and               
consequently the reaction propensities) of the influencing genes (Figure S4C ). [...] We show that for               
network 5.3, 97 out of 1000 simulations show rare coordinated high states in case of multiplicative                
regulation (Figure S2D-E). In comparison, 15 simulations show rare coordinated high states in case of               
additive regulation. 9 simulations show rare coordinated high states in both cases.” 
 
“Multi-gene regulatory effects: The joint regulatory effects experienced by a gene which is regulated by               
several other genes can be modeled using different approaches. While the majority of analysis in our                
study uses an additive model of joint-regulation, we performed a subset of simulations (STAR Methods)               
for cases where the regulation by multiple gene nodes is multiplicative (Figure S4C and E). We find that                  
for network architecture 5.3, 15 and 97 out of 1000 parameter sets give rise to simulations with rare                  
coordinated high states in the additive and multiplicative joint-regulation, respectively (Figure S4D). Nine             
simulations are found to show rare coordinated high states in both definitions of multi-gene regulation.’ ’ 

 

 
 

We also note that the reviewer raised that we have limited our analysis to transcriptional activation, not taking into                   
account transcriptional inactivation i.e. cases where gene interactions are inhibitory. We completely agree with the               
reviewer that including transcriptional inactivation will reveal important aspects including whether the revised             
model can still produce rare behaviors, and if so, under what model conditions. However, as also stated above,                  
incorporating inhibitory interactions necessitates performing the entire analysis on a large set of new network               
architecture and accompanying parameter sets, which is computationally prohibitive, especially given the large             
number of relatively long stochastic simulations needed to search for rare events. We emphasize that the primary                 
aim of our present study was to identify whether a minimal model based on established principles of                 
transcriptional regulation can recapitulate the rare coordinated high states. It is possible that these behaviors can                
exist under more general conditions as well, and would be important for further studies to include the inhibitory                  
interactions. The framework developed in our study can be extended for future studies on systematic investigation                
of additional layers of complexity. 

 



 
- While the effect of model parameters is explored, the topology of the networks are not explored fully (only at the level of                       
connectivity). Are there specific model topologies that produce the rate transient expression more robustly that others? Do                 
these tend to contain positive feedbacks? 
 

The reviewer has brought up an important point about exploring the dependence of rare coordinated high states                 
on parameters and network topologies. The reviewers’ particular comment on lack of exploration of network               
topologies other than connectivity-based analysis has inspired our systematic analysis in the revised manuscript.              
We show that for a fixed size and connectivity, networks with gene auto-regulation (or self-loops) result in higher                  
number of rare coordinated high states than networks without self-loops (Figure S5E). The enhanced ability of                
networks with self-loops to produce these states is likely because of the presence of direct positive feedback(s) for                  
each gene, as also insightfully pointed out by the reviewer. We have now included the additional analysis in the                   
revised manuscript: 
 
‘’ We next wondered whether gene auto-regulation (networks with self-loops) have any effect on a networks ability                
to produce the rare coordinated high states. Indeed we found that for a fixed size and connectivity, networks with                   
auto-regulation result in higher number of simulations with rare coordinated high states than networks without               
auto-regulation (Figure S5E).’’ 
 

 
 
 
The analysis above inspired us to go even a step further and consider the dominating effect between connectivity                  
and auto-regulation (self-loops). Indeed, we found that the effects of connectivity strongly overpower the effect of                
having self-loops on a network’s ability to exhibit rare coordinated high states. We have now added the new                  
analysis to the revised manuscript and STAR Methods: 
 
‘“At the same time, we wondered whether connectivity or auto-regulation has a more dominating effect on a                 
networks’ ability to produce these states. We found that adding self-loops on otherwise identical networks reduced                
the occurrence number of simulations with rare coordinated high states (Figure 2F), demonstrating the stronger               
effect of connectivity than auto-regulation.” 
 
“Self-loops 
A network with a direct auto-regulation is called a network with a self-loop. Due to the restriction of symmetric                   
networks, all networks can be classified as having self-loops for all nodes or not having self-loop for any node.                   
Due to non-isomorphism, the set of networks contains for each network without self-loops an identical network                
with self-loops. We evaluate the ability of these different edge classes on the formation of rare coordinated high                  
states (Figure 2F and Figure S5E). ” 

 



  
We additionally considered the topological feature characteristic distance on the formation of simulations with rare               
coordinated high states: 
 
“Finally, we analyzed network topologies based on characteristic length, defined as the average shortest path               
length between pairs of nodes of the network (see STAR Methods, Box1 ). Characteristic length recapitulates the                
effects of not only network connectivity (inversely correlated with characteristic distance), but also differentiates              
topologies with the same connectivity (Figure S5F), for example networks with or without auto-regulation.” 
 
“Characteristic distance  
The characteristic distance of a network is defined as the average shortest path length for all pairs of nodes within                    
a given network. To calculate this distance, we used the MATLAB function shortestpath on all pairs of nodes. We                   
evaluated the ability of the characteristic distance normalized to the network size on the formation of rare                 
coordinated high states (Figure 5F).’’ 
 

 
 
- Do you have any mechanistic insight on the origin of this behaviour? Why some parameters are critical and some are                     
not relevant? 

 
We thank the reviewer for encouraging us to think mechanistically about the origins of rare coordinated high                 
states. In the revised manuscript, we first systematically performed parameter sensitivity analysis and confirmed              
that the three parameters (ron , roff , and radd ) identified by the decision tree algorithm and generalized linear model                   
are indeed critical for producing the rare coordinated high states (Figure S6D ).  
 

 



 
 
All the three parameters affect transcriptional bursting activity—two of these parameters (ron and roff) characterize               
the activity at each node and the third parameter (radd ) controls how the activity is affected by inter-gene(node)                  
interaction. Given the strong dependence on three parameters regulating transcriptional bursting, we wondered             
whether enhanced transcriptional activity facilitates the maintenance of rare coordinated high states. We now              
state our results in the revised manuscript:  
 
‘’ We found a substantial increase in the transcriptional activity, as measured by the burst fraction, during the high                  
expression time-region as compared to the baseline time-region (Figure 3B ). Increased burst fraction could be a                
result of (1) longer transcriptional bursts or (2) a higher burst frequency. The former is not possible as the duration                    
of each burst is distributed exponentially according to exp(roff), which does not change between the baseline and                 
high time-region. Indeed, we found an increase in the burst frequency in high time-region, thus establishing its                 
role in the maintenance of the rare coordinated high state (Figure 3C ). The increased transcriptional bursting                
seen in the transcriptional bursting model is consistent with the experimental data using labeled nascent               
transcripts which showed that the transcriptional activity occurred in frequent bursts in cells high for a marker                 
gene (Shaffer et al. 2018).’’  
 

 
 

We next hypothesized, partly inspired by the reviewers previous comment, that the change in frequency is                
promoted by positive regulatory interactions between the network nodes. The revised manuscript now includes: 
 
“Next we wondered whether the increase in burst frequency is promoted by the interactions of genes organized                 
within the network. We compared two networks of the same size (3 nodes), where one is comprised out of single                    
unconnected (orphan) nodes and the other of an interdependent structure (network 3.2). We found that for any                 
parameter set (screened for all 26 parameter sets giving simulations with rare coordinated high states in the                 
previous analysis for network 3.2), the system with a connected network has (1) more high expression states and                  
(2) prolonged time in high expression states, as compared to unconnected nodes (Figure 3D ). Together, we find                 
that the maintenance in the high state is because of increased burst frequency, which may be a result of the                    
positive regulatory feedback intrinsic to the networks.’’  

 



 
 
Together, since both the entry into and the maintenance of the rare coordinated high state is regulated by                  
transcriptional bursting, the parameters directly controlling it are relevant, while others are not.  

 
- The model uses non mass action kinetics. Have you used a variant of the Gillespie algorithm to handle this and what                      
kind of approximation are you making? Could this affect your results. 
 

We thank the reviewer for bringing up an important point about the use of non-mass action kinetics, namely using                   
Hill functions, to model the regulation of one gene by another. It is true that this is not a “pure” Gillespie simulation                      
of the full chemical master equation. However, given the commonly held assumption that the binding and                
unbinding of transcription factors to and from DNA is much faster than the rate of transcript production and                  
degradation, a common way to model this binding is by using the quasiequilibrium assumption (Phillips et al.                 
2019), in which an average binding probability is used to modulate the transcription rate. The quasiequilibrium                
assumption allows us to accurately model transcriptional regulation while dramatically reducing computational            
costs, making our study feasible. We did not mention this clearly in the original manuscript but have now modified                   
the text to discuss the approximation:  
 
“In particular, we lump steps leading to transcription by implementing the commonly used quasiequilibrium              
assumption (Phillips et al. 2019), where binding and unbinding occurs much faster as compared to mRNA                
transcription and degradation.” 
 
Furthermore, we analyzed the impact of the dissociation constant k, which takes into account the steady state                 
concentration of mRNA for each gene (see Box 2 and STAR Methods). As expected, for low values of k the                    
threshold resulting in an effective gene activation is exceeded too often and the regulated DNA states are                 
activated more frequently leading to the high gene expression states, and loss of rareness of the coordinated high                  
gene expression event, eventually leading to bimodal distributions.  
 
Explicit coupling between binding and transcription in a kinetic model will be interesting to model using Gillespie                 
Algorithm or an appropriate approximation, but is beyond the scope of our current study. 

 
- How much do we know about the specific genetic network, their players and the wiring in melanoma. Could you argue                     
the network and its parameters is in the operating regime you have obtained. 
 

The reviewer has raised an important point, namely whether the networks and parameters studied here can be                 
compared to the melanoma-specific gene regulatory networks. Since the transient, rare, and coordinated nature of               
the variability has come to light only recently, we lack a quantitative wiring diagram of the actual gene regulatory                   
networks and associated network parameters. Our lab has performed network inference algorithms on the RNA               
FISH imaging (this manuscript) and RNAseq data (Figure 5, Shaffer et al, 2018). We have found that these                  
inferred networks contain genes that belong to a variety of pathways and span multiple chromosomes. While                
these efforts provide a first view of the putative gene networks, they need to be experimentally validated and also                   
revised to identify directions and potential self-loops. Furthermore, the rare nature of the behavior makes it difficult                 
to quantitatively characterize the genes and measure the parameters of their interactions.  

 



 
We emphasize that our goal here is to capture the key features that describe this class of rare cell variability. We                     
agree with the reviewer that it will be important to compare the experimentally identified gene regulatory networks                 
with those identified by our model, and should be pursued in the future studies.  

  
- Please rephrase this sentence in the introduction, it is not clear to me what you are saying: "However, in this classical                      
context, most of the cells … " 

 
Thanks to the reviewer for drawing attention to this sentence. We have now re-written this sentence and                 
restructured the entire paragraph in the revised manuscript: 
 
‘’These rare pre-resistant cells are marked by transient and coordinated high expression of dozens of marker                
genes. In other words, several genes are highly expressed simultaneously in a rare subset of cells, while the rest                   
of the population have low or zero counts of mRNAs for these genes, resulting in a distribution of steady state                    
mRNA counts per cell that peaks at or close to zero and has heavy tails. The rare cells in the tails, which                      
transiently arise and disappear in the population by switching their gene expression state (Figure 1A), are much                 
more likely to develop resistance to targeted therapies. Importantly, the rare and coordinated large fluctuations in                
the expression of multiple genes persist for several generations. Classical probabilistic models of gene expression               
have predicted the possibility of various types of mRNA expression distributions across a population, including               
normal, log-normal, gamma, or heavy-tail distributions (Antolović et al., 2017; Chen and Larson, 2016; Corrigan et                
al., 2016; Golding et al., 2005; Ham et al., 2019, 2020; Iyer-Biswas et al., 2009; Raj and van Oudenaarden, 2008;                    
Raj et al., 2006; So et al., 2011; Symmons and Raj, 2016; Thattai and van Oudenaarden, 2001). It is unclear if                     
such models can recapitulate the non-genetic variability characterized by rare and transient high expression              
states for several genes simultaneously (from now on referred to as “rare coordinated high states”), and if so,                  
under what conditions.’ ’  

 
- Several references are missing full journal information, e.g Shaffer et al 2018, Saint Anthoine And Singh 2019, Corrigan                   
et al 2016 Symons et al and Torre et al. Please check all references carefully. 
 

We thank the reviewer for catching these errors on our part in the references section. We have now corrected                   
these and all other references in the revised manuscript. 
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Box 1. Model description, assumptions, parameters, and definitions 
Model description: The transcriptional bursting model is comprised of single-gene expression modules described by the telegraph model:                 
the DNA can take on an active and inactive state and transcribe mRNA at high and low rates (transcriptional bursting), respectively. These                      
expression modules are coupled by an underlying network architecture, where regulation is modeled by a Hill function: the regulating gene                    
influences the activation rate ron of the respective regulated gene. The chemical reactions and propensities are described below: 

Chemical reaction Reaction propensity 
I →  A  (r on+radd*mRNAXn/(k n +mRNAXn)) *I 
A →  I roff * A 
I →  I + mRNA rprod * I 
A →  A + mRNA d*rprod * A 
mRNA → ∅ rdeg * mRNA 

where I,A ∈ {0,1}, and I+A = 1, where I = 0 (A = 1) denotes that the DNA is in an active state and I = 1 (A = 0) denotes that the DNA is in                                     
an inactive state. mRNAX is the mRNA count of gene X at the given time. The model aims to recapitulate rare coordinated high states,                        
where rare means that at the population level the expression distributions are unimodal and exhibit heavy tails; coordinated means that at                     
least once throughout a simulation more than half the genes (nodes) show mRNA expressions above a specified threshold simultaneously;                   
and high  means that the mRNA expression of a gene exceeds a specified threshold (thres).  
Model assumptions: (1) mRNA is able to influence the gene expression of its regulated gene directly, hence we refer to it as gene product                        
throughout this work; (2) all genes are relationally identical (weakly-connected, non-isomorphic and symmetric gene regulatory networks);                
(3) all genes share the same model parameters; (4) gene regulation is only considered to be activating; and (5) if regulation occurs from                       
several genes, their effects are additive. We discuss and check the generality of our model by testing many of these assumptions on a                       
subset of cases, as described in Box 2.  
Parameters: The model is described by 8 model parameters, as defined in the table below along with the corresponding ranges. 

parameters sampling range 
independent model parameters 
r on The rate at which DNA is activated. 0.001 - 0.1 
r off The rate at which DNA is inactivated. 0.01 - 0.1 
r prod Synthesis rate of gene product. 0.01 - 1 
r deg Degradation rate of gene product. 0.001 - 0.1 
r add Parameter determining the contribution of the additional DNA activation rate upon gene regulation. 0.1 - 1 
d Factor by which the mRNA synthesis rate is increased when in an active DNA state. d >1. 2 - 100 
n Hill coefficient.  0.1 - 10 
dependent model parameters  
k* Dissociation constant of the Hill function, where k(rprod, r deg,d) = 0.95 * d * rprod/r deg - 
dependent classification parameters  
thres** Threshold above which a gene is thought of being highly expressed, where thres = 0.8 * d * rprod/r deg - 

Here, r prod/r deg is the steady state in the baseline expression state (when there is no transcriptional burst) and d * r prod/r deg is the steady state                         
in the high expression state (if the DNA would continuously be in the active state). 
Model Definitions: 

● weakly-connected network - a directed network that when replacing the directed edges by undirected ones produces a connected                  
graph in which every pair of nodes is connected by a path.  

● non-isomorphic - two graphs are called non-isomorphic if there exists no structure-preserving bijection between them. 
● symmetric - within a graph the number of in- and outgoing edges of a node and across nodes is identical and either all nodes in a                          

network have a self-loop or not. 
● rare coordinated high state - (1) at least once within a simulation more than half the genes are highly expressed simultaneously, (2)                      

the histogram of simultaneously highly expressed genes at the population level decreases and (3) the gene expression distributions                  
at the population are heavy-tailed.  

● connectivity - number of ingoing edges for any node of the network. 
● characteristic distance- the average shortest path length between pairs of nodes of the network. 

* The parameter k is dependent on the parameters rprod, rdeg, and d, such that: k = x * d * rprod/rdeg, where x∈ {0.75, 0.8, 0.85, 0.9, 0.95, 1}, which ensures a                                 
consistent definition of k throughout the network architectures and parameter sets. Here x represents the fraction of the value corresponding to the steady                       
state value in the high expression state. We showed that for x = 0.75, none of the 100 simulations show rare coordinated gene expression because the                          
threshold resulting in an effective gene regulation is exceeded too often—the regulated DNA states are activated more frequently leading to the high gene                       
expression states and loss of rareness of the coordinated high gene expression event (leading to bimodal distributions). For x > 0.75, there is an increase in                          
the number of simulations showing rare behavior, peaking at x = 0.95. Furthermore, throughout different values of x, the same parameter sets give rise to                         
rare coordinated high states. We take x = 0.95 to maximize the number of simulations positive for the rare coordinated high states.  
** We test several values for the threshold above which a gene is highly expressed: thres = y * d * rprod/rdeg, where y ∈ {0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6,                               
0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1}. For all y ≥ 0.6, the set of simulations showing rare coordinated high states largely remains the same. Even for y = 0.3,                               
half of the simulations identified previously to show rare behavior are still classified as such. We chose x = 0.8. Though arbitrarily chosen, the choice of x =                            
0.8 will not change the conclusions of our analysis. 



Box 2.  
Relaxing model assumptions 
Protein translation: The original transcriptional bursting model does not include a step for translation and is assumed to be captured by the                      
hill function term which not only greatly reduces the computational costs of long stochastic simulations but also allows for analyzing smaller                     
set of parameters. To check if our model can produce rare coordinate high states even when the model includes the translation step, we                       
focused on a particular network (5.3) and associated parameter values that give rise to these states in the original model. We show that for                        
specific rates of translation and protein degradation (STAR Methods), the model including translation exhibits the rare coordinated high                  
states.  
Network architectures: By reducing the network architectures to weakly-connected, non-isomorphic and symmetric networks, we              
systematically reduce the number of possible network architectures. The reduced space of networks is partly supported by experimental                  
observations (Shaffer et al. 2017, 2018), reporting that (1) there is no obvious hierarchical relationship between the expressed genes; and                    
(2) no particular signaling pathway appears to be solely responsible for the observed behavior (see also Figure S1D). Furthermore, these                    
network architectures allows for direct comparisons between network sizes, connectivities and parameter sets (not a given for other                  
topologies). Although the analysis here primarily focuses on the constrained set of network architectures, we show for a subset of cases                     
(STAR Methods) that asymmetric network architectures can also exhibit rare coordinated high gene expression states (Figure S2 G-I),                  
paving the way for a more systematic analysis in the future studies. 
Model parameters: While we primarily focus on keeping the same parameter set for each node, we analyzed a subset of networks with                      
asymmetric parameters (STAR Methods) such that each node had distinct underlying parameter sets. We show that a model with                   
asymmetric parameter sets is also capable of producing rare coordinated high gene expression states (Figure S2 J-M).  
Multi-gene regulatory effects: The joint regulatory effects experienced by a gene which is regulated by several other genes can be modeled                     
using different approaches. While the majority of analysis here uses an additive model of joint-regulation, we performed a subset of                    
simulations (STAR Methods) for cases where the regulation by multiple gene nodes is multiplicative (Figure S4C and E). We find that for                      
network architecture 5.3, 15 and 97 out of 1000 parameter sets give rise to simulations with rare coordinated high states in the additive and                        
multiplicative joint-regulation, respectively (Figure S4D). Nine simulations are found to show rare coordinated high states in both definitions                  
of multi-gene regulation. 
 
Defining model-output metrics 
Population level—sub-simulation size to determine a single cell: To qualitatively compare our results to experimental data, we convert the                   
1,000,000 time units long single-cell simulation to 1,000 single-cell sub-simulations of length 1,000 time units. We show that the simulations                    
are largely (88.2%) uncorrelated after 1,000 time units, justifying our analysis (STAR Methods).  
Heavy-tails: We test different levels of stringency in our definition of heavy-tailed/sub-exponential distributions. The analysis in Figure 2 is                   
performed using the criteria described in STAR Methods, section Simulation classes. We perform further analysis similar to Figure 2 by                    
using more stringent definitions, i.e. fit exponentials and compare the 99th percentiles (Figure S3C). We demonstrate that these results and                    
conclusions are similar to the ones obtained using less stringent criteria (Box 1) shown in Figure 2 (see Figure S4F-M). For example, 6 and                        
7 out of 8 rare coordinated high parameter sets also appear in the two more stringent analyses (Figure S4H and L). We further validate that                         
our model recapitulates the experimentally observed heavy-tails by comparing the Gini coefficients (Jiang et al. 2016) of experimental and                   
model distributions (Figure S3D).  
Number of nodes highly expressed to be called a ‘coordinated’ state: We define a simulation to show coordinated high gene expression if at                       
least once throughout the simulation more than half of the gene product counts exceed the threshold. Furthermore, we show that for                     
different node counts (2, 3, 4, 5) the number of simulations showing rare coordinated high states does not vary significantly. As an example,                       
for a count of 2, we get 6 out of 100 simulations showing rare behavior; for a count of 3, we get 7. Note that the sets of simulations were                              
overlapping between different scenarios.  
Definition of rare coordinated high parameter sets: We define rare coordinated high parameter sets as parameter sets showing rare                   
coordinated high expression in ≥ 20% of all 96 networks. The threshold was defined by inspecting the histogram (Figure 2H), where we see                       
a separation at 20%. Notably, the same rare coordinated high parameter sets also appear in other analysis — they show increased                     
frequencies of simulations with rare coordinated high states when considering the network sizes separately (Figure S6A). Additionally,                 
stricter definitions for heavy-tailed expression distributions result in similar rare coordinated high parameter sets (Figure S4H and L).  
Bootstrapping controls in Phixer algorithm: As the number of connections predicted by the Phixer algorithm can depend on the sample size,                     
we bootstrapped the original data set into 4000-sample datasets. The number 4000 was chosen arbitrarily; bootstrapped sample sizes of                   
1000, 2000, and 6000 also produced qualitatively similar results. 
Edge weight in Phixer algorithm: We created a randomized control consisting of permutations of each gene column from the original                    
dataset. We then performed the Phixer analysis on these randomized controls. The resulting edge weight distributions give us a baseline or                     
control edge weight for Phixer that, in principle, reflects potential false positives. We found that in the controls, nearly all of the predicted                       
edge weights were below 0.45 ( Figure S8B). Therefore, we decided to choose 0.45 as a threshold for our non-control analysis, thus                     
eliminating edges that could have been predicted by chance alone. 
 
 

 



Gene networks with transcriptional bursting recapitulate rare transient        
coordinated high expression states in cancer 
 
Lea Schuh 1,2,3, Michael Saint-Antoine4, Eric Sanford 1, Benjamin L. Emert1, Abhyudai          
Singh 4, Carsten Marr2, Yogesh Goyal 1,*, Arjun Raj 1,*,** 
  
1 Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA 
2 Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, 85764, Germany 
3 Department of Mathematics, Technical University of Munich, Garching, 85748, Germany  
4 Electrical and Computer Engineering, University of Delaware, Newark, Delaware 19716, USA 
*Authors for correspondence: yogesh.goyal0308@gmail.com, arjunrajlab@gmail.com 
**Lead contact: arjunrajlab@gmail.com 
  
SUMMARY 
 
Non-genetic transcriptional variability at the single-cell level is a potential mechanism for            
therapy resistance in melanoma. Specifically, rare subpopulations of drug naive melanoma           
cells occupy a transient pre-resistant state characterized by coordinated high expression of            
several genes. Importantly, these rare cells are able to survive drug treatment and develop              
resistance. How might these extremely rare states arise and disappear within the            
population? It is unclear whether the canonical stochastic models of probabilistic           
transcriptional pulsing can explain this behavior, or if it requires special, hitherto unidentified             
molecular mechanisms. Here we use mathematical modeling to show that a minimal model             
comprising of transcriptional bursting and interactions between genes can give rise to rare             
coordinated high expression states. We next show that although these states occur across             
networks of different sizes, they occur more frequently in networks with low connectivity and              
depend strongly on three (of seven) independent model parameters. Interestingly, we find            
that while entry into the rare coordinated high state is initiated by a long transcriptional burst                
that also triggers entry of other genes, the exit from it occurs through the independent               
inactivation of individual genes. Finally, the transcriptional bursting model predicts that           
increased network connectivity can lead to transcriptionally stable states, which we verify            
using experimental data. In sum, we demonstrate that established principles of gene            
regulation are sufficient to describe the observed cell expression variability and argue for its              
general existence in other biological contexts. 
 
Keywords: stochasticity, network, gene expression, melanoma, drug resistance, non-genetic 
  
INTRODUCTION 
 
Rare and large heterogeneity in single cells have been reported to arise from non-genetic              
transcriptional variability, even in clonal, genetically homogeneous cells grown in identical           
conditions (Fallahi-Sichani et al., 2017; Gupta et al., 2011; Pisco and Huang, 2015; Shaffer              
et al., 2017; Sharma et al., 2018, 2010; Spencer et al., 2009; Su et al., 2017). Importantly,                 
cells exhibiting these non-genetic deviations are resistant to anti-cancer drugs (e.g., Ras            
pathway inhibitors) and may lead to relapse in patients. For example, in a drug naive               
melanoma population, a small fraction (~1 in 3000) of cells are pre-resistant, meaning they              

1 

Manuscript



are able to survive targeted drug therapy, resulting in their uncontrolled cellular proliferation             
(Shaffer et al., 2017). These rare pre-resistant cells are marked by transient and coordinated              
high expression of dozens of marker genes. In other words, several genes are highly              
expressed simultaneously in a rare subset of cells, while the rest of the population have low                
or zero counts of mRNAs for these genes, resulting in a distribution of steady state mRNA                
counts per cell that peaks at or close to zero and has heavy tails. The rare cells in the tails,                    
which transiently arise and disappear in the population by switching their gene expression             
state (Figure 1A), are much more likely to develop resistance to targeted therapies.             
Importantly, the rare and coordinated large fluctuations in the expression of multiple genes             
persist for several generations. Classical probabilistic models of gene expression have           
predicted the possibility of various types of mRNA expression distributions across a            
population, including normal, log-normal, gamma, or heavy-tail distributions (Antolović et al.,           
2017; Chen and Larson, 2016; Corrigan et al., 2016; Golding et al., 2005; Ham et al., 2019,                 
2020; Iyer-Biswas et al., 2009; Raj and van Oudenaarden, 2008; Raj et al., 2006; So et al.,                 
2011; Symmons and Raj, 2016; Thattai and van Oudenaarden, 2001). It is unclear if such               
models can recapitulate the non-genetic variability characterized by rare and transient high            
expression states for several genes simultaneously (from now on referred to as “rare             
coordinated high states”), and if so, under what conditions. 
 
Might a stochastic system of interacting genes inside the cell facilitate transition in and out of                
the rare coordinated high state? One hypothesis is that within the canonical modeling             
framework, only a rare set of unique (and perhaps complex) networks can facilitate             
reversible transitions into the rare coordinated high states. Alternatively, relatively generic           
gene regulatory networks may be capable of producing such behaviors, suggesting that a             
large ensemble of such networks may admit rare-cell formation. Both of these scenarios             
have different implications—for instance, the latter hypothesis suggests that this behavior           
could be more common in biological systems than hitherto appreciated. The alternatives            
described above can also be posed in terms of the nature of model parameters—whether              
the set of values that give rise to rare coordinated high states are constrained to lie within a                  
narrow window of parameter space or whether such behavior may occur across broad             
swaths of parameter space. Yet another possibility is that standard stochastic gene            
expression models fail to produce rare coordinated high states entirely, no matter what             
combinations of networks and parameters are used. In that case, one may argue that the               
reversible transition into the rare coordinated high state is driven by highly specialized             
processes (e.g. initiated by a master regulator) or other unknown mechanisms.  
 
Here we describe a mathematical framework to test the hypotheses proposed above for the              
appearance and disappearance of rare coordinated high states (Box 1 ). Recent studies from             
our lab suggest that no particular molecular pathway is solely responsible for the formation              
of these rare cells (Shaffer et al., 2018; Torre et al., 2019). Specifically, in these rare cells, a                  
sequencing and imaging based scheme identified a collection of marker genes, which are             
targets of multiple signaling pathways ranging from type 1 interferon to PI3K-Akt signaling.             
The implication is that instead of a single signaling pathway leading to the observed              
behavior, a network of interacting genes appears to be responsible. Accordingly, we used             
network modeling to see whether genes interacting within a network were capable of             
producing transitions to coordinated high expression states. We systematically formulated          
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and simulated networks of increasing size and complexity defined by a broad range for all               
independent parameters (Box 1 and 2 ; and STAR Methods , section Networks & section             
Parameters).  
 
Computational screens on more than 96 million simulated cells reveal that many networks             
with interactions between genes are capable of producing rare coordinated high states.            
Critically, transcriptional bursting, a ubiquitous phenomenon in which genes flip between           
transcriptionally active and inactive state, is necessary for the transcriptional bursting model            
to produce these rare coordinated high states. Subsequent quantitative analysis shows that            
rare coordinated high states occur across networks of all sizes investigated (up to 10 nodes),               
but that (i) they depend on three (out of seven) independent model parameters and (ii) their                
frequency of occurrence decreases monotonically with increasing network connectivity. The          
transition into the rare coordinated high state is initiated by a long transcriptional burst,              
which, in turn, triggers the entry of subsequent genes into the rare coordinated high state. In                
contrast, the transition out of rare coordinated high state is independent of the duration of               
transcriptional bursts, rather it happens through the independent inactivation of individual           
genes. We also confirm model predictions using experimental gene expression data (RNA            
FISH data) taken from melanoma cell lines. Together, we demonstrate that the standard             
model of stochastic gene regulation with transcriptional bursting is capable of producing rare             
coordinated high states.  
 
RESULTS 
 
Framework selection  

 
Identifying the minimal network model generating rare coordinated high states  
 
We focused on a network-based mathematical framework that models cell-intrinsic          
biochemical interactions and wondered what would be the minimal set of biochemical            
reactions that constitutes it. Since network models without gene activation (i.e. constitutive            
mode of gene expression) were not able to produce rare coordinated high states (see              
Supplementary information; Figure 1B and Figure S1A-B; STAR Methods , section          
Model 1), we use a leaky telegraph model as the building block of our framework. In terms of                  
chemical reactions, a gene can reversibly switch between an active (ron) and inactive state              
(roff), where binding of the transcription factor at a gene locus controls the effective rate of                
gene production (Box 1 ; Figure 1C, STAR Methods ). Specifically, when inactive (or            
unbound), the gene is transcribed as a Poisson process at a low basal rate (rprod); when                
active, the rate becomes higher (d x rprod, where d > 1 ). We modeled degradation of the gene                  
product as a Poisson process with degradation rate rdeg. The inter-node interaction            
parameter, radd, has a Hill-function-based dependency on the gene product amount (Hill            
coefficient n) of the respective regulating node to account for the multistep nature of the               
interaction (Figure 1C). In particular, we lump steps leading to transcription by implementing             
the commonly used quasiequilibrium assumption (Phillips et al., 2019), where binding and            
unbinding occurs much faster as compared to mRNA transcription and degradation. The            
dissociation constant k of the Hill function is dependent on the parameters rprod, rdeg, and d,                
such that k(rprod, rdeg,d) = 0.95 * d * rprod/rdeg. In total, the model has seven independent and                  
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one dependent model parameters, as outlined in Box 1 . All chemical reactions, propensities,             
and model parameters are presented in STAR Methods . We used Gillespie’s Stochastic            
Simulation Algorithm (Gillespie, 1977) to systematically simulate networks of various sizes           
and architectures across a broad range of parameters (Box 1 ; STAR Methods , section             
Networks & section Parameters).  
 
We limited our study to networks that are symmetric, i.e., networks without a hierarchical              
structure (Box 1 ; STAR Methods , section Networks, Figure S1C), a simplification partially            
supported by the experimental observation that there doesn’t seem to be a clear             
directionality of regulation or hierarchical structure within the highly expressed genes in the             
rare high state in drug naive melanoma (Figure S1D) (Shaffer et al., 2017, 2018). The lack                
of hierarchy is inferred from the frequency matrix for the experimental RNA FISH data, in               
which each entry corresponds to the fraction of cells with each gene-pair being highly              
expressed (Figure S1D). Asymmetric networks can result in frequency matrices being highly            
asymmetric, as demonstrated by an example simulation of a star-shaped reaction network            
(Figure S1E-F). Symmetric models also allow for comparisons of parameters between           
networks of different sizes. Additionally, we excluded networks that are compositions of            
independent subnetworks (non weakly-connected networks) and networks that can be          
formed by structure-preserving bijections of other networks (isomorphic networks) (STAR          
Methods, section Networks, Box1 ). With these operations, we also reduce the testable            
space of unique networks by several orders of magnitude (Figure S1C).  
 
Characterization of the transcriptional bursting model  
  
When genes are organized in the system described above and simulated over long intervals,              
the transcriptional bursting model produced a range of temporal profiles for gene products             
(Figure 1D-G and Figure S2A). Importantly, the model was able to faithfully capture the              
qualitative features of experimental data, i.e., rare, transient, and coordinated high           
expression states (Figure 1G). We defined a set of rules to screen for the occurrence of                
different classes of states (Figure 1D-G and Figure S2A); these include stably low             
expression (class I), stably high expression (class II), uncoordinated transient high           
expression (class III), and rare transient coordinated high expression (class IV) (see STAR             
Methods , section Simulation classes), and used a heuristic approach to distinguish between            
these different classes (Boxes 1 and 2 ). For a detailed description of the rules and               
quantitative metrics used to define class IV, see Boxes 1 and 2 ; Figure S3 and Figure S4 ;                 
and STAR Methods , section Simulation classes.  
 
To better compare the computational results with the experimental data from static RNA             
FISH images, we split the entire simulation into non-overlapping time interval of 1000 time              
units, as justified by the ergodic theory (Box 2 and STAR Methods ). We took snapshots of                
gene products at randomly selected time points in these time-intervals and noted the number              
of simultaneously highly expressed genes as well as their gene product counts, allowing us              
to represent the static states of a population of simulated cells (Figure 2A). For example, in                
a particular 8-node network, we found that the distribution qualitatively captures the            
experimental observations where most cells do not exhibit high expression states, while            
some cells are in a high state for one or more genes (Figure 2B). Note that unlike the                  
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experimental data, the model simulation does not have non-zero values for higher number of              
genes. The absence of of non-zero values may be because the network underlying the              
experimental data contains a much larger set of interacting genes, thereby increasing the             
likelihood of non-zero values for higher number of expressed genes. Similarly, when we             
selected a gene and plotted its product count for the randomly selected time points, we               
observed a heavy-tailed distribution (Figure 2C, right panel), similar to the experimental            
observations (Figure 2C left panel and Figure S3A). Furthermore, these observations,           
while shown for a particular 8-node network, hold true for simulations of other 8-node              
networks as well as networks of other sizes (Figure S2B). Note that the distributions of gene                
product counts for each gene are qualitatively similar because of the symmetric nature of the               
networks (Figure S2C). The experimental data in drug naive melanoma cells for mRNA             
counts display different degrees of skewness of the distribution for different genes (Figure             
S3A) which may be recapitulated by introducing asymmetries in the networks. Two            
asymmetric networks we tested were both able to produce rare coordinated high states             
(Figure S2G-S4M). Importantly, the distributions of gene product counts for various genes            
displayed different levels of heavy-tails, as also observed in the experimental data (Figure             
S2M). Since there is both inter- and intra-gene variability between the experimental            
expression distributions characterizing these states (Figure S3A), we compared these          
expression distributions to simulated expression distributions using Gini coefficients, used to           
characterize experimental expression distributions in the original study (Shaffer et al, 2017).            
While the Gini coefficient is low for most of the simulations (99.2%, gray), it is much higher                 
for the simulations that produce rare coordinated high states (red) and overlaps with             
experimental Gini coefficients (Figure S3D). Together, the transcriptional bursting model is           
able to produce states which recapitulate key aspects of rare coordinated high states             
observed in drug naive melanoma.  
 
Rare coordinated high states depend on network topologies and model parameters 
 
Since the rare coordinated high states occur in <1% of all simulations (Figure S2A), we               
wondered whether their occurrence depends on the network topologies and/or model           
parameters. Specifically, what are the features of the topologies and parameters that            
facilitate the occurrence of rare coordinated high states? For the simulations that produced             
rare coordinated high states, we extracted and quantitatively analyzed the corresponding           
networks. We found that the rare coordinated high states occur ubiquitously in networks with              
different numbers of nodes analyzed (up to 10 nodes) (Figure 2D and Figure S2B-F,              
Figure S5A-B). We therefore hypothesize that even larger networks may also display rare             
coordinated high states, and can be explored in future studies. Next, we wondered if the               
occurrence of rare coordinated high states depends on the network connectivity (Box 1 ).             
Indeed, within a particular network size, the ability to produce rare coordinated high states              
decreases monotonically with increasing network connectivity (Figure 2E and Figure          
S5C-D). Consistently, the fraction of networks per network size (normalized by either            
network size or total networks per network size) exhibiting rare coordinated high states             
decreases with increasing size (Figure S5A-B) as a larger fraction of high connectivity             
networks exist in bigger networks (Figure S5D).  
 

5 



We next wondered whether gene auto-regulation (networks with self-loops) have any effect            
on a networks ability to produce the rare coordinated high states. Indeed we found that for a                 
fixed size and connectivity, networks with auto-regulation result in higher numbers of            
simulations with rare coordinated high states than networks without auto-regulation (Figure           
S5E). At the same time, we wondered whether connectivity or auto-regulation has a more              
dominating effect on a networks’ ability to produce these states. We found that adding              
self-loops on otherwise identical networks reduced the occurrence number of simulations           
with rare coordinated high states (Figure 2F), demonstrating the stronger effect of            
connectivity than auto-regulation. Finally, we analyzed network topologies based on          
characteristic length, defined as the average shortest path length between pairs of nodes of              
the network (see STAR Methods, Box1 ). Characteristic length recapitulates the effects of            
not only network connectivity (inversely correlated with characteristic distance), but also           
differentiates topologies with the same connectivity (Figure S5F), for example networks with            
or without auto-regulation. Together, we demonstrate that the occurrence of rare coordinated            
high states depends on network topologies. 
 
Since the transcriptional bursting model has seven independent parameters (ron, roff, rprod, radd,             
radd, d, and n; see Box 1 for details), we asked whether specific parameter combinations               
preferentially give rise to the rare coordinated high states, and if so, what features of such                
combinations facilitate it. The subsequent analysis is motivated by the initial observation that             
occurence of different classes of temporal gene product profiles across different network            
sizes and connectivities appear to also depend on the parameter sets (Figure 2G).             
Specifically, if a parameter set gave a specific expression profile (e.g. rare coordinated high              
or stably high) for one network, it displayed a higher propensity to display the same profile                
for other networks as well (Figure 2G and Figure S3E), implying that parameters indeed              
play a major role in the occurrence of rare coordinated high states. To avoid biases in the                 
parameter sets investigated, all 1,000 parameter sets were sampled from a broad range for              
each parameter using a Latin Hypercube Sampling algorithm (Supplementary Information          
ParSetsAnalysis.xlsx; STAR Methods , section Parameters). 
 
We first measured the percentage of simulations per parameter set that gave rise to the rare                
coordinated high states. Out of the 1,000 parameter sets, eight parameter sets, from now on               
called rare coordinated high parameter sets (Box 2 ), clustered together at the tail-end of the               
distribution (orange, Figure 2H), meaning they generated simulations with frequent          
occurrence of rare coordinated high states in at least 20% of all networks tested (Figure               
2H). Furthermore, these eight parameter sets robustly generated rare coordinated high           
states across all network sizes and architectures (Figure S6A). Therefore, we wondered if             
these eight parameter sets have any special or distinguishing features compared to the             
remaining 992 parameter sets. 
 
We used a decision tree algorithm (Breiman et al., 1984) (see STAR Methods , section              
Decision tree optimization and generalized linear models) to identify the differentiating           
features of the rare coordinated high parameter sets from the rest. The decision tree              
analysis revealed that only three (ron, roff, and radd) of the seven independent parameters              
showed a strong correlation with the rare coordinated high parameter sets (Figure 2I). We              
validated these findings with complementary analysis using generalized linear models          
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(STAR Methods , section Decision tree optimization and generalized linear models) where           
we found precisely these three specific parameters (ron, roff, and radd) to be critical to produce                
the rare coordinated high states with high statistical significance (p values: ron = 0.003; roff =                
0.005; radd = 0.014) (Figure S6B). These observations became readily evident when we             
plotted all the 1,000 parameter sets for ron, roff, and radd together and found the rare                
coordinated high parameters sets to occupy a narrow region of the parameter phase space              
(Figure 2J and Figure S6C). Furthermore, parameter sensitivity analysis across the           
parameter space also confirmed that these three parameters are indeed critical for            
producing the rare coordinated high states (Figure S6D). These three parameters are            
related to transcriptional bursting and inter-gene(node) regulation. Two of these parameters,           
ron and roff, define the transitioning between the active and inactive state of the DNA               
respectively. The third parameter is the gene activation rate, radd, which corresponds to the              
positive regulation of transcriptional bursting rate of a gene by the gene product of another               
interacting gene. Interestingly, too high values (> 0.31) of radd result in the disappearance of               
rare coordinated high states, as does a complete absence (radd = 0) of this term (Figure                
S6E-S6G). To confirm that these three parameters (ron, roff, and radd) and their corresponding              
range of values are indeed critical to producing simulations with rare coordinated high states,              
we sampled new 1,000 parameter sets from a constrained region containing all eight rare              
coordinated high parameter sets (Figure 2J, orange box, and STAR Methods ) and ran             
simulations for two test networks, a 3-node and a 5-node network. We found that the               
frequency of simulations with rare coordinated high states for the constrained region is             
~14-fold and ~21-fold higher than that for the original parameter space, respectively (Figure             
2K). We note that while parameter sets with parameters ron, roff, and radd within the identified                
critical parameter ranges give rise to simulations with rare coordinated high states much             
more frequently than other parameter sets, it is not 100% of the time. 
 
Distinct mechanisms regulate the transition into and out of rare coordinated high            
states  
 
We have identified the networks and parameter sets for which the transcriptional bursting             
model exhibits rare coordinated high states more frequently. Next, we wondered if we could              
dissect the features of the model that facilitate the occurrence of rare coordinated high              
states. Specifically, we wanted to know the factors that 1) trigger the entry into the rare                
coordinated high states, 2) facilitate its maintenance, and 3) trigger the escape from it. We               
began by analyzing various features of transcriptional activity, since including transcriptional           
bursting was found to be critical for the model to display the rare coordinated high states.                
These include the burst fraction, length of transcriptional bursts (burst duration) and burst             
frequency. To measure these features, we defined four regions for each simulation: low             
expression state (baseline time-region), entry into the high expression state (entry           
time-point), the high expression state (high time-region), and exit from the high expression             
state (exit time-region) (Figure 3A, STAR Methods , section Entry and Exit mechanisms).  
 
We found an increase in the transcriptional activity, as measured by the burst fraction, during               
the high expression time-region as compared to the baseline time-region (Figure 3B).            
Increased burst fraction could be a result of (1) longer transcriptional bursts or (2) a higher                
burst frequency. The former is not possible as the duration of each burst is distributed               
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exponentially according to exp(roff), which does not change between the baseline and high             
time-region. Indeed, we found an increase in the burst frequency in high time-region, thus              
establishing its role in the maintenance of the rare coordinated high state (Figure 3C). The               
increased transcriptional bursting seen in the transcriptional bursting model is consistent with            
the experimental data using labeled nascent transcripts which showed that the           
transcriptional activity occurred in frequent bursts in cells high for a marker gene (Shaffer et               
al., 2018). Next we wondered whether the increase in burst frequency is promoted by the               
interactions of genes organized within the network. We compared two networks of the same              
size (3 nodes), where one is comprised out of single unconnected (orphan) nodes and the               
other of an interdependent structure (network 3.2). We found that for any parameter set              
(screened for all 26 parameter sets giving simulations with rare coordinated high states in              
the previous analysis for network 3.2, Supplementary Information), the system with a            
connected network has (1) more high expression states and (2) prolonged time in high              
expression states, as compared to unconnected nodes (Figure 3D). Together, we find that             
the maintenance in the high state is because of increased burst frequency, which may be a                
result of the positive regulatory feedback intrinsic to the networks.  
 
Next, we wanted to identify the factors triggering the entry into the rare coordinated high               
states. We found that for any gene in the network, the transcriptional burst duration right               
before/during the entry into a rare coordinated high state was significantly higher than that in               
the baseline time-region (i.e., regular bursting kinetics) (Figure 3E). In the example shown in              
Figure 3E, the average time of transcriptional burst at the entry time-point is 84.82 (time               
units) as compared to only 15.08 (time units) in the baseline time-region. Therefore,             
prolonged transcriptional bursts play a role in driving the cell to a coordinated high              
expression state. Conversely, we asked if the opposite is true at the exit time-region, such               
that transcriptional bursts for the exit time-region are shorter than for the high time-region.              
We found no difference in the distributions of burst durations between the high and the exit                
time-regions, as demonstrated by the example in Figure 3F, suggesting that the exit from              
high expression state occurs independently of the burst durations. Importantly, both of these             
conclusions hold true when measured for all simulations with rare coordinated high states             
(Figure 3G). Together, unlike the entry into the high time-region, the exit from it is not                
dependent on the transcriptional burst duration.  
 
We also wondered if the entry into the high expression state of one gene influences the entry                 
of other genes, or that the genes enter the high expression state independently of each               
other. We reasoned that if the time duration between two successive genes (tent, Figure 3A)               
entering the high expression state is exponentially distributed, it would imply that the genes              
enter the high expression state independent of each other. Instead, we found that the              
distributions of entry time intervals rejected the null-hypothesis of the Lilliefors’ test for most              
of the simulations (84%), meaning they are not exponentially distributed (Figure 3H). The             
remaining 16% of cases were found to be largely falsely identified as exponentially             
distributed due to limited data (see a representative example in Figure S7A). Similarly, we              
tested if the exit for successive genes from the high expression state occurs independent of               
each other. Interestingly, contrary to the situation during the entry into the high expression              
state, many distributions of exit time intervals satisfied the null-hypothesis of the Lilliefors’             
test, implying they are indistinguishable from exponential distributions (Figure 3I). The           
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simulations that did not satisfy the stringent Lilliefors’ test mainly appear to be exponentially              
distributed nevertheless; a representative example is shown in Figure S7B. Together, the            
entry into and exit from the rare coordinated high state occur through fundamentally different              
mechanisms—the entry of one gene into the high expression state affects the entry of next               
gene, while they exit from it largely independently of each other. The exit from the high state                 
could be a result of weak strength of coupling (as reflected by the moderate values of                
parameter radd) between nodes for the simulations that produce these states. Consistently,            
we found that too high values of radd results in the disappearance of rare coordinated high                
states, giving way to stable high states. In other words, the network can transition into the                
high expression state but loses the ability to come out of it (Figure S6 E-G). 
 
Increasing network connectivity leads to transcriptionally stable states 
 
So far, we have used the transcriptional bursting model to understand the potential origins of               
rare pre-resistant states in drug naive melanoma cells. Upon treatment with anti-cancer            
drugs, the transient pre-resistant cells reprogram and acquire resistance resulting in their            
uncontrolled proliferation. The resistant cells are characterized by the stabilization of the high             
expression of the marker genes which were transiently high in the drug naive pre-resistant              
cells (Figure 4A) (Shaffer et al., 2017). Studies using network inference of gene expression              
data have suggested that the genetic networks undergo significant rearrangements upon           
cellular transitions or reprogramming (Moignard et al., 2015; Schlauch et al., 2017). We             
wondered if the transcriptional bursting model can explain how the transient high expression             
in drug naive cells might become permanent upon treatment with anti-cancer drugs. The             
modeling framework produces a range of gene expression profiles, depending on the            
network properties and model parameters (Figure 1D-G). Increasing the network          
connectivity (for fixed parameter sets) is one way to shift from a rare transient coordinated               
high expression state to stably high expression state (Figure 4B-E). As an example, for a               
fixed network size (five) and associated parameters, increasing the network connectivity           
from one to five resulted in a shift from transient coordinated to stably high expression states                
(Figure 4D and Figure 4E). The shift from transient coordinated to stably high expression              
states is also reflected by the bimodal distribution of genes product counts for in the highly                
connected network (Figure 4F and Figure 4G), where genes stay permanently in the high              
state once they leave the low expression state. These results mimic the experimentally             
measured mRNA expression states of the drug-induced reprogrammed melanoma cells. 
 
To test if the computational prediction holds true in melanoma, we performed network             
inference using φ-mixing coefficient-based (Ibragimov, 1962) Phixer algorithm (Singh et al.,           
2018) on the experimental data (Box 2 ; STAR Methods , section Comparative Network            
Inference). Specifically, we used the Phixer algorithm on the mRNA counts obtained from             
fluorescent in situ hybridization (FISH) imaging data of marker genes in drug naive cells and               
the resistant colonies that emerge post-drug treatment to infer the underlying network.            
Consistent with the model prediction, we found that the number of edge connections (for a               
range of edge weight thresholds) between marker genes increased substantially for 6/7            
resistant colonies compared to the drug-naive cells (Figure 4H). To control for biases from              
subsampling of the experimental data and the nature of Phixer algorithm itself (see STAR              
Methods , section Comparative Network Inference), we ran the entire network inference           
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analysis 1,000 times. Again, in all 1,000 runs, we saw a higher number of total edges for 6/7                  
resistant colonies compared to the drug-naive cells (Figure 4I, Figure S8A and Figure             
S8C).  
 
Besides the dependence on networks, our framework predicts that for a given network,             
stronger interactions between nodes (defined by the interaction parameter radd) can also            
result in stable gene expression profiles (Figure S6E-S6G). It is possible that            
reprogramming results from a combination of increased edge connectivity as well as the             
enhanced interactions (given by parameter radd) between existing edges. Biologically, it           
would translate into stronger and increased number of interactions between genes and            
associated transcription factors during reprogramming. Together, network inference of the          
experimental data is consistent with model findings about the cellular progression from a             
transient coordinated high expression state to a stably high expression state.  
  
DISCUSSION 
  
We developed a computational framework to model rare cell behaviors in the context of a               
drug naive melanoma population where a rare subpopulation of cells displays transient and             
coordinated high gene expression states. We found that a relatively parsimonious stochastic            
model consisting of transcriptional bursting and stochastic interactions between genes in a            
network is capable of producing rare coordinated high states that mimic the experimental             
observations. To systematically investigate their origins, we screened networks of increasing           
sizes and connectivities for a broad range of parameter values. Our study revealed that they               
occur more frequently for networks with low connectivity and depend on 3/7 independent             
model parameters. Furthermore, we showed that the mechanisms that lead to the transition             
into- and out of- the rare coordinated high state are fundamentally different from each other.               
Collectively, our framework provides an excellent basis for further mechanistic and           
quantitative studies of the origins of rare, transient, and coordinated high expression states.  
 
Given the relative generality of the networks that produce rare coordinated high states, the              
transcriptional bursting model predicts that every cell type is capable of entering the rare              
coordinated high state. Furthermore, we show that canonical modes of transcription alone,            
namely the binding of the transcription factor at gene locus to produce mRNA via recruitment               
of RNA Polymerase II, can lead to these states without requiring other complex mechanisms              
such as DNA methylation, histone modifications, or phase separation. While such other            
mechanisms may still be operational in these cells to regulate their entry to or exit from these                 
states, we posit that in principle, any set of genes interacting via traditional gene regulatory               
mechanisms are capable of exhibiting these rare coordinated high states, as long as they              
are interacting in a certain manner (e.g. sparsely connected) with appropriate kinetic            
parameters. In the case of drug naive melanoma cells, the transient state is characterized by               
an increased ability to survive drug therapy leading to uncontrolled proliferation of the             
resulting resistant cells. It is possible that these rare transient behaviors may exist across              
many sets of interacting genes which may or may not manifest into phenotypic             
consequences. Another possibility the transcriptional bursting model predicts is that even           
within the same cell, distinct modules of interacting genes can lead to distinct sets of rare                
coordinated high states that each can affect the cellular function and outcomes differently.             
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These possibilities can be tested for by using increasingly accessible single cell RNA             
sequencing techniques on clonal population of cells.  
 
The transcriptional bursting model also makes two key predictions regarding transitions into            
and out of rare coordinated high states. The first is that prolonged transcriptional bursts drive               
entry into the high expression state while exit from it is independent of the burst duration.                
The second is that genes entering the high expression state promote the entry of              
subsequent genes, whereas genes exiting the high expression state do so independently of             
each other. Both these predictions can be readily tested experimentally by simultaneous            
visualization of transcriptional bursting and mRNA counts using live cell (e.g. by using             
RNA-binding fluorescent proteins) or fixed cell (intron and exon FISH) imaging approaches            
(Bartman et al., 2016; Rodriguez et al., 2019).  
 
Additionally, we showed that increasing the network connectivity is one way to reach a              
drug-induced reprogrammed state, a prediction we verified by performing network inference           
analysis on the experimental data. The transcriptional bursting model proposes that there            
are many plausible ways to transition from networks that produce transient coordinated high             
expression states to stable high expression states. For example, the transition could be             
facilitated by different amounts of increases in connectivity between nodes (genes) and/or            
changes in parameter values of the gene expression model. Furthermore, it is possible that              
these changes may take place only for a subset of nodes and edges within the network.                
These computational scenarios suggest that there could be significant heterogeneity in the            
stable expression levels of network genes in the resistant colonies emerging even from             
clonal population of drug naive cells, a possibility that can be tested experimentally by              
isolating individual colonies and profiling them for molecular markers to identify the paths.             
Identification of dominant paths has relevance for rational targeted drug therapy design.            
Therefore, in addition to modeling rare-behaviors, our framework can be adapted for            
investigating the plasticity and reprogramming paradigm in cancer.  
 
One limitation of the transcriptional bursting model is that we have performed quantitative             
analysis only on symmetric networks with positive interactions between nodes. While the            
preliminary analysis on two cases of randomly selected asymmetric networks shows that            
they do exhibit the rare coordinated high states (Figure S2G-S4M), it remains to be seen               
whether these findings hold more generally for asymmetric networks. Inhibitory interactions           
between nodes is a separate and perhaps more interesting point. In principle, the model can               
be adapted to include inhibitory interactions. These inhibitory interactions may lead to            
non-monotonic effects of network connectivity on the occurrence of rare states, as positive             
and negative interactions can compete in non-linear ways. Similarly, a network with both             
negative and positive interactions may be more prone to instability, even for relatively             
smaller networks. Furthermore, inclusion of these interactions might also make the exit of             
genes from the high expression state dependent on one another, which occurs            
independently in the transcriptional bursting current model. 
 
While we have focused on rare, transient, and coordinated high expression states in             
melanoma, our study provides conceptual insights into other biological contexts such as            
stem cell reprogramming. Particularly, there is increasing evidence to suggest that stem cell             
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reprogramming to desired cellular states proceeds via non-genetic mechanisms in a very            
rare subset of cells (Hanna et al., 2009; Pour et al., 2015; Takahashi and Yamanaka, 2016).                
The transcriptional bursting model may explain the origins and transient nature of this type of               
rare cell variability. In sum, we have established the plausibility that a relatively parsimonious              
model comprising of transcriptional bursting and stochastic interactions of genes organized           
within a network can give rise to a new class of biological heterogeneities. Therefore, we               
believe that established principles of transcription and gene expression dynamics may be            
sufficient to explain the extreme heterogeneities that are being reported increasingly in a             
variety of biological contexts.  
 
SUPPLEMENTAL INFORMATION 
 
Supplemental Information includes 9 figures and 2 tables. 
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Figure 1. A transcriptional bursting model is able to mimic the rare coordinated high              
states observed in drug naive melanoma.  
(A) Drug naive melanoma cells exist in low (white cells) as well as rare coordinated high                
(blue cells) states. Cells in the rare coordinated high state characterize the pre-resistant             
state observed in drug naive melanoma. A schematic of the corresponding expression            
pattern is shown in the panel below. The cells in a high expression state are more likely to                  
survive and acquire resistance upon drug administration.  
(B) Schematic of the constitutive model for two nodes. Gene product is either produced at               
rate rprod or degraded with rate rdeg . Gene regulation is modeled by a Hill function, where the                 
gene product count of the regulating gene A increases the production rate of the gene               
product of the regulated gene B. 
(C) Schematic of the transcriptional bursting model for two nodes. DNA is either in an               
inactive (off) or active (on) state. Transitions take place with rates ron and roff, where gene                
product is synthesized with rates rpod and d*rprod, respectively, d>1. Gene product degrades             
with rate rdeg. Gene regulation is modeled by a Hill function, where the gene expression of                
the regulating gene A increases the activation of the DNA of the regulated gene B.  
(D-G) Depending on the network and the parameters of the transcriptional bursting model,             
we observe stably low expression (D), stably high expression (E), uncoordinated transient            
high expression (F) and rare transient coordinated high expression (G). 
See also Figure S1.  
 
Figure 2. Simulations of the transcriptional bursting model show similar behavior at            
the population level as the drug naive melanoma cells. 
(A) Frame of simulation showing rare coordinated high state (shaded area). The 1,000,000             
time unit simulation is split into frames of 1,000 time units to create a simulated cell                
population (shown for cell N). For a randomly determined time-point trand , the number of              
simultaneously highly expressed genes and the gene count per gene per cell are evaluated.              
The network of the corresponding simulation is given in the top left corner.  
(B,C) The simulated number of simultaneously highly expressed genes and expression           
distribution at the population level are qualitatively similar to experimental data from a drug              
naive melanoma population (data from (Shaffer et al., 2017)). The percentages are indicated             
above the histogram (in B). The network and parameter set as well as the particular node (in                 
C) used for comparison are shown in the right panel.  
(D) Rare coordinated high states occur ubiquitously across networks of all analyzed network             
sizes (for three independent and randomly sampled trand)(median, 25th and 75th percentiles).  
(E) Increasing connectivity within all networks of size 5 leads to a decrease in the number of                 
simulations with rare coordinated high states. 
(F) Networks with auto-regulation exhibit rare coordinated high states less frequently than            
the same networks without auto-regulation .  
(G) Simulations of a particular parameter set across different networks and sizes show             
largely the same class of gene expression profiles. 
(H) The eight rare coordinated high parameter sets give rise to simulations with rare              
coordinated high states more frequently than others for all 96 networks and cluster at the tail                
of the histogram. The cut-off is defined at 20%. 
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(I) Decision tree optimization of resulting parameter set classes reveal that only three out of               
seven parameters, ron, roff , and radd, show a strong correlation with the rare coordinated high                
parameter sets.  
(J) Three dimensional representation of all tested 1000 parameter sets for ron, roff , and radd                
show that the rare coordinated high parameter sets are narrowly constrained in the 3D              
space (orange dots). The orange box indicates the constrained parameter space enclosing            
all rare coordinated high parameter sets used for analysis in (K). 
(K) The constrained subregion defined by the rare coordinated high parameter sets (see             
Figure 2J) heavily favors the formation of rare coordinated high states.  
See also Figure S2, Figure S3, Figure S4, Figure S5 and Figure S6.  
 
Figure 3. Rare coordinated high state is initiated by a long transcriptional burst,             
maintained by an increase in burst frequency and terminated according to a random             
process. 
(A) An exemplary high region, with a baseline time-region, entry time-point, high time-region             
and an exit time-region. The time intervals for an additional gene to enter and exit the high                 
region are marked by tent and texit, respectively. The bursts below the exemplary simulation              
are representative schematics.  
(B) The system exhibits enhanced transcriptional activity, as measured by the burst fraction,             
when in the high time-region (two-sample Kolmogorov-Smirnov test, p-value < 0.001). 
(C) The frequency of transcriptional bursts is increased in the high time-region (two-sample             
Kolmogorov-Smirnov test, p-value < 0.001). 
(D) Positive regulatory interactions between the connected nodes (network) leads to an            
increased number of and total time in high states in comparison to independent nodes. 
(E) The bursts during entry time-points are significantly longer than bursts not in a high               
time-region (two-sample Kolmogorov-Smirnov test). 
(F) There is no statistical significant difference between the distributions underlying the            
duration of bursts in the high time-region and the exit time-region (two-sample            
Kolmogorov-Smirnov test). 
(G) While the mean burst duration ratio between entry time-point and baseline time-region is              
significantly increased, the mean burst duration ratio between bursts in the exit time-region             
and in the rest of the high time-region are comparable for all simulations with rare               
coordinated high states. Ratio close to 1 suggests no difference between the two regions. 
(H,I) The time intervals between genes entering and exiting the high time-region are             
distributed differently, as demonstrated by two representative simulations. While the time           
intervals for entering the high time-region are not exponentially distributed (H) (and hence             
not random), the time intervals for exiting the high time-region are exponentially distributed             
(I) (Lilliefors test, p-value < 0.001 and > 0.05, respectively). 
See also Figure S7.  
 
Figure 4. Increased connectivity of a network leads to stable high expression which is              
also observed in emerging resistant colonies post-drug treatment. 
(A) Upon drug treatment, the surviving cells acquire stable resistance. A schematic gene             
expression pattern is shown below. 
(B,C) Networks of size 5 with low (B) (1) and high (C) (5) connectivity and corresponding                
(D,E) simulations. 
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(F,G) The expression distribution underlying the simulation of the highly connected network            
(G) does not exhibit heavy-tails while the simulation of the lowly connected network (F)              
exhibits heavy-tails. 
(H) Network inference analysis shows that 6 out of 7 resistant colonies (post drug treatment)               
have higher connectivity in comparison to two biological replicates of drug naive cells for              
many edge weight thresholds. 
(I) Distribution of number of edges for the drug naive cells (red) is lower than an exemplary                 
resistant colony (black) when the network inference analysis is run 1,000 times.  
See also Figure S8. 
 
STAR METHODS 
 
Networks 
In our framework, the nodes in the network represent genes, where the expression of a gene                
is regulated by the expression of other genes. Gene regulation is represented by directed              
edges in the network, e.g. if the expression of gene Y is regulated by the expression of gene                  
X, then the network contains an edge from node X to node Y. These networks can be                 
defined by adjacency matrices given by: 
 

Aij = 1, if there is an edge from node i to j 
   0, else. 

 
Any node in a network of size N can be connected with up to N-1 other nodes and in the                    
case of self-loops, to N other nodes. Hence, the adjacency matrix A is of size N*N. This                 
means that there are 2 NxN possible adjacency matrices for a network of size N - each of the                  
possible N*N matrix entries can take on one of the values of 0 (no edge) and 1 (edge). For                   
example a network of size 3 has 2 (3*3) = 512 possible networks.  
 
Here, we focus on symmetric networks, where we assume a relational identity between all              
nodes in a network. Experimental data from Shaffer et al. (Shaffer et al., 2017) implies the                
absence of any obvious hierarchical structure within the genes, and that the driver genes              
may interact in a relatively non-hierarchical manner (Figure S1D). The structural embedding            
of a node in its network can increase or decrease its ability of being involved in coordinated                 
overexpression. For example, a centered node within a star-shaped network is involved            
more frequently in coordinated overexpression than the other nodes within the same network             
(Figure S1E), which is inconsistent with the experimental observations. To ensure for            
non-hierarchical behavior we define a set of symmetric networks (Figure S1F), where the             
number of in- and outgoing edges within a node and across nodes is identical and either all                 
nodes in a network have a self-loop or not, leading to adjacency matrices of which the rows                 
are cyclic permutations (to the right) with offset one of each other. We first compute all                
possible vectors {0,1}N, in total 2 N vectors. From each of these resulting vectors, we create               
an NxN matrix by using the given (row) vector as template, and creating the other N-1 rows                 
by cycling the prior row vector to the right by one step, where the right-most entry in the row                   
vector is added to the (so far empty) left-most entry. By applying this permutation N-1 times,                
all possible cyclic permutations are captured within a matrix, and each node in the given               
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network is completely relational identical. We make use of the circshift function in MATLAB              
to receive the possible cyclic permutations of the initial row vectors.  
 
We further constrain the analysis to weakly-connected networks -- any node in a network              
has to be connected to at least one other node, without taking into account the directionality                
of the edges. In terms of the adjacency matrix:  
 

∀ i ∈ {1,...,N}: ∑ j ∈ {1,...,N}, j ≠ i Aij  + Aji  ≥ 1. 
 
The above restriction allows us to exclude the consideration of compositions of smaller and              
unconnected networks, which could otherwise lead to double counting. These subnetworks           
of smaller sizes are analyzed in the sets of networks of respective node sizes. To perform                
this operation, we analyze all the previously constructed adjacency matrices using the            
MATLAB function conncomp(X,’Type’,’weak’), which assigns each node with a bin number           
according to the connected component of its underlying undirected graph. If all nodes of a               
network belong to the same bin number i.e. to the same connected component, the              
adjacency matrix encodes for a weakly-connected graph. Finally, we further restrict the            
analysis to non-isomorphic networks. Two networks are called isomorphic if there exists a             
bijection from the edge space of one network to the other, such that any edge of one                 
network is projected to a particular edge in the other network. Here, the labeling of the nodes                 
(gene 1, gene 2, ...) in the networks is arbitrary and hence relabeling of nodes in an                 
adequate fashion leads to identical networks. To ensure that all the final networks analyzed              
are of a non-isomorphic set of networks, we test all networks with MATLAB’s function              
isisomorphic. We initiate the final set of networks with one adjacency matrix, and then              
sequentially test all other networks for isomorphism. If the given network is non-isomorphic             
to the current final set, it is added to the final set. Conversely, if the network is isomorphic to                   
one of the networks in the final set, it is discarded.  
 
By reducing the possible set to weakly-connected, non-isomorphic and symmetric networks,           
we greatly reduce the possible number of networks. For example, in the previous example,              
we had 512 possible networks for 3 nodes. By applying all the mentioned constraints              
(weakly-connected, non-isomorphic and symmetric), 4 networks remain (Figure S1C). We          
perform the analysis on networks of sizes 2, 3, 5 and 8 each consisting of 2, 4,10 and 80                   
networks, respectively, adding up to a total of 96 networks (Figure S9 ). In principle, the               
transcriptional bursting model can easily be extended to larger network sizes without the loss              
of generality (Figure S2D-F). 
 
Model 2 - Transcriptional bursting model  
The transcriptional bursting model is an expansion of the telegraph model, where DNA can              
take on one of the two states, active and inactive, e.g. based on the presence or absence of                  
transcription factors (Figure 1C). The active and inactive state directly translates into high             
and low rates of production of gene products, respectively. We add interaction terms to the               
model, where the expression of a gene influences the rate of DNA activation of another gene                
depending on how they are organized in a respective network. Here we use the number of                
mRNA as a faithful proxy for the number of proteins. In other words, we only model the                 
number of mRNA counts and assume that any mRNA is immediately translated into one              
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single functional protein after its translation. Therefore, the mRNA count determines the            
strength of the regulation. Here, we model the regulation of one gene by another using the                
Hill function, given by: 
 

f(mRNAX) = mRNAX
n/(kn + mRNAX

n), 
 

where mRNAX is the mRNA count of gene X, n is the Hill coefficient and k is the dissociation                   
constant, n,k > 0. The Hill coefficient determines the steepness of the Hill function, i.e., the                
extremeness of its switch-like effect. The dissociation constant determines the half-maximal           
value, f(mRNAX) = 0.5.  
 
The reversible transitions between the inactive and active states, as well as the mRNA              
synthesis and degradation, are modeled by chemical reactions. For each gene, we have             
three chemical species - the DNA inactive state, the DNA active state and mRNA. These               
three species interact with one another according to the following 5 chemical reactions:  

 
   I →  A 
A →  I 

               I → I + mRNA 
                A →  A + mRNA 
       mRNA →  ∅,  

 
defining the corresponding stoichiometric matrix: 
 

-1  1  0  0  0 
 1 -1  0  0  0 
 0  0  1  1 -1. 

 
The stoichiometric matrix encodes the net change in each chemical species resulting from             
any of the chemical reactions where the chemical reactions are assumed to occur             
stochastically. Under the assumptions of the law of mass action, the probability of a specific               
molecular collision to occur in the infinitesimal time interval [t, t + dt) is proportional to the                 
product of the molecule counts of the educt chemical species. The reaction propensity a j (x)              
for a given chemical reaction Rj and state x, determines the probability density function such               
that a j (x)dt gives the probability of the chemical reaction Rj taking place in dt, for small dt.                 
Examples of reaction propensities for so called elementary reactions are given here: 
 

Reaction  Reaction propensity 

∅→ products k 

Xi → products kxi 

Xi  +Xj  → products kxi xj 
 
where k is called the reaction rate. 
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The gene regulation influences the reaction rate of the DNA activating chemical reaction.  
To explain the above-mentioned chemical reactions, we introduce eight rates/parameters: 
 
 

Parameter Description 

ron The rate at which DNA is activated. 

roff The rate at which DNA is inactivated. 

rprod Synthesis rate of mRNA. 

rdeg Degradation rate of mRNA. 

radd Parameter determining the contribution of 
the additional DNA activation rate upon 

gene regulation. 

d Factor by which the mRNA synthesis rate is 
increased when in an active DNA state (in 
comparison to basal synthesis rate in DNA 

inactive state), >1. 

k Dissociation constant of the Hill function. 

n Hill coefficient.  

 
The full model description for one gene regulated by a single gene X is given below: 
 

Chemical reaction Reaction rate Reaction propensity 

I → A  ron+ radd*mRNAX
n/(kn+mRNAX

n) (ron+ radd*mRNAX
n/(kn +mRNAX

n)) *I 

A → I roff roff * A 

I → I + mRNA    rprod  rprod * I 

A → A + mRNA d*rprod d*rprod * A 

mRNA → ∅ rdeg  rdeg * mRNA 

 
where I,A ∈ {0,1}, and I+A = 1, where I = 0 (A = 1) denotes that the DNA is in an active state                        
and I = 1 (A = 0) denotes that the DNA is in an inactive state. mRNAX is the mRNA count of                      
gene X at the given time, ron is the basal DNA activation rate, radd is the additional activation                  
rate due to gene regulation, roff is the DNA inactivation rate, rprod is the basal mRNA synthesis                 
rate in the DNA inactive state, d denotes the increase in the mRNA synthesis rate when the                 
DNA is in the active state, where d > 1, and rdeg is the mRNA degradation rate. The chemical                   
reactions are identical for all N nodes in a given network of size N. The reaction rate of                  
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activation (I → A), composed of terms with parameters ron and radd, is the only node-specific                
rate. It depends on the underlying network and has to be adapted accordingly for each node,                
where the in-going edges of a node determine which gene regulations are active. The              
addition of hill function-based activation terms corresponds to the adaptation of the standard             
telegraph model, highlighted in blue in the above rates. We model gene regulation additively:              
if there is more than one influencing gene, we add the Hill function terms of the respective                 
genes. As an example, if the gene of interest is influenced not only by gene X, but by gene X                    
and gene Y, the activation rate from above will expand to: 
 

ron + radd * (mRNAX
n/(kn + mRNAX

n) + mRNAY
n/(kn + mRNAY

n)). 
 
We also tested for multiplicative regulation, i.e. regulation where we multiply the reaction             
rates (and consequently the reaction propensities) of the influencing genes (Figure S4C). In             
the example above the activation rate then expands to  

ron + radd * 2 *(mRNAX
n/(kn + mRNAX

n) * mRNAY
n/(kn + mRNAY

n)) 
instead. By definition the Hill function is restricted to values between 0 and 1. While a                
multiplication of two Hill functions results in a maximal value of 1, an addition results in a                 
maximal value of 2. As the Hill function is an important factor in these simulations we hence                 
add a scaling factor to the activation rate in case of multiplicative regulation. We show that                
for network 5.3, 97 out of 1000 simulations show rare coordinated high states in case of                
multiplicative regulation (Figure S2D-E). In comparison, 15 simulations show rare          
coordinated high states in case of additive regulation. 9 simulations show rare coordinated             
high states in both cases.  
 
Additionally, we tested for translation events (Figure S4A). We added one state (P) and two               
rate parameters, a protein synthesis rate rprodP and a protein degradation rate rdegP, to the               
original transcriptional bursting model. The extended model description accounting for          
translation for one gene regulated by gene X is given below:  
 

Chemical reaction Reaction rate Reaction propensity 

I → A  ron+radd*PX
n/(kn+PX

n) (ron+radd*PX
n/(kn +PX

n)) *I 

A → I roff roff * A 

I → I + mRNA    rprod  rprod * I 

A → A + mRNA d*rprod d*rprod * A 

mRNA → ∅ rdeg  rdeg * mRNA 

mRNA → mRNA + P rprodP rprodP * mRNA 

P → ∅ rdegP rdeg * P 

 
where we define k again as 0.95 of the high steady state, this time for the protein count: 

k(rprod,rdeg,d) = 0.95 * rprodP/rdegP * d * rprod/rdeg, 
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which itself is dependent on the high steady state of the mRNA (d * rprod/rdeg). Redefining rprodP                 
= a * rprod and rdegP = b * rdeg gives 

k(rprod,rdeg,d) = 0.95 * d * a/b * rprod
2 * rdeg 

2. 
We tested three different translation scenarios: protein synthesis and degradation being (1)            
faster than (2) same as and (3) slower than mRNA synthesis and degradation. For network               
5.3 and parameter set 968, giving rise to rare coordinated high states in the transcriptional               
bursting model without translation, we took a = b = 10 (faster), a = b = 1 (same) and a = b =                       
0.1 (slower) as additional parameters. We find that protein synthesis and degradation with             
faster (Figure S4B) and same rates as mRNA degradation and synthesis, also allows for the               
formation of rare coordinated high states in the case of translation. Only slower protein              
synthesis and degradation rates did not show rare coordinated high states, likely because for              
faster protein rates, the system dynamics is determined largely by the transcriptional            
dynamics. In sum, we demonstrate that the rare coordinated high states can arise in the               
revised model that includes translation. 
 
Model 1 - Constitutive model  
Model 1 is a simple gene regulatory expression model, where mRNA can either be              
transcribed or degraded and the mRNA of a regulatory gene influences the transcription rate              
of a regulated gene (Figure 1B). Here again, we assume the number of mRNA to be a                 
faithful proxy for the protein number and hence, only model the mRNA expression of a gene.                
The gene regulation is modeled according to the Hill function (STAR Methods, Model 2 -               
Transcriptional bursting model). 
The synthesis and degradation are modeled by chemical reactions. For each gene, we have              
one chemical species, its mRNA, described by the following two chemical reactions:  
 

                ∅ →  mRNA 
mRNA → ∅, 

 
defining the corresponding stoichiometric matrix: 
 

(1 -1). 
 

The full model description for one gene regulated by a single gene X is given below: 
 
 

Chemical reaction  Reaction rate Reaction propensity 

∅ → mRNA rprod+radd*mRNAX
n/(kn + mRNAX

n) rprod+radd*mRNAX
n/(kn+mRNAX

n) 

mRNA → ∅  rdeg  rdeg * mRNA 

 
 
where rprod the basal mRNA synthesis rate, rdeg the mRNA degradation rate, radd the additional               
synthesis rate due to gene regulation and mRNAX the mRNA count of gene X at the given                 
time. 
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The chemical reactions are identical for all N nodes in a given network of size N. The                 
synthesis rate is a node-specific rate (STAR Methods, Model 2 - Transcriptional bursting             
model). We model gene regulation additively (STAR Methods, Model 2 - Transcriptional            
bursting model). For k we tested two different definitions: one closer and one further away               
from the low expression taking into account the intrinsic stochasticity. We therefore first run a               
test simulation with a random k for 1,000 time units and determine the standard deviation of                
the expression of the node denoted as ‘node 1’. K is latin hypercube sampled with the rest of                  
the parameters with lower and upper boundary 100 and 1000. We set k to be: 
 

k = rprod/rdeg+x*std, 
 

where std is the standard deviation of the expression of the node denoted as ‘node 1’ and x                  
∈ {3,5}. We then re-initiate the simulation with the adapted k value. 
 
Parameters 
The goal of our study is to model the emergence of rare transient coordinated high               
expression of several genes. The theoretical idea behind the transcriptional bursting model            
is that each time the DNA is in an active state, corresponding to a transcriptional burst, the                 
steady-state of the mRNA count is shifted from rprod/rdeg to d*rprod/rdeg. Accordingly, the mRNA              
attempts to reach its new steady-state which results in a rapid increase in their counts.               
Depending on the length of the transcriptional burst, which is exponentially distributed with             
rate parameter roff, the mRNA count is able to reach the new steady-state. We use the                
dynamical system behavior when modeling the rare coordinated overexpression. In principle,           
for most transcriptional bursts, the sudden mRNA increase should not initiate a DNA             
activation of its regulated genes; only in some rare cases, the transcriptional burst in one               
gene is long enough such that its mRNA count exceeds a certain threshold that may be able                 
to affect the state of another gene locus on DNA. Exceeding of the mRNA threshold can lead                 
to an increased probability of the DNA states of its regulated genes to be activated and                
hence to an increased mRNA synthesis in the respective genes. The increased mRNA             
synthesis of regulated genes may lead to positive feedback loops network-wide resulting in             
the transient coordinated overexpression of genes.  
The threshold to be overcome by the mRNA count of a gene to make its gene regulation                 
effective is given by the dissociation constant of the Hill function, k. k determines the               
‘switching point’ from (almost) no gene regulation to (almost) complete gene regulation.            
Therefore, we define k to be a function of rprod, rdeg and d as follows: 

 
k(rprod,rdeg,d) = 0.95 * d*rprod/rdeg, 

 
where d*rprod/rdeg gives the steady-state mRNA count of the respective regulating gene in the              
DNA active state. Here, we arbitrarily determine the threshold k to 0.95 of its high-expression               
steady-state to restrict the emergence of coordinated overexpression to being rare and for             
the system to demonstrate a significant difference between the low and high gene             
expression state. The simulations and the analysis are all performed according to the above              
definition of k. We tested the robustness of this definition for a particular network 5.3 (Figure                
S9 ) where we performed the same simulations (for 100 latin hypercube sampled parameter             
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sets (Supplementary Information ParSetsAnalysis.xlsx)) as for the final analysis as before           
using five different definitions of k:  
 

k(rprod,rdeg,d) = x * d*rprod/rdeg, 
 

where x ∈ {0.75, 0.8, 0.85, 0.9, 1} (Supplementary Information ParSetsAnalysis.xlsx). Our            
analysis shows that for x = 0.75, none of the 100 simulations show rare coordinated high                
states: the threshold leading to an effective gene regulation is exceeded too often: the              
regulated DNA states are activated, the high state emerges and we lose the rareness of the                
coordinated high gene expression event. The number of simulations showing rare           
coordinated high states increases with increasing x, reaching its maximum for x = 0.95              
(standard, 7 out of the 100 simulations show rare behavior). For x = 1 (high expression                
steady-state), we also see rare behavior in 7 out of 100 simulations, showing overlapping              
results in 6 out of the 7 simulations.  
Together, we are left with a set of seven parameters consisting of: ron, radd, n, roff, rprod, d, rdeg,                   
which may be split into inter-gene (ron, roff, rprod, d, rdeg) and intra-gene (radd, n) parameters and                 
the dependent parameter k. Potentially, these parameter sets are node-dependent resulting           
in a N * 7-dimensional parameter space for a network of size N.  
To emphasize the equality between the nodes, we use the same 7-dimensional parameter             
set for all nodes in a network. Hence, the nodes are relationally and parametrically identical,               
thereby also allowing us to directly compare the simulations of different network sizes,             
otherwise not possible, and to determine the effects of network size and architecture on the               
ability of forming the rare coordinated high state. Therefore, we latin-hypercube sample 1000             
parameter sets out of the parameter space with upper and lower boundaries (chosen             
arbitrarily, but typically spanning two orders of magnitude):  
 

Parameter  Lower boundary Upper boundary 

rprod 0.01 1 

rdeg 0.001 0.1 

ron 0.001 0.1 

roff 0.01 0.1 

d 2 100 

radd 0.1 1 

n 0.1 10 

 
by using the MATLAB function lhsdesign_modified (Khaled, N. Latin Hypercube          
(https://de.mathworks.com/matlabcentral/fileexchange/45793 -latin-hypercube), MATLAB  
Central File Exchange. Retrieved May 5, 2018.). The 1000 parameter sets are shown in the               
Supplementary Information (ParSetsAnalysis.xlsx). For some plots, we used a y-axis break           
function in MATLAB (Mike, C.F. Break Y Axis        
(https://www.mathworks.com/matlabcentral/fileexchange/45760- 
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break-y-axis), MATLAB Central File Exchange. Retrieved December 21, 2018.) 
 
 
Simulations 
We simulated model 2 for a total of 96 networks (for all weakly-connected, non-isomorphic,              
symmetric networks of sizes 2, 3, 5 and 8 with 2, 4, 10 and 80 networks,                
respectively)(Figure S9 ), each for 1,000 sampled parameter sets, resulting in a total of             
96,000 simulations across four different network sizes. The simulations were performed           
according to Gillespie’s next reaction method and were computed for 1,000,000 time units,             
which is critical for capturing rare behaviors. For all simulations, the DNA state was initiated               
(t = 0) to be in its inactive state and the mRNA count was arbitrarily set to 20 for all nodes.                     
The mRNA counts quickly reach their low-expression steady state, such that we are certain              
that our analysis is not impaired by the given initial conditions. The simulations were              
implemented in MATLAB R2017a and R2018a. One single simulation of 1,000,000 time            
units took between 20 minutes and 9 hours depending on the parameter set and the               
network. The complete simulations took over 1.5 months to run, where we parallelised all 96               
networks and and let each of them run on four cores simultaneously.  
 
Simulation classes 
We analyzed all of the 96,000 simulations, and assign them to the following four classes,               
initially by visual inspection, and subsequently by defined criteria (see below): 

I - stably low gene expression 
II - stably high gene expression  
III - uncoordinated transient high gene expression 
IV- rare, transient coordinated high gene expression 

Therefore we constructed three criteria, for which all the simulations were tested. We             
primarily focus on the rare, transient coordinated high gene expression states, as defined by              
the following criteria:  
 

1) Coordinated high gene expression state. We call a simulation to show coordinated            
high expression, if at least once within the 1,000,000 time unit simulation more than              
half of the mRNA counts are above a specified threshold (e.g. for 5 nodes, at least                
once three or more mRNA counts have to be above a defined threshold; for 8 nodes,                
at least once 5 or more mRNA counts have to be above a defined threshold). Similar                
to the definition of the dissociation constant k, we set the threshold to 
 

thres = 0.8 * d * rprod/rdeg, 
 

where d * rprod/rdeg gives the high-expression steady state. Again, we want to detect              
the rare occurrence of a large mRNA count deviation from the low-steady state and              
hence, set the threshold arbitrarily to 0.8 (see below for details on the choice of this                
value).  
 

To compare the simulated results with the experimental data from a drug naive melanoma              
cell population, we split the 1,000,000 time unit simulations into 1,000 time unit             
sub-simulations, each accounting for a cell. Hence, we receive simulations of 1,000 cells for              
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1,000 time units, a procedure justified by the ergodic theory. To show that sub-simulations of               
1,000 time units are uncorrelated, we determine the autocorrelations for all 1,000 parameter             
sets of network 3.2 (Figure S9 ) for up to 1,000 lags (using the MATLAB autocorrelation               
function acf (Price, C. (2011). Autocorrelation function(ACF)       
(https://www.mathworks.com/matlabcentral/fileexchange/30540-autocorrelation -function-acf), 
MATLAB Central File Exchange. Retrieved June 13, 2019.). For each of these, we             
determine the first lag at which the autocorrelation is below the upper 95% confidence              
bound. For 88.2% of all simulations, the first lag below the upper 95% confidence bound               
occurs before 1,000 lags. For the 26 simulations with rare coordinated high states, 23 show               
a first lag below the upper 95% confidence bound before 1,000 lags. For the remaining three                
simulations the autocorrelation after 1,000 lags is at 0.0615, 0.0206 and 0.4363. Removing             
the simulation with high autocorrelation (0.4363) does not change the conclusions of our             
analysis. 

 
2) Rareness/transience. To mimic the results given by RNA-FISH in a drug naive            

melanoma population, where we only see a snapshot of the mRNA counts within a              
melanoma cell, we randomly determine a time point trand, where trand ∈ [0,999]             
(uniformly distributed), at which we count the number of mRNA counts above the             
threshold (for each simulation t varies). We summarize the result of all 1,000 cells in               
a histogram, for which we expect a decrease with increasing mRNA count above the              
threshold.  
 

3) Heavy-tailed gene expression distributions. At the population level, the single          
mRNA distributions of marker genes show heavy-tails. We use the same time point t              
as sampled for criterion 2) and consider the mRNA counts of all genes. If we plot                
these in gene-dependent histograms, we expect to find right-skewed and unimodal           
distributions. Here, we use the MATLAB function skewness(X) for evaluating the           
right-skewness of the histogram, where skewness(X) > 0, denotes that the data is             
spread out more to the right of the mean. Skewness is defined as 
 

skewness(X) = E[(X-𝜇)3/𝝈3] 
 

where 𝜇 is the mean of X, 𝝈 is the standard deviation of X and E(.) the expectation.                  
For determining unimodality, we test whether the maximum of the last quarter of             
histogram bins with bin width of one is less than the minimum of the first quarter of                 
histogram bins. Although the definition above only characterizes a heavy-tailed          
distribution, we find it to be sufficient for our analysis.  

 
Classes I and III, are both defined by criterion 1 only, where criterion 1 is not met in both                   
cases. For class I, none of the genes in a network ever express above the given threshold.                 
For class III, genes express above the given threshold but not once are more than half of the                  
genes above the given threshold at any given time of the simulation. Only if a simulation is                 
able to fulfill all three criteria, will we call it a simulation of class IV - rare transient                  
coordinated high gene expression. If a simulation fulfills criteria 1, but fails to meet both other                
criteria, we classify it into class II.  
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To receive numbers of simulations in class IV - rare transient coordinated high expression -               
per network size, we randomly determine three different trand, where each trand ∈ [0,999]              
(uniformly distributed) and evaluate all 96000 simulations for being in class IV at the              
respective snapshot (Figure 2A). Note that all these requirements are tested automatically            
using a script without manual/human intervention. 
 
To show that criterion 3) is sufficient for defining heavy-tailed simulations in class IV in our                
analysis, we constrain criterion 3) further aiming to identify sub-exponentially decaying,           
heavy-tailed distributions more directly. We therefore reevaluate all simulations so far           
identified as class IV and compare their 99 th percentiles of their expression distributions with              
those of fitted exponential distributions (Figure S3C, right panel). We expect most of the              
99th percentile of the expression distributions to be larger than the 99th percentile of the               
fitted exponentials. Due to the symmetry of the networks and the resulting similarity between              
the expression distributions (Figure S2C), we only consider node one here, without the loss              
of generality. To avoid that the fitted exponentials account for the heavy-tails, we constrain              
the fits to have a maximal bin number (bin size of one) within ∓ 1 of the maximal bin number                    
(bin size one) of the expression distributions. We do so by sequentially            
increasing/decreasing the exponential parameter μ by steps of 10, sampling 1000 times from             
the resulting exponential distribution with the MATLAB function exprnd (μ,1,1000) and          
comparing the maximal bin number of the resulting histograms. We repeat the above until              
the maximal bin number of the exponential distribution is within the predefined range of ∓ 1.                
As expression distributions with a large maximum bin are more similar to lognormal             
distributions with small variances and less to exponentials, we restrict the analysis to             
expression distributions with a maximum bin of ≤ 15 (Figure S3B). The threshold of a               
maximum bin of 15 was determined by considering the simulations and their exponential fits.              
We additionally discard simulations for which the optimization takes more than 1000            
iterations or is producing non-positive parameter values.  
Most (82%) of the 99th percentile of the simulated expression distributions are above the              
diagonal, hence larger than the 99th percentile of the fitted exponential distributions (Figure             
S3C, right panel). The 99 th percentile of all the nine marker genes in Shaffer et al. also lie                  
above the diagonal in the general vicinity of the points corresponding to simulations with rare               
coordinated high states (Figure S3C, left panel). We therefore conclude that criterion 3)             
sufficiently selects for sub-exponentially decaying heavy-tailed distributions.  
We additionally, perform parts of the analysis again on two different levels of stricter              
stringency for criterion of heavy-tailed distributions (Figure S4F-M): 

A) All simulations fulfilling criteria 1) - 3) which additionally comply to the above             
mentioned analysis (maximum bin ≤ 15, 99th percentile of expression distribution >            
99th percentile of fitted exponential, <1000 iterations to reach a ∓ 1 of the maximal               
bin number (bin size one) in the optimization for determining the exponential fit and              
producing non-positive parameter values) (Figure S4J-M). 

B) All simulations fulfilling criteria 1) - 3) which additionally comply to the above             
mentioned analysis or have a maximum bin > 15 (Figure S4F-I). 

The results are qualitatively very similar to the results we receive if we perform the analysis                
only on criteria 1) - 3) (Figure 2 and Figure S4 ). The 6 and 7 rare coordinated high                  
parameter sets identified by the more stringent analyses A) and B), respectively, are subsets              
of the original eight rare coordinated high parameter sets (Figure 2H, FigureS4H and S4L).              
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Although the resulting optimized decision trees vary slightly, they still identify all three             
parameters, ron, radd and roff, controlling rare transient coordinated states, as in the original              
analysis. Together, we conclude that the simple characterization of heavy-tailed distributions           
is sufficient for further analysis.  
 
The analysis above is a prerequisite for further findings and statements. Due to its              
importance, we tested its robustness with respect to the definition of the threshold, marking              
the mRNA count above which a gene is called to be in the high-gene expression state, and                 
with respect to the number of mRNA counts required above the threshold to call it a                
coordinated high state (both determining criterion 1). 
For the test network 5.3, we hence repeated the analysis for thresholds: 
 

thres = x * d * rprod/rdeg, 
 

where x = 0.3 : 0.05 : 1 (here, for 100 latin hypercube sampled parameter sets                
(Supplementary Information ParSetsAnalysis.xlsx), and we only test for class IV).          
Decreasing the threshold down to 0.6 of the high-expression steady state does not change              
the set of simulations with rare behavior in comparison to the results for x = 0.8. Even a                  
further decrease of the threshold (down to 0.3 of the high-expression steady state) manifests              
in a similar result: half of the simulations identified previously to show rare behavior are still                
classified as such. Hence, we keep x = 0.8 for the rest of the analysis (Supplementary                
Information ParSetsAnalysis.xlsx). 
Next, for network 5.3 and the 100 parameter sets (Supplementary Information           
ParSetsAnalysis.xlsx), we repeated the analysis requiring at least 1, 2, 4, and 5 mRNA              
counts to be above the threshold at least once, in order for the simulation to fulfill criterion 1.                  
The lower the required mRNA count, the more simulations fulfill criterion 1 (peaking at a               
required mRNA count of at least 1 with 11 out of the 100 simulations showing rare behavior                 
according to this definition). The above set of simulations entails the set of simulations              
fulfilling criterion 1 at the standard required mRNA count of at least 3 (7 out of 100                 
simulations). Hence, we keep the definition of coordinated overexpression to more than half             
the nodes being above the threshold.  
Additionally, we computed the Gini indices for the gene expression distributions of both the              
simulations showing rare coordinated high states and the experimental data (Figure S3A            
and FigureS3D) (Jiang et al., 2016; Shaffer et al., 2017). A Gini coefficient of 0 implies                
perfect equality such that for a given gene, all cells within a population have the same                
number of mRNA molecules, whereas 1 implies perfect inequality such that one cell             
expresses all the mRNA molecules while others express none. We used the MATLAB             
function gini (Yvan Lengwiler (2019). Gini coefficient and the Lorentz curve           
(https://www.mathworks.com/matlabcentral/fileexchange/28080-gini-coefficient-and-the-loren
tz-curve), MATLAB Central File Exchange. Retrieved October 24, 2019.) for the           
computations.  
 
Network topologies 
Connectivity 
We define a measure for the connectivity of the networks, where 
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connectivity = number of ingoing edges for any node of the network, 
 

where a self-loop is also considered to be an ingoing edge. As we constrain our analysis to                 
symmetric networks (same number of in-going edges for all nodes in a network per              
definition), we are able to define one single connectivity per network. The constraints enable              
us to directly evaluate the impact of the connectivity of the network on the ability to form rare                  
behavior.  
Self-loops 
A network with a direct auto-regulation is called a network with a self-loop. Due to the                
restriction of symmetric networks, all networks can be classified as having self-loops for all              
nodes or not having self-loop for any node. Due to non-isomorphism, the set of networks               
contains for each network without self-loops an identical network with self-loops. We            
evaluate the ability of these different edge classes on the formation of rare coordinated high               
states (Figure 2F and Figure S5E).  
Characteristic distance  
The characteristic distance of a network is defined as the average shortest path length for all                
pairs of nodes within a given network. To calculate this distance, we used the MATLAB               
function shortestpath on all pairs of nodes. We evaluated the ability of the characteristic              
distance normalized to the network size on the formation of rare coordinated high states              
(Figure 5F). 
 
Quantitative Analysis 
For each of the 96,000 simulations showing rare coordinated high states we performed a              
quantitative analysis. First, we define a high expression region as a region which is initiated               
by the first mRNA count to exceed the threshold, terminated by the last mRNA count to drop                 
below the threshold and requires to contain a coordinated high expression state (criterion 1:              
more than half the mRNA counts have to exceed the defined threshold) between the              
initiation and termination time points. Breaks of up to 50 time unit intervals are accepted due                
to the stochastic nature of the simulations. For example, in a 3 node network, where we                
require at least 2 mRNA counts to exceed the threshold for a coordinated high state: the first                 
mRNA count exceeds the threshold (initiation), then the second mRNA count exceeds the             
threshold (initiation of high state) but then drops below the threshold for 50 time units before                
exceeding the threshold again, is still counted as one high-expression region. The length of              
50 time units were defined arbitrarily. Due to the stochasticity of the system and the               
conservative definition of the threshold (located close to the high-expression steady state),            
we observe these temporary violations of criterion 1. In order to create sensible statistics on               
the quantitative behavior of the simulations, the temporary relaxation of criterion 1 is             
necessary.  
In the quantitative analysis we extract the total time spent in a high state (out of 1,000,000                 
time units) from all simulations showing rare behavior (Figure S3E).  
 
Decision tree optimization, generalized linear models and constrained simulations 
We classify all parameter sets into two classes, rare coordinated high parameter sets and              
non-rare coordinated high parameter sets, according to the percentage of total simulations            
per parameter set (96 simulations) in which rare coordinated high states are observed. The              
threshold above which a parameter set is called a rare coordinated high parameter set is at                
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20%. More than 19 of the 96 simulations have to show rare behavior in order for a parameter                  
set to be called a rare coordinated high parameter set. The threshold was set according to a                 
summarizing histogram, in which we see a clear distinction between the two groups: the              
main body of the histogram being located below 20% and the few parameter sets deviating               
extremely from that main group (> 20%). According to this binary classification, we             
performed a decision tree optimization (MATLAB function fitctree). 
To validate the results of the decision tree optimization, we used generalized linear models              
on all seven independent parameters ron, radd, n, roff, rprod, d and rdeg with the MATLAB function                 
fitglm(X,Y,’Distribution’,’binomial’). 
To validate that the parameter region determined by the decision tree optimization favors the              
formation of simulations with rare coordinated high states, we generate a new set of              
parameters constrained to values close to the minimal and maximal values of ron, radd and roff                
for the rare coordinated high parameter sets: 
  

Parameter  Lower boundary Upper boundary 

rprod 0.01 1 

rdeg 0.001 0.1 

ron 0.001 0.025 

roff 0.06 0.1 

d 2 100 

radd 0.15 0.36 

n 0.1 10 

 
where altered boundaries are indicated in blue. We latin hypercube sample 1000 parameter             
sets from that constrained parameter space. For all 1000 parameter sets we simulate             
1000000 time units by Gillespie’s next reaction method for networks 3.2 and 5.3 (Figure S9 ).               
Each of these simulations was evaluated for having rare coordinated high states according             
to the three criteria (STAR Methods , section Simulation classes).  
 
Sensitivity Analysis  
For each parameter, we tested its sensitivity across its corresponding parameter space (see             
STAR METHODS, section Parameters). Briefly, we take network 3.2 (Figure 9 ) for the             
detailed analysis as network 3.2 shows rare coordinated high states in all eight rare              
coordinated high parameter sets. For each of the seven independent parameters (ron, roff, rpod,              
rdeg, n, d, radd), we determine 10 equidistant points across its parameter space, and create               
new parameter sets by swapping these new parameters one-by-one with ones from the eight              
rare coordinated high parameter sets, resulting in 8*7*10 = 560 new parameter sets. We              
simulate 1,000,000 time units with Gillepsie’s next reaction method for these newly created             
parameter sets and evaluate all new simulations for showing rare coordinated high states.             
For each of the 10 newly sampled parameter values per parameter we receive 8 binary               
decisions where ‘1’ indicates that the simulation exhibits rare coordinated high states and ‘0’              
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that it does not. Our analysis confirmed that the three parameters (ron, roff, and radd) identified                
by the decision tree algorithm and generalized linear model are indeed critical for producing              
the rare coordinated high states (Figure S6D). We also found a moderate dependence on              
the Hill coefficient n, also confirmed by the low p-value for n from generalized linear model                
analysis (Figure S6C). 
 
Burst analysis: maintenance of rare coordinated high states  
For all simulations showing rare coordinated high states, we determine the fraction and             
frequency of transcriptional bursts in both the high and baseline time-regions (Figure 3B-C).             
By fraction we mean the percentage of the total time the system is bursting. By frequency we                 
mean the number of bursts per unit time. Additionally, we determine the number of high               
states and the total time spent in a high state for a network of size three (network 3.2, Figure                   
9 ) and three independent nodes for each of the parameter sets showing rare coordinated              
high states in the connected network (Figure 3D).  
 
Entry and Exit mechanisms 
Entering/Exiting of high expression region - Transcriptional bursts 
For all of the simulations in class IV showing rare coordinated high states - we analyze                
whether the durations of transcriptional bursts are coordinated with the entering and exiting             
of high time-regions (Figure 3A, STAR Methods , section Quantitative Analysis).  
Entering high expression regions 
For each of the defined high expression regions, we determine the entering gene - the gene                
corresponding to the gene count exceeding the threshold at the initial time point of the high                
expression region. We then extract all transcriptional bursts which do not start within a high               
expression region, determine their durations and classify them as either an entering burst or              
a non-entering burst. An entering burst is the last burst of a particular entering gene before                
or during its gene count exceeds the threshold. All other bursts are called non-entering              
bursts. We then perform a two-sample Kolmogorov-Smirnov test on the duration of the             
entering and non-entering bursts not in high expression regions with the MATLAB function             
kstest2  at the significance level 0.05 . 
Exiting high expression regions 
Transcriptional bursts: For each of the determined high gene expression regions we define             
an exiting region - the region between the first gene in the last quarter of the high expression                  
region permanently leaving the high state (permanently having its gene count below the             
threshold for the rest of the high expression region) to the last time point of the high                 
expression region. We again determine all transcriptional bursts - within the high expression             
regions. To exclude potentially prolonged entering bursts, we only consider bursts which            
start within a high expression region. Also, for bursts exceeding the high expression region,              
we only account for their durations within the high expression region. If a burst overlaps with                
an exiting region for at least one time point we call the burst an exiting burst. All other bursts                   
which are not overlapping with an exiting region are called non-exiting bursts. We apply the               
two-sample Kolmogorov-Smirnov test to the duration of the exiting and non-exiting bursts in             
high expression regions with the MATLAB function kstest2  at the significance level 0.05 . 
 
Entering/Exiting of high expression region - Times 
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For all of the simulations showing rare transient coordinated high gene expression, we             
analyze the distributions of waiting times between genes entering and exiting the high             
expression region (see Quantitative Analysis).  
Entering high expression regions: For all high expression regions, we determine the first time              
points at which the gene counts exceed the threshold (only for genes with a gene count                
exceeding the threshold during a particular high expression region at least once). We then              
consider the waiting times - the time interval between the ascending sorted time points of               
genes entering the high expression region. These distributions - at most N-1 distributions for              
a network of size N, one for each waiting time between the genes - are compared to                 
exponential distributions by the Lilliefors test according to the MATLAB function lillietest(X,            
'Distr', 'exp') at a significance level of 0.05.  
Exiting high expression regions: For all high expression regions we determine the last time              
points at which the gene counts exceed the threshold (again, only for genes with a gene                
count exceeding the threshold during a particular high expression region at least once). We              
consider the waiting times and compare their distributions to exponential distributions by the             
Lilliefors test by applying the MATLAB function lillietest(X, 'Distr', 'exp') at a significance level              
of 0.05.  
 
Comparative Network Inference 
Here we describe the computational techniques we used to infer the gene interaction             
network structure of the pre-drug and post-drug cells. When studying regulatory interactions            
between genes in a network, it can be useful to abstract the problem into a graph theory                 
framework. Let us assume a set of N genes, with the expression level of each gene                
represented by the random variable Xi , with i ∈ {1,...,N }. The network of interactions              
between genes can then be represented as a graph of N nodes. An edge Xi → Xj signifies a                   
regulatory relationship in which Xi either upregulates or downregulates Xj (Singh et al.,             
2018). 
The computational challenge of network inference is to uncover the true edges of the gene               
interaction network from statistical relationships between gene expression levels. Many          
different algorithms, often based on mutual information, conditional probability, or regression           
analysis, have been developed (Huynh-Thu and Sanguinetti, 2019; Saint-Antoine and Singh,           
2019; Singh et al., 2018). The output of an inference algorithm is a matrix of edge weights,                 
which we will call W with dimensions NxN . In this matrix, the element wij is a measure of how                   
confident we can be that the edge Xi → Xj exists in the network. A final network prediction                  
will typically set a threshold for edge weights, and exclude any edges that fall below the                
threshold. Edges Xi → Xi , called “self-edges” are typically excluded for the final network              
prediction, except in cases when temporal data is being analyzed. Since we are using              
atemporal expression data here, self-edges will be excluded from the analysis. 
 
It is common to judge a network inference algorithm’s reliability by testing it on a “gold                
standard” dataset, for which the true structure of the network is already known, to see how                
well it can recover the real edges from the expression data (Huynh-Thu and Sanguinetti,              
2019). We have chosen to use the Phixer algorithm (Singh et al., 2018), based on its                
impressive performance when benchmarked on the DREAM5 Challenge gold standard          
datasets  
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(weblink: http://dreamchallenges.org/project/dream-5-network-inference-challenge/; last   
accessed: 05/06/2019). 
 
Phixer 
Phixer computes edge weights using the phi-mixing coefficient. For discrete random           
variables X and Y taking values in sets A and B, the phi-mixing coefficient φ(X|Y) is defined                 
as: 
 
φ(Xi |Xj ) =    max    | Pr{Xi  ∈ S|Xj  ∈ T} − Pr{Xi  ∈ S} | 
(1) 
              S⊆A,T⊆B 
 
We then assign φ(Xi |Xj ) as the weight of the edge Xj → Xi . The phi-mixing coefficient is an                  
asymmetric measure, so the weight of the edge Xi  → Xj  may be different (Singh et al., 2018). 
The original Phixer algorithm includes a pruning step, which attempts to correct for false              
positives by minimizing redundancy in the network. For every possible triplet of nodes Xi , Xj ,               
and Xk, the following inequality is checked: 
 
φ(Xi |Xk) ≤ min{φ(Xi |Xj ), φ(Xj |Xk)}                                                                                          (2) 
 
If Equation 2 holds, the edge Xk → Xi is eliminated. However, previous work has found that                 
the pruning step, though theoretically sensible, typically reduces accuracy in practice           
(Saint-Antoine and Singh, 2019), possibly due to the prevalence of redundant connections,            
such as feed forward loops in gene regulatory networks. So, we removed this part of the                
algorithm in order to achieve the highest possible level of accuracy. 
The Phixer software is available online at the creator’s Github page:           
https://github.com/nitinksingh/phixer/ (last accessed: 05/06/2019). We used the original C         
code, and kept the default parameter values the same, except for changing “NROW” to 19               
and “TSAMPLE” to 4000, to reflect the dimensions of the input data files. The original Phixer                
code includes, by default, 10 bootstrapping runs, as well as a built-in procedure for binning               
the raw data, which we did not alter. We removed the pruning step from the code, but                 
otherwise left the edge weight calculation process unchanged. 
 
Data description 
The two pre-drug datasets are referred to as NoDrug1 and NoDrug2 in the supplementary              
data files (Supplementary Information PhixerData.xlsx). The datasets containing clusters         
of resistant cells after four weeks of drug exposure are referred to as Fourweeks1-cluster1,              
Fourweeks1-cluster2, etc. where we differentiate between Fourweeks1 with four clusters and           
Fourweeks2 with three clusters. Details of how these datasets were acquired are presented             
in (Shaffer et al., 2017). 
 
Bootstrapping controls 
We found that the Phixer algorithm tends to predict more connections for larger sample              
sizes, even when the samples are taken from the same dataset. To control for the               
differences in original sample sizes of various samples, we bootstrapped the original            
datasets into 4000-sample datasets before performing the Phixer analysis. The number           
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4000 was chosen arbitrarily; bootstrapped sample sizes of 1000, 2000, and 6000 also             
appeared to produce similar results. 
 
Randomized controls 
For each size-controlled dataset to be analyzed, we created a randomized control consisting             
of permutations of each gene column from the original dataset (Supplementary Information            
PhixerData.xlsx). We then performed the Phixer analysis on these randomized controls. The            
resulting edge weight distributions give us a baseline or control edge weight for Phixer that,               
in principle, reflects potential false positives. We found that in the controls, nearly all of the                
predicted edge weights were below 0.45 (Figure S8B). Therefore, we decided to choose             
0.45 as a threshold for the non-control analysis, thus eliminating edges that could have been               
predicted by chance alone. 
 
Finally, since the analysis contains two stochastic elements (the bootstrapping to correct for             
the sample size issue and the bootstrapping step in the Phixer algorithm itself) we had to be                 
sure that the observed differences in connectivity were not due to chance. For each dataset,               
we ran the entire analysis (including both the bootstrapping size correction and the Phixer              
algorithm) 1000 times, and provide the distributions of the number of edges with weight              
greater than 0.45 (Supplementary Information PhixerData.xlsx).  
 
Asymmetric networks or parameter sets 
To test the generality of the results, we generate asymmetric simulations. We introduce             
asymmetry in both network architectures and the parameter sets.  
Asymmetric network 
We randomly determine a weakly-connected but asymmetric five-node network (Figure          
S2G). We simulate the network with 100 parameter sets which are latin hypercube sampled              
out of the same parameter space as the 1000 parameter sets of the main analysis. Out of                 
these 100 simulations, two simulations are classified as showing rare, transient coordinated            
high gene expression (fulfills all three criteria in STAR Methods , section Simulation classes,             
Figure S2H-I).  
Asymmetric parameter sets 
For the main analysis, we use the same parameter set, consisting of seven independent              
parameters (STAR Methods , section Parameters), for all nodes in a network. We introduce             
asymmetry by assigning each node in a network a separate set of parameters. Hence, we               
latin-hypercube sample 100 parameter sets out of a 7 x N parameter space, where N is the                 
number of nodes of the network, with the MATLAB function lhsdesign_modified . Due to the              
high dimensionality, we here confine the parameter space to:  
 

Parameter  Lower boundary Upper boundary 

r_prod 0.01 1 

r_deg 0.001 0.1 

r_on 0.001 0.1 

r_off 0.001 0.1 
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d 2 100 

r_add 0.2 0.4 

n 5 10 

 
 
where the changes in the boundaries are highlighted in blue. We confine the parameter              
space according to the clustering of rare coordinated high parameter sets. In total, six              
parameter sets give rise to rare-states more frequently than others for all 96 networks. Only               
two out of the seven independent parameters, radd and n, show a strong correlation with the                
rare coordinated high state producing parameter sets as determined by a decision tree             
optimization. The boundaries in the table above are formed according to these decision tree              
boundaries in which five out of the six rare coordinated high state producing parameters lie               
(Supplementary Information ParSetsAnalysis.xlsx). 
For these 100 parameter sets, we generated simulations for five-node network 5.3 (Figure             
S2J ). Out of the resulting 100 simulations, we find two showing rare, transient coordinated              
high gene expression (fulfills all three criteria in STAR Methods , section Simulation classes,             
Figure S2K-M). 
 
Implementation and code 
The MATLAB code used for the analysis of this manuscript is available via Dropbox              
(https://www.dropbox.com/sh/t3793528chgb66x/AAAo7cqaJYkZTQQtAuTwqxGGa?dl=0 ). 
The analysis was performed with MATLAB R2017a and R2018a. 
 
 
Supplementary Information 
 
ParSetsAnalysis.xlsx 
PhixerData.xlsx 
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Box 1. Model description, assumptions, parameters, and definitions 
Model description: The transcriptional bursting model is comprised of single-gene expression modules described by the telegraph model:                 
the DNA can take on an active and inactive state and transcribe mRNA at high and low rates (transcriptional bursting), respectively. These                      
expression modules are coupled by an underlying network architecture, where regulation is modeled by a Hill function: the regulating gene                    
influences the activation rate ron of the respective regulated gene. The chemical reactions and propensities are described below: 

Chemical reaction Reaction propensity 
I →  A  (r on+radd*mRNAXn/(k n +mRNAXn)) *I 
A →  I roff * A 
I →  I + mRNA rprod * I 
A →  A + mRNA d*rprod * A 
mRNA → ∅ rdeg * mRNA 

where I,A ∈ {0,1}, and I+A = 1, where I = 0 (A = 1) denotes that the DNA is in an active state and I = 1 (A = 0) denotes that the DNA is in                                     
an inactive state. mRNAX is the mRNA count of gene X at the given time. The model aims to recapitulate rare coordinated high states,                        
where rare means that at the population level the expression distributions are unimodal and exhibit heavy tails; coordinated means that at                     
least once throughout a simulation more than half the genes (nodes) show mRNA expressions above a specified threshold simultaneously;                   
and high  means that the mRNA expression of a gene exceeds a specified threshold (thres).  
Model assumptions: (1) mRNA is able to influence the gene expression of its regulated gene directly, hence we refer to it as gene product                        
throughout this work; (2) all genes are relationally identical (weakly-connected, non-isomorphic and symmetric gene regulatory networks);                
(3) all genes share the same model parameters; (4) gene regulation is only considered to be activating; and (5) if regulation occurs from                       
several genes, their effects are additive. We discuss and check the generality of our model by testing many of these assumptions on a                       
subset of cases, as described in Box 2.  
Parameters: The model is described by 8 model parameters, as defined in the table below along with the corresponding ranges. 

parameters sampling range 
independent model parameters 
r on The rate at which DNA is activated. 0.001 - 0.1 
r off The rate at which DNA is inactivated. 0.01 - 0.1 
r prod Synthesis rate of gene product. 0.01 - 1 
r deg Degradation rate of gene product. 0.001 - 0.1 
r add Parameter determining the contribution of the additional DNA activation rate upon gene regulation. 0.1 - 1 
d Factor by which the mRNA synthesis rate is increased when in an active DNA state. d >1. 2 - 100 
n Hill coefficient.  0.1 - 10 
dependent model parameters  
k* Dissociation constant of the Hill function, where k(rprod, r deg,d) = 0.95 * d * rprod/r deg - 
dependent classification parameters  
thres** Threshold above which a gene is thought of being highly expressed, where thres = 0.8 * d * rprod/r deg - 

Here, r prod/r deg is the steady state in the baseline expression state (when there is no transcriptional burst) and d * r prod/r deg is the steady state                         
in the high expression state (if the DNA would continuously be in the active state). 
Model Definitions: 

● weakly-connected network - a directed network that when replacing the directed edges by undirected ones produces a connected                  
graph in which every pair of nodes is connected by a path.  

● non-isomorphic - two graphs are called non-isomorphic if there exists no structure-preserving bijection between them. 
● symmetric - within a graph the number of in- and outgoing edges of a node and across nodes is identical and either all nodes in a                          

network have a self-loop or not. 
● rare coordinated high state - (1) at least once within a simulation more than half the genes are highly expressed simultaneously, (2)                      

the histogram of simultaneously highly expressed genes at the population level decreases and (3) the gene expression distributions                  
at the population are heavy-tailed.  

● connectivity - number of ingoing edges for any node of the network. 
● characteristic distance- the average shortest path length between pairs of nodes of the network. 

* The parameter k is dependent on the parameters rprod, rdeg, and d, such that: k = x * d * rprod/rdeg, where x∈ {0.75, 0.8, 0.85, 0.9, 0.95, 1}, which ensures a                                 
consistent definition of k throughout the network architectures and parameter sets. Here x represents the fraction of the value corresponding to the steady                       
state value in the high expression state. We showed that for x = 0.75, none of the 100 simulations show rare coordinated gene expression because the                          
threshold resulting in an effective gene regulation is exceeded too often—the regulated DNA states are activated more frequently leading to the high gene                       
expression states and loss of rareness of the coordinated high gene expression event (leading to bimodal distributions). For x > 0.75, there is an increase in                          
the number of simulations showing rare behavior, peaking at x = 0.95. Furthermore, throughout different values of x, the same parameter sets give rise to                         
rare coordinated high states. We take x = 0.95 to maximize the number of simulations positive for the rare coordinated high states.  
** We test several values for the threshold above which a gene is highly expressed: thres = y * d * rprod/rdeg, where y ∈ {0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6,                               
0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1}. For all y ≥ 0.6, the set of simulations showing rare coordinated high states largely remains the same. Even for y = 0.3,                               
half of the simulations identified previously to show rare behavior are still classified as such. We chose x = 0.8. Though arbitrarily chosen, the choice of x =                            
0.8 will not change the conclusions of our analysis. 
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Box 2.  
Relaxing model assumptions 
Protein translation: The original transcriptional bursting model does not include a step for translation and is assumed to be captured by the                      
hill function term which not only greatly reduces the computational costs of long stochastic simulations but also allows for analyzing smaller                     
set of parameters. To check if our model can produce rare coordinate high states even when the model includes the translation step, we                       
focused on a particular network (5.3) and associated parameter values that give rise to these states in the original model. We show that for                        
specific rates of translation and protein degradation (STAR Methods), the model including translation exhibits the rare coordinated high                  
states.  
Network architectures: By reducing the network architectures to weakly-connected, non-isomorphic and symmetric networks, we              
systematically reduce the number of possible network architectures. The reduced space of networks is partly supported by experimental                  
observations (Shaffer et al. 2017, 2018), reporting that (1) there is no obvious hierarchical relationship between the expressed genes; and                    
(2) no particular signaling pathway appears to be solely responsible for the observed behavior (see also Figure S1D). Furthermore, these                    
network architectures allows for direct comparisons between network sizes, connectivities and parameter sets (not a given for other                  
topologies). Although the analysis here primarily focuses on the constrained set of network architectures, we show for a subset of cases                     
(STAR Methods) that asymmetric network architectures can also exhibit rare coordinated high gene expression states (Figure S2 G-I),                  
paving the way for a more systematic analysis in the future studies. 
Model parameters: While we primarily focus on keeping the same parameter set for each node, we analyzed a subset of networks with                      
asymmetric parameters (STAR Methods) such that each node had distinct underlying parameter sets. We show that a model with                   
asymmetric parameter sets is also capable of producing rare coordinated high gene expression states (Figure S2 J-M).  
Multi-gene regulatory effects: The joint regulatory effects experienced by a gene which is regulated by several other genes can be modeled                     
using different approaches. While the majority of analysis here uses an additive model of joint-regulation, we performed a subset of                    
simulations (STAR Methods) for cases where the regulation by multiple gene nodes is multiplicative (Figure S4C and E). We find that for                      
network architecture 5.3, 15 and 97 out of 1000 parameter sets give rise to simulations with rare coordinated high states in the additive and                        
multiplicative joint-regulation, respectively (Figure S4D). Nine simulations are found to show rare coordinated high states in both definitions                  
of multi-gene regulation. 
 
Defining model-output metrics 
Population level—sub-simulation size to determine a single cell: To qualitatively compare our results to experimental data, we convert the                   
1,000,000 time units long single-cell simulation to 1,000 single-cell sub-simulations of length 1,000 time units. We show that the simulations                    
are largely (88.2%) uncorrelated after 1,000 time units, justifying our analysis (STAR Methods).  
Heavy-tails: We test different levels of stringency in our definition of heavy-tailed/sub-exponential distributions. The analysis in Figure 2 is                   
performed using the criteria described in STAR Methods, section Simulation classes. We perform further analysis similar to Figure 2 by                    
using more stringent definitions, i.e. fit exponentials and compare the 99th percentiles (Figure S3C). We demonstrate that these results and                    
conclusions are similar to the ones obtained using less stringent criteria (Box 1) shown in Figure 2 (see Figure S4F-M). For example, 6 and                        
7 out of 8 rare coordinated high parameter sets also appear in the two more stringent analyses (Figure S4H and L). We further validate that                         
our model recapitulates the experimentally observed heavy-tails by comparing the Gini coefficients (Jiang et al. 2016) of experimental and                   
model distributions (Figure S3D).  
Number of nodes highly expressed to be called a ‘coordinated’ state: We define a simulation to show coordinated high gene expression if at                       
least once throughout the simulation more than half of the gene product counts exceed the threshold. Furthermore, we show that for                     
different node counts (2, 3, 4, 5) the number of simulations showing rare coordinated high states does not vary significantly. As an example,                       
for a count of 2, we get 6 out of 100 simulations showing rare behavior; for a count of 3, we get 7. Note that the sets of simulations were                              
overlapping between different scenarios.  
Definition of rare coordinated high parameter sets: We define rare coordinated high parameter sets as parameter sets showing rare                   
coordinated high expression in ≥ 20% of all 96 networks. The threshold was defined by inspecting the histogram (Figure 2H), where we see                       
a separation at 20%. Notably, the same rare coordinated high parameter sets also appear in other analysis — they show increased                     
frequencies of simulations with rare coordinated high states when considering the network sizes separately (Figure S6A). Additionally,                 
stricter definitions for heavy-tailed expression distributions result in similar rare coordinated high parameter sets (Figure S4H and L).  
Bootstrapping controls in Phixer algorithm: As the number of connections predicted by the Phixer algorithm can depend on the sample size,                     
we bootstrapped the original data set into 4000-sample datasets. The number 4000 was chosen arbitrarily; bootstrapped sample sizes of                   
1000, 2000, and 6000 also produced qualitatively similar results. 
Edge weight in Phixer algorithm: We created a randomized control consisting of permutations of each gene column from the original                    
dataset. We then performed the Phixer analysis on these randomized controls. The resulting edge weight distributions give us a baseline or                     
control edge weight for Phixer that, in principle, reflects potential false positives. We found that in the controls, nearly all of the predicted                       
edge weights were below 0.45 ( Figure S8B). Therefore, we decided to choose 0.45 as a threshold for our non-control analysis, thus                     
eliminating edges that could have been predicted by chance alone. 
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Supplementary Information  
 
We decided to develop a network-based framework that models the cell-intrinsic biochemical            
interactions. One of the first goals we had was to identify the minimal set of biochemical                
reactions that constitutes this network model. We asked whether a simple network model             
lacking gene activation step (Model1), i.e. with constitutive mode of gene expression, is             
sufficient to capture rare coordinated high states (Figure 1B; STAR Methods , section Model             
1)? Or that we need to incorporate gene activation step via transcriptional bursting (Model 2)               
at each node, a phenomenon in which genes flip reversibly between transcriptionally active             
and inactive state regulated by the binding of a transcription factor(s) (Figure 1C; STAR              
Methods , section Model 2)?  
 
In terms of chemical reactions, the critical difference between the two models is that, while in                
Model 1 the gene is transcribed as a Poisson process with a single rate, rprod (Figure 1B), in                  
Model 2, a gene can reversibly switch between active (ron) and inactive state (roff), where               
binding of the transcription factor at a gene locus defines the effective rate of gene               
production (Figure 1C). Specifically, when inactive, the gene is transcribed as a Poisson             
process at a basal rate (rprod); when active, this rate becomes higher (d x rprod, where d > 1 ).                   
For both the models, we modeled degradation of the gene product as a Poisson process               
with degradation rate rdeg. For both the models, the inter-node interaction parameter, radd, has              
a Hill-function-based dependency on the gene product amount (Hill coefficient n) of the             
respective regulating node to account for the multistep nature of the interaction (Figure             
1B,C). All chemical reactions, propensities, and model parameters are presented in STAR            
Methods . To test these two models, we used Gillespie’s next reaction method (Gillespie             
1977) and simulated test cases of small networks (of two or three nodes) for a range of                 
parameters. 
 
For a vast majority of the networks and parameter combinations, Model 1 either produced              
always low or always high expression states (Figure S1A). In some cases, while Model 1               
could indeed produce a transition from low to high expression states, the transition happens              
for all gene products at the same time (Figure S1A). However, this model is not consistent                
with the experimental observations; in particular, if a cell is positive for one marker gene,               
then it is more likely to be positive for another marker gene, but not necessarily so (Figure                 
S1B) (Shaffer et al. 2017). Furthermore, this mode of transition resulted in bimodal             
distributions of cellular state as determined by the amount of gene product (Figure S1B),              
which is different from the rare nature of the transitions, as reflected by the heavy-tailed               
distributions of gene products observed in melanoma. Model 2, which incorporates           
transcriptional bursting-dependent activation of a node (gene), also produced a range of            
gene expression states (Figure 1C-1F). Importantly, this model was able to faithfully capture             
the qualitative features of the experimental data i.e. rare, transient, and coordinated high             
expression states (Figure 1F). In contrast to Model 1, Model 2 captures another property of               
the experimental data, i.e. if one gene is in the high expression state, the other genes in the                  
network are likely to be in high expression state, but not always (Figure 2B and S2B).                
Based on these initial observations, we decided to pursue Model 2 systematically and             
simulated networks of different sizes and architectures across a broad range of model             
parameters.  

Supplemental Text and Figures
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Figure S1. Related to Figure 1 and STAR Methods. 
(A) Depending on the network architecture and the parameters of the gene expression model,              
we observe either stably low expression (left), stably high expression (right) or transient             
coordinated high expression (middle). 
(B) The distributions of simultaneously overexpressed genes and the gene products at the             
population level (B middle) show bimodal distributions and are inconsistent with the            
observations in drug naive melanoma cells. 
(C) The subset of weakly-connected, non-isomorphic, symmetric networks decreases the          
testable architecture space by many orders of magnitude. 
(D) No clear driver gene or hierarchy is apparent from the two-dimensional RNA FISH              
experimental data. 
(E) Star-shaped networks (left) may lead to hierarchies within the joint frequencies of genes              
exhibiting the high expression state (right).  
(F) Symmetric networks (left) do not form hierarchical structures in the joint frequencies of high               
expression (right). 
 
Figure S2. Related to Figure 2 and STAR Methods. Simulations of varying network sizes              
and asymmetries are able to recapitulate the number of simultaneously highly expressed            
genes and expression distribution as seen in drug naive melanoma. 
(A) 0.62% of simulations show rare transient coordinated high expression. 
(B) The simulated distributions of simultaneously highly expressed genes and expression are 
qualitatively similar to data from a pre-resistant melanoma population ubiquitously in networks            
with different numbers of nodes. Shown for a two node (top), three node (middle) and eight                
node network (bottom). 
(C) The gene expression distributions of all five nodes (the gene expression distribution of node               
one is shown in (B)) are qualitatively similar. 
(D-F) Network of size 10 (A) with corresponding simulation (B) and distributions of             
simultaneously overexpressed genes and gene expression (C). The distributions show          
qualitatively the same behavior as drug naive melanoma cells. 
(G-I) Asymmetric network architecture (D) with corresponding simulation (E) and distributions of            
simultaneously overexpressed genes and gene expression (F). The distributions show          
qualitatively the same behavior as drug naive melanoma cells. 
(J-L) Symmetric network architecture and an asymmetric parameter set (G) with corresponding            
simulation (H) and distributions of simultaneously overexpressed genes and gene expression (I)            
. The distributions show qualitatively the same behavior as drug naive melanoma cells. 
(M) The gene expression distributions of all five nodes (the gene expression distribution of node               
one is shown in (I)) generated with an asymmetric parameter set display different levels of               
heavy-tails. 
 
Figure S3. Related to Figure 2 and STAR Methods. Most simulations with rare             
coordinated high states show heavy-tails in their gene expression distributions.  
(A) Expression distributions determined by single cell RNA-FISH of nine identified marker genes             
(data from Schaffer et al., 2017) show heavy-tails. 
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(B) Simulated gene expression distributions deviating too much from exponential distributions           
(left panel) are discarded in the analysis shown in (C).  
(C) The tails of the simulated distributions for gene expressions are fatter than of fitted               
exponential distributions (right panel) (see STAR Methods). The same is true for the             
experimentally observed expression distributions (left panel). 
(D) The Gini indices of simulations of rare coordinated high states are substantially higher than               
of simulations not showing rare coordinated high states. The experimentally measured           
expression distributions have similar Gini indices than simulations with rare coordinated high            
states.  
(E) Simulations of particular parameter sets across different network architectures and sizes            
show similar (normalized) time in high expression relative to other parameter sets. 
 
Figure S4. Related to Figure 2 and STAR Methods. Transcriptional bursting model with             
fast protein synthesis and degradation or multiplicative gene regulation shows          
simulations with rare coordinated high states.  
(A) Schematic of the transcriptional bursting model with translation for two nodes. DNA is either               
in an inactive (off) or active (on) state. Transitions take place with rates ron and roff, where mRNA                  
is synthesized with rates rpod and d*rprod, respectively, d>1. mRNA degrades with rate rdeg.              
Protein is synthesized with rate rprodP and degraded with rdegP. Gene regulation is modeled by a                
Hill function, where the protein count of the regulating gene A increases the activation of the                
regulated gene B.  
(B) Fast translation events where protein synthesis and degradation is ten times faster than              
mRNA synthesis and degradation leads to simulations with rare coordinated high states. The             
simulated distributions of simultaneously highly expressed proteins and protein expression          
qualitatively capture features of experimental data from a pre-resistant melanoma population.           
The networks for simulation are indicated in the top right corner. 
(C) Schematic of multiplicative gene regulation. Gene regulation on the gene activation of the              
regulated gene is the product of the Hill functions of regulating genes X and Y, rate radd and a                   
factor (the number of regulating genes, see STAR Methods). 
product of Hill functions for gene X and Y  
(D) Multiplicative gene regulation leads to more simulations showing rare coordinated high            
states than additive gene regulation.  
(E) The simulated distributions of simultaneously highly expressed genes and expression are            
qualitatively similar to data from a pre-resistant melanoma population. The networks for            
simulation are indicated in the top right corner. 
(F-M) Two levels of stringencies for the definition of heavy-tailed distributions show qualitatively             
similar results (F-I and J-M) to each other and to the stringency defined in main text (Figure 2). 

 
Figure S5. Related to Figure 2 and STAR Methods. Networks with higher connectivity or              
without autoregulation show less simulations with rare coordinated high states.  
(A-B) Number of simulations with rare coordinated high states normalized by network size (A)              
and number of networks within each network size (B). 



(C) Increasing connectivity within all networks of sizes two (left), three (middle) and eight (right)               
leads to a decrease in the number of simulations with rare coordinated high states.  
(D) All network sizes show the same trend of inverse relation between connectivity and number               
of simulations with rare coordinated high states.  
(E) For the same connectivity, networks with autoregulation show a higher number of             
simulations with rare coordinated high states.  
(F) With increasing characteristic distance (normalized to network size) more simulations show            
rare coordinated high states.  
 
Figure S6. Related to Figure 2 and STAR Methods. Three out of seven parameters              
regulate the formation of rare coordinated high states. 
(A) The rare coordinated high parameter sets (orange) give rise to rare coordinated high states               
more frequently than others in any given network of sizes two, three, five, and eight (from top                 
left to bottom right). 
(B) Analysis of the parameter sets by the generalized linear model where the model              
specification, parameters, and the respective p values are shown. Parameters with p-value less             
than 0.05 are considered significant. 
(C) Phase space overlaid with all tested 1000 parameter sets for ron - radd , ron - roff and roff - radd                      
show that the rare coordinated parameters are narrowly constrained in the respective 2D             
spaces (orange). 
(D) The sensitivity analysis reflects the findings of the decision tree optimization and generalized              
linear model. Three parameters, ron, roff and radd are more sensitive to changes. 
(E-G) Increasing parameter radd leads to more stable high expression shown for radd = 0 (E),                
radd = 0.29 (F) and radd = 100,000 (G). 
 
Figure S7. Related to Figure 3 and STAR Methods. Counterexamples of  
(A) Representative plot of distribution that satisfies the Lilliefors test corresponding to Figure 3H.  
(B) Representative plot of distribution that rejects Lilliefors test corresponding to Figure 3I. 
 
Figure S8. Related to Figure 4 and STAR Methods. With increasing connectivity,            
simulations are more likely to enter the coordinated high state but are no longer able to                
leave it. 
(A) The number of edges in the inferred gene regulatory networks are higher in 6/7 resistant                
colonies than in the two biological replicates of drug naive cells. 
(B) For randomized controls, the edge weight is below 0.45, shown for all biological replicates. 
(C) The resistant colonies (gray) have more edges in their respective inferred gene regulatory              
networks than drug naive melanoma cells (red). 

Figure S9. Related to Star Methods. All architectures of sizes two (A), three (B), five (C) and                 
eight (D). 
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SUMMARY 
 
Non-genetic transcriptional variability at the single-cell level is a potential mechanism for            
therapy resistance in melanoma. Specifically, rare subpopulations of drug naive melanoma           
cells occupy a transient pre-resistant state characterized by coordinated high expression of            
several genes. Importantly, these rare cells are able to survive drug treatment and develop              
resistance. How might these extremely rare states arise and disappear within the            
population? It is unclear whether the canonical stochastic models of probabilistic           
transcriptional pulsing can explain this behavior, or if it requires special, hitherto unidentified             
molecular mechanisms. Here we use mathematical modeling to show that a minimal model             
comprising of transcriptional bursting and interactions between genes can give rise to rare             
coordinated high expression states. We next show that although these states occur across             
networks of different sizes, they occur more frequently in networks with low connectivity and              
depend strongly on three (of seven) independent model parameters. Interestingly, we find            
that while entry into the rare coordinated high state is initiated by a long transcriptional burst                
that also triggers entry of other genes, the exit from it occurs through the independent               
inactivation of individual genes. Finally, the transcriptional bursting model predicts that           
increased network connectivity can lead to transcriptionally stable states, which we verify            
using experimental data. In sum, we demonstrate that established principles of gene            
regulation are sufficient to describe the observed cell expression variability and argue for its              
general existence in other biological contexts. 
 
Keywords: stochasticity, network, gene expression, melanoma, drug resistance, non-genetic 
  
INTRODUCTION 
 
Rare and large heterogeneity in single cells have been reported to arise from non-genetic              
transcriptional variability, even in clonal, genetically homogeneous cells grown in identical           
conditions (Fallahi-Sichani et al., 2017; Gupta et al., 2011; Pisco and Huang, 2015; Shaffer              
et al., 2017; Sharma et al., 2018, 2010; Spencer et al., 2009; Su et al., 2017). Importantly,                 
cells exhibiting these non-genetic deviations are resistant to anti-cancer drugs (e.g., Ras            
pathway inhibitors) and may lead to relapse in patients. For example, in a drug naive               
melanoma population, a small fraction (~1 in 3000) of cells are pre-resistant, meaning they              
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are able to survive targeted drug therapy, resulting in their uncontrolled cellular proliferation             
(Shaffer et al., 2017). These rare pre-resistant cells are marked by transient and coordinated              
high expression of dozens of marker genes. In other words, several genes are highly              
expressed simultaneously in a rare subset of cells, while the rest of the population have low                
or zero counts of mRNAs for these genes, resulting in a distribution of steady state mRNA                
counts per cell that peaks at or close to zero and has heavy tails. The rare cells in the tails,                    
which transiently arise and disappear in the population by switching their gene expression             
state (Figure 1A), are much more likely to develop resistance to targeted therapies.             
Importantly, the rare and coordinated large fluctuations in the expression of multiple genes             
persist for several generations. Classical probabilistic models of gene expression have           
predicted the possibility of various types of mRNA expression distributions across a            
population, including normal, log-normal, gamma, or heavy-tail distributions (Antolović et al.,           
2017; Chen and Larson, 2016; Corrigan et al., 2016; Golding et al., 2005; Ham et al., 2019,                 
2020; Iyer-Biswas et al., 2009; Raj and van Oudenaarden, 2008; Raj et al., 2006; So et al.,                 
2011; Symmons and Raj, 2016; Thattai and van Oudenaarden, 2001). It is unclear if such               
models can recapitulate the non-genetic variability characterized by rare and transient high            
expression states for several genes simultaneously (from now on referred to as “rare             
coordinated high states”), and if so, under what conditions. 
 
Might a stochastic system of interacting genes inside the cell facilitate transition in and out of                
the rare coordinated high state? One hypothesis is that within the canonical modeling             
framework, only a rare set of unique (and perhaps complex) networks can facilitate             
reversible transitions into the rare coordinated high states. Alternatively, relatively generic           
gene regulatory networks may be capable of producing such behaviors, suggesting that a             
large ensemble of such networks may admit rare-cell formation. Both of these scenarios             
have different implications—for instance, the latter hypothesis suggests that this behavior           
could be more common in biological systems than hitherto appreciated. The alternatives            
described above can also be posed in terms of the nature of model parameters—whether              
the set of values that give rise to rare coordinated high states are constrained to lie within a                  
narrow window of parameter space or whether such behavior may occur across broad             
swaths of parameter space. Yet another possibility is that standard stochastic gene            
expression models fail to produce rare coordinated high states entirely, no matter what             
combinations of networks and parameters are used. In that case, one may argue that the               
reversible transition into the rare coordinated high state is driven by highly specialized             
processes (e.g. initiated by a master regulator) or other unknown mechanisms.  
 
Here we describe a mathematical framework to test the hypotheses proposed above for the              
appearance and disappearance of rare coordinated high states (Box 1 ). Recent studies from             
our lab suggest that no particular molecular pathway is solely responsible for the formation              
of these rare cells (Shaffer et al., 2018; Torre et al., 2019). Specifically, in these rare cells, a                  
sequencing and imaging based scheme identified a collection of marker genes, which are             
targets of multiple signaling pathways ranging from type 1 interferon to PI3K-Akt signaling.             
The implication is that instead of a single signaling pathway leading to the observed              
behavior, a network of interacting genes appears to be responsible. Accordingly, we used             
network modeling to see whether genes interacting within a network were capable of             
producing transitions to coordinated high expression states. We systematically formulated          
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and simulated networks of increasing size and complexity defined by a broad range for all               
independent parameters (Box 1 and 2 ; and STAR Methods , section Networks & section             
Parameters).  
 
Computational screens on more than 96 million simulated cells reveal that many networks             
with interactions between genes are capable of producing rare coordinated high states.            
Critically, transcriptional bursting, a ubiquitous phenomenon in which genes flip between           
transcriptionally active and inactive state, is necessary for the transcriptional bursting model            
to produce these rare coordinated high states. Subsequent quantitative analysis shows that            
rare coordinated high states occur across networks of all sizes investigated (up to 10 nodes),               
but that (i) they depend on three (out of seven) independent model parameters and (ii) their                
frequency of occurrence decreases monotonically with increasing network connectivity. The          
transition into the rare coordinated high state is initiated by a long transcriptional burst,              
which, in turn, triggers the entry of subsequent genes into the rare coordinated high state. In                
contrast, the transition out of rare coordinated high state is independent of the duration of               
transcriptional bursts, rather it happens through the independent inactivation of individual           
genes. We also confirm model predictions using experimental gene expression data (RNA            
FISH data) taken from melanoma cell lines. Together, we demonstrate that the standard             
model of stochastic gene regulation with transcriptional bursting is capable of producing rare             
coordinated high states.  
 
RESULTS 
 
Framework selection  

 
Identifying the minimal network model generating rare coordinated high states  
 
We focused on a network-based mathematical framework that models cell-intrinsic          
biochemical interactions and wondered what would be the minimal set of biochemical            
reactions that constitutes it. Since network models without gene activation (i.e. constitutive            
mode of gene expression) were not able to produce rare coordinated high states (see              
Supplementary information; Figure 1B and Figure S1A-B; STAR Methods , section          
Model 1), we use a leaky telegraph model as the building block of our framework. In terms of                  
chemical reactions, a gene can reversibly switch between an active (ron) and inactive state              
(roff), where binding of the transcription factor at a gene locus controls the effective rate of                
gene production (Box 1 ; Figure 1C, STAR Methods ). Specifically, when inactive (or            
unbound), the gene is transcribed as a Poisson process at a low basal rate (rprod); when                
active, the rate becomes higher (d x rprod, where d > 1 ). We modeled degradation of the gene                  
product as a Poisson process with degradation rate rdeg. The inter-node interaction            
parameter, radd, has a Hill-function-based dependency on the gene product amount (Hill            
coefficient n) of the respective regulating node to account for the multistep nature of the               
interaction (Figure 1C). In particular, we lump steps leading to transcription by implementing             
the commonly used quasiequilibrium assumption (Phillips et al., 2019), where binding and            
unbinding occurs much faster as compared to mRNA transcription and degradation. The            
dissociation constant k of the Hill function is dependent on the parameters rprod, rdeg, and d,                
such that k(rprod, rdeg,d) = 0.95 * d * rprod/rdeg. In total, the model has seven independent and                  
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one dependent model parameters, as outlined in Box 1 . All chemical reactions, propensities,             
and model parameters are presented in STAR Methods . We used Gillespie’s Stochastic            
Simulation Algorithm (Gillespie, 1977) to systematically simulate networks of various sizes           
and architectures across a broad range of parameters (Box 1 ; STAR Methods , section             
Networks & section Parameters).  
 
We limited our study to networks that are symmetric, i.e., networks without a hierarchical              
structure (Box 1 ; STAR Methods , section Networks, Figure S1C), a simplification partially            
supported by the experimental observation that there doesn’t seem to be a clear             
directionality of regulation or hierarchical structure within the highly expressed genes in the             
rare high state in drug naive melanoma (Figure S1D) (Shaffer et al., 2017, 2018). The lack                
of hierarchy is inferred from the frequency matrix for the experimental RNA FISH data, in               
which each entry corresponds to the fraction of cells with each gene-pair being highly              
expressed (Figure S1D). Asymmetric networks can result in frequency matrices being highly            
asymmetric, as demonstrated by an example simulation of a star-shaped reaction network            
(Figure S1E-F). Symmetric models also allow for comparisons of parameters between           
networks of different sizes. Additionally, we excluded networks that are compositions of            
independent subnetworks (non weakly-connected networks) and networks that can be          
formed by structure-preserving bijections of other networks (isomorphic networks) (STAR          
Methods, section Networks, Box1 ). With these operations, we also reduce the testable            
space of unique networks by several orders of magnitude (Figure S1C).  
 
Characterization of the transcriptional bursting model  
  
When genes are organized in the system described above and simulated over long intervals,              
the transcriptional bursting model produced a range of temporal profiles for gene products             
(Figure 1D-G and Figure S2A). Importantly, the model was able to faithfully capture the              
qualitative features of experimental data, i.e., rare, transient, and coordinated high           
expression states (Figure 1G). We defined a set of rules to screen for the occurrence of                
different classes of states (Figure 1D-G and Figure S2A); these include stably low             
expression (class I), stably high expression (class II), uncoordinated transient high           
expression (class III), and rare transient coordinated high expression (class IV) (see STAR             
Methods , section Simulation classes), and used a heuristic approach to distinguish between            
these different classes (Boxes 1 and 2 ). For a detailed description of the rules and               
quantitative metrics used to define class IV, see Boxes 1 and 2 ; Figure S3 and Figure S4 ;                 
and STAR Methods , section Simulation classes.  
 
To better compare the computational results with the experimental data from static RNA             
FISH images, we split the entire simulation into non-overlapping time interval of 1000 time              
units, as justified by the ergodic theory (Box 2 and STAR Methods ). We took snapshots of                
gene products at randomly selected time points in these time-intervals and noted the number              
of simultaneously highly expressed genes as well as their gene product counts, allowing us              
to represent the static states of a population of simulated cells (Figure 2A). For example, in                
a particular 8-node network, we found that the distribution qualitatively captures the            
experimental observations where most cells do not exhibit high expression states, while            
some cells are in a high state for one or more genes (Figure 2B). Note that unlike the                  
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experimental data, the model simulation does not have non-zero values for higher number of              
genes. The absence of of non-zero values may be because the network underlying the              
experimental data contains a much larger set of interacting genes, thereby increasing the             
likelihood of non-zero values for higher number of expressed genes. Similarly, when we             
selected a gene and plotted its product count for the randomly selected time points, we               
observed a heavy-tailed distribution (Figure 2C, right panel), similar to the experimental            
observations (Figure 2C left panel and Figure S3A). Furthermore, these observations,           
while shown for a particular 8-node network, hold true for simulations of other 8-node              
networks as well as networks of other sizes (Figure S2B). Note that the distributions of gene                
product counts for each gene are qualitatively similar because of the symmetric nature of the               
networks (Figure S2C). The experimental data in drug naive melanoma cells for mRNA             
counts display different degrees of skewness of the distribution for different genes (Figure             
S3A) which may be recapitulated by introducing asymmetries in the networks. Two            
asymmetric networks we tested were both able to produce rare coordinated high states             
(Figure S2G-S4M). Importantly, the distributions of gene product counts for various genes            
displayed different levels of heavy-tails, as also observed in the experimental data (Figure             
S2M). Since there is both inter- and intra-gene variability between the experimental            
expression distributions characterizing these states (Figure S3A), we compared these          
expression distributions to simulated expression distributions using Gini coefficients, used to           
characterize experimental expression distributions in the original study (Shaffer et al, 2017).            
While the Gini coefficient is low for most of the simulations (99.2%, gray), it is much higher                 
for the simulations that produce rare coordinated high states (red) and overlaps with             
experimental Gini coefficients (Figure S3D). Together, the transcriptional bursting model is           
able to produce states which recapitulate key aspects of rare coordinated high states             
observed in drug naive melanoma.  
 
Rare coordinated high states depend on network topologies and model parameters 
 
Since the rare coordinated high states occur in <1% of all simulations (Figure S2A), we               
wondered whether their occurrence depends on the network topologies and/or model           
parameters. Specifically, what are the features of the topologies and parameters that            
facilitate the occurrence of rare coordinated high states? For the simulations that produced             
rare coordinated high states, we extracted and quantitatively analyzed the corresponding           
networks. We found that the rare coordinated high states occur ubiquitously in networks with              
different numbers of nodes analyzed (up to 10 nodes) (Figure 2D and Figure S2B-F,              
Figure S5A-B). We therefore hypothesize that even larger networks may also display rare             
coordinated high states, and can be explored in future studies. Next, we wondered if the               
occurrence of rare coordinated high states depends on the network connectivity (Box 1 ).             
Indeed, within a particular network size, the ability to produce rare coordinated high states              
decreases monotonically with increasing network connectivity (Figure 2E and Figure          
S5C-D). Consistently, the fraction of networks per network size (normalized by either            
network size or total networks per network size) exhibiting rare coordinated high states             
decreases with increasing size (Figure S5A-B) as a larger fraction of high connectivity             
networks exist in bigger networks (Figure S5D).  
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We next wondered whether gene auto-regulation (networks with self-loops) have any effect            
on a networks ability to produce the rare coordinated high states. Indeed we found that for a                 
fixed size and connectivity, networks with auto-regulation result in higher numbers of            
simulations with rare coordinated high states than networks without auto-regulation (Figure           
S5E). At the same time, we wondered whether connectivity or auto-regulation has a more              
dominating effect on a networks’ ability to produce these states. We found that adding              
self-loops on otherwise identical networks reduced the occurrence number of simulations           
with rare coordinated high states (Figure 2F), demonstrating the stronger effect of            
connectivity than auto-regulation. Finally, we analyzed network topologies based on          
characteristic length, defined as the average shortest path length between pairs of nodes of              
the network (see STAR Methods, Box1 ). Characteristic length recapitulates the effects of            
not only network connectivity (inversely correlated with characteristic distance), but also           
differentiates topologies with the same connectivity (Figure S5F), for example networks with            
or without auto-regulation. Together, we demonstrate that the occurrence of rare coordinated            
high states depends on network topologies. 
 
Since the transcriptional bursting model has seven independent parameters (ron, roff, rprod, radd,             
radd, d, and n; see Box 1 for details), we asked whether specific parameter combinations               
preferentially give rise to the rare coordinated high states, and if so, what features of such                
combinations facilitate it. The subsequent analysis is motivated by the initial observation that             
occurence of different classes of temporal gene product profiles across different network            
sizes and connectivities appear to also depend on the parameter sets (Figure 2G).             
Specifically, if a parameter set gave a specific expression profile (e.g. rare coordinated high              
or stably high) for one network, it displayed a higher propensity to display the same profile                
for other networks as well (Figure 2G and Figure S3E), implying that parameters indeed              
play a major role in the occurrence of rare coordinated high states. To avoid biases in the                 
parameter sets investigated, all 1,000 parameter sets were sampled from a broad range for              
each parameter using a Latin Hypercube Sampling algorithm (Supplementary Information          
ParSetsAnalysis.xlsx; STAR Methods , section Parameters). 
 
We first measured the percentage of simulations per parameter set that gave rise to the rare                
coordinated high states. Out of the 1,000 parameter sets, eight parameter sets, from now on               
called rare coordinated high parameter sets (Box 2 ), clustered together at the tail-end of the               
distribution (orange, Figure 2H), meaning they generated simulations with frequent          
occurrence of rare coordinated high states in at least 20% of all networks tested (Figure               
2H). Furthermore, these eight parameter sets robustly generated rare coordinated high           
states across all network sizes and architectures (Figure S6A). Therefore, we wondered if             
these eight parameter sets have any special or distinguishing features compared to the             
remaining 992 parameter sets. 
 
We used a decision tree algorithm (Breiman et al., 1984) (see STAR Methods , section              
Decision tree optimization and generalized linear models) to identify the differentiating           
features of the rare coordinated high parameter sets from the rest. The decision tree              
analysis revealed that only three (ron, roff, and radd) of the seven independent parameters              
showed a strong correlation with the rare coordinated high parameter sets (Figure 2I). We              
validated these findings with complementary analysis using generalized linear models          
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(STAR Methods , section Decision tree optimization and generalized linear models) where           
we found precisely these three specific parameters (ron, roff, and radd) to be critical to produce                
the rare coordinated high states with high statistical significance (p values: ron = 0.003; roff =                
0.005; radd = 0.014) (Figure S6B). These observations became readily evident when we             
plotted all the 1,000 parameter sets for ron, roff, and radd together and found the rare                
coordinated high parameters sets to occupy a narrow region of the parameter phase space              
(Figure 2J and Figure S6C). Furthermore, parameter sensitivity analysis across the           
parameter space also confirmed that these three parameters are indeed critical for            
producing the rare coordinated high states (Figure S6D). These three parameters are            
related to transcriptional bursting and inter-gene(node) regulation. Two of these parameters,           
ron and roff, define the transitioning between the active and inactive state of the DNA               
respectively. The third parameter is the gene activation rate, radd, which corresponds to the              
positive regulation of transcriptional bursting rate of a gene by the gene product of another               
interacting gene. Interestingly, too high values (> 0.31) of radd result in the disappearance of               
rare coordinated high states, as does a complete absence (radd = 0) of this term (Figure                
S6E-S6G). To confirm that these three parameters (ron, roff, and radd) and their corresponding              
range of values are indeed critical to producing simulations with rare coordinated high states,              
we sampled new 1,000 parameter sets from a constrained region containing all eight rare              
coordinated high parameter sets (Figure 2J, orange box, and STAR Methods ) and ran             
simulations for two test networks, a 3-node and a 5-node network. We found that the               
frequency of simulations with rare coordinated high states for the constrained region is             
~14-fold and ~21-fold higher than that for the original parameter space, respectively (Figure             
2K). We note that while parameter sets with parameters ron, roff, and radd within the identified                
critical parameter ranges give rise to simulations with rare coordinated high states much             
more frequently than other parameter sets, it is not 100% of the time. 
 
Distinct mechanisms regulate the transition into and out of rare coordinated high            
states  
 
We have identified the networks and parameter sets for which the transcriptional bursting             
model exhibits rare coordinated high states more frequently. Next, we wondered if we could              
dissect the features of the model that facilitate the occurrence of rare coordinated high              
states. Specifically, we wanted to know the factors that 1) trigger the entry into the rare                
coordinated high states, 2) facilitate its maintenance, and 3) trigger the escape from it. We               
began by analyzing various features of transcriptional activity, since including transcriptional           
bursting was found to be critical for the model to display the rare coordinated high states.                
These include the burst fraction, length of transcriptional bursts (burst duration) and burst             
frequency. To measure these features, we defined four regions for each simulation: low             
expression state (baseline time-region), entry into the high expression state (entry           
time-point), the high expression state (high time-region), and exit from the high expression             
state (exit time-region) (Figure 3A, STAR Methods , section Entry and Exit mechanisms).  
 
We found an increase in the transcriptional activity, as measured by the burst fraction, during               
the high expression time-region as compared to the baseline time-region (Figure 3B).            
Increased burst fraction could be a result of (1) longer transcriptional bursts or (2) a higher                
burst frequency. The former is not possible as the duration of each burst is distributed               
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exponentially according to exp(roff), which does not change between the baseline and high             
time-region. Indeed, we found an increase in the burst frequency in high time-region, thus              
establishing its role in the maintenance of the rare coordinated high state (Figure 3C). The               
increased transcriptional bursting seen in the transcriptional bursting model is consistent with            
the experimental data using labeled nascent transcripts which showed that the           
transcriptional activity occurred in frequent bursts in cells high for a marker gene (Shaffer et               
al., 2018). Next we wondered whether the increase in burst frequency is promoted by the               
interactions of genes organized within the network. We compared two networks of the same              
size (3 nodes), where one is comprised out of single unconnected (orphan) nodes and the               
other of an interdependent structure (network 3.2). We found that for any parameter set              
(screened for all 26 parameter sets giving simulations with rare coordinated high states in              
the previous analysis for network 3.2, Supplementary Information), the system with a            
connected network has (1) more high expression states and (2) prolonged time in high              
expression states, as compared to unconnected nodes (Figure 3D). Together, we find that             
the maintenance in the high state is because of increased burst frequency, which may be a                
result of the positive regulatory feedback intrinsic to the networks.  
 
Next, we wanted to identify the factors triggering the entry into the rare coordinated high               
states. We found that for any gene in the network, the transcriptional burst duration right               
before/during the entry into a rare coordinated high state was significantly higher than that in               
the baseline time-region (i.e., regular bursting kinetics) (Figure 3E). In the example shown in              
Figure 3E, the average time of transcriptional burst at the entry time-point is 84.82 (time               
units) as compared to only 15.08 (time units) in the baseline time-region. Therefore,             
prolonged transcriptional bursts play a role in driving the cell to a coordinated high              
expression state. Conversely, we asked if the opposite is true at the exit time-region, such               
that transcriptional bursts for the exit time-region are shorter than for the high time-region.              
We found no difference in the distributions of burst durations between the high and the exit                
time-regions, as demonstrated by the example in Figure 3F, suggesting that the exit from              
high expression state occurs independently of the burst durations. Importantly, both of these             
conclusions hold true when measured for all simulations with rare coordinated high states             
(Figure 3G). Together, unlike the entry into the high time-region, the exit from it is not                
dependent on the transcriptional burst duration.  
 
We also wondered if the entry into the high expression state of one gene influences the entry                 
of other genes, or that the genes enter the high expression state independently of each               
other. We reasoned that if the time duration between two successive genes (tent, Figure 3A)               
entering the high expression state is exponentially distributed, it would imply that the genes              
enter the high expression state independent of each other. Instead, we found that the              
distributions of entry time intervals rejected the null-hypothesis of the Lilliefors’ test for most              
of the simulations (84%), meaning they are not exponentially distributed (Figure 3H). The             
remaining 16% of cases were found to be largely falsely identified as exponentially             
distributed due to limited data (see a representative example in Figure S7A). Similarly, we              
tested if the exit for successive genes from the high expression state occurs independent of               
each other. Interestingly, contrary to the situation during the entry into the high expression              
state, many distributions of exit time intervals satisfied the null-hypothesis of the Lilliefors’             
test, implying they are indistinguishable from exponential distributions (Figure 3I). The           
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simulations that did not satisfy the stringent Lilliefors’ test mainly appear to be exponentially              
distributed nevertheless; a representative example is shown in Figure S7B. Together, the            
entry into and exit from the rare coordinated high state occur through fundamentally different              
mechanisms—the entry of one gene into the high expression state affects the entry of next               
gene, while they exit from it largely independently of each other. The exit from the high state                 
could be a result of weak strength of coupling (as reflected by the moderate values of                
parameter radd) between nodes for the simulations that produce these states. Consistently,            
we found that too high values of radd results in the disappearance of rare coordinated high                
states, giving way to stable high states. In other words, the network can transition into the                
high expression state but loses the ability to come out of it (Figure S6 E-G). 
 
Increasing network connectivity leads to transcriptionally stable states 
 
So far, we have used the transcriptional bursting model to understand the potential origins of               
rare pre-resistant states in drug naive melanoma cells. Upon treatment with anti-cancer            
drugs, the transient pre-resistant cells reprogram and acquire resistance resulting in their            
uncontrolled proliferation. The resistant cells are characterized by the stabilization of the high             
expression of the marker genes which were transiently high in the drug naive pre-resistant              
cells (Figure 4A) (Shaffer et al., 2017). Studies using network inference of gene expression              
data have suggested that the genetic networks undergo significant rearrangements upon           
cellular transitions or reprogramming (Moignard et al., 2015; Schlauch et al., 2017). We             
wondered if the transcriptional bursting model can explain how the transient high expression             
in drug naive cells might become permanent upon treatment with anti-cancer drugs. The             
modeling framework produces a range of gene expression profiles, depending on the            
network properties and model parameters (Figure 1D-G). Increasing the network          
connectivity (for fixed parameter sets) is one way to shift from a rare transient coordinated               
high expression state to stably high expression state (Figure 4B-E). As an example, for a               
fixed network size (five) and associated parameters, increasing the network connectivity           
from one to five resulted in a shift from transient coordinated to stably high expression states                
(Figure 4D and Figure 4E). The shift from transient coordinated to stably high expression              
states is also reflected by the bimodal distribution of genes product counts for in the highly                
connected network (Figure 4F and Figure 4G), where genes stay permanently in the high              
state once they leave the low expression state. These results mimic the experimentally             
measured mRNA expression states of the drug-induced reprogrammed melanoma cells. 
 
To test if the computational prediction holds true in melanoma, we performed network             
inference using φ-mixing coefficient-based (Ibragimov, 1962) Phixer algorithm (Singh et al.,           
2018) on the experimental data (Box 2 ; STAR Methods , section Comparative Network            
Inference). Specifically, we used the Phixer algorithm on the mRNA counts obtained from             
fluorescent in situ hybridization (FISH) imaging data of marker genes in drug naive cells and               
the resistant colonies that emerge post-drug treatment to infer the underlying network.            
Consistent with the model prediction, we found that the number of edge connections (for a               
range of edge weight thresholds) between marker genes increased substantially for 6/7            
resistant colonies compared to the drug-naive cells (Figure 4H). To control for biases from              
subsampling of the experimental data and the nature of Phixer algorithm itself (see STAR              
Methods , section Comparative Network Inference), we ran the entire network inference           
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analysis 1,000 times. Again, in all 1,000 runs, we saw a higher number of total edges for 6/7                  
resistant colonies compared to the drug-naive cells (Figure 4I, Figure S8A and Figure             
S8C).  
 
Besides the dependence on networks, our framework predicts that for a given network,             
stronger interactions between nodes (defined by the interaction parameter radd) can also            
result in stable gene expression profiles (Figure S6E-S6G). It is possible that            
reprogramming results from a combination of increased edge connectivity as well as the             
enhanced interactions (given by parameter radd) between existing edges. Biologically, it           
would translate into stronger and increased number of interactions between genes and            
associated transcription factors during reprogramming. Together, network inference of the          
experimental data is consistent with model findings about the cellular progression from a             
transient coordinated high expression state to a stably high expression state.  
  
DISCUSSION 
  
We developed a computational framework to model rare cell behaviors in the context of a               
drug naive melanoma population where a rare subpopulation of cells displays transient and             
coordinated high gene expression states. We found that a relatively parsimonious stochastic            
model consisting of transcriptional bursting and stochastic interactions between genes in a            
network is capable of producing rare coordinated high states that mimic the experimental             
observations. To systematically investigate their origins, we screened networks of increasing           
sizes and connectivities for a broad range of parameter values. Our study revealed that they               
occur more frequently for networks with low connectivity and depend on 3/7 independent             
model parameters. Furthermore, we showed that the mechanisms that lead to the transition             
into- and out of- the rare coordinated high state are fundamentally different from each other.               
Collectively, our framework provides an excellent basis for further mechanistic and           
quantitative studies of the origins of rare, transient, and coordinated high expression states.  
 
Given the relative generality of the networks that produce rare coordinated high states, the              
transcriptional bursting model predicts that every cell type is capable of entering the rare              
coordinated high state. Furthermore, we show that canonical modes of transcription alone,            
namely the binding of the transcription factor at gene locus to produce mRNA via recruitment               
of RNA Polymerase II, can lead to these states without requiring other complex mechanisms              
such as DNA methylation, histone modifications, or phase separation. While such other            
mechanisms may still be operational in these cells to regulate their entry to or exit from these                 
states, we posit that in principle, any set of genes interacting via traditional gene regulatory               
mechanisms are capable of exhibiting these rare coordinated high states, as long as they              
are interacting in a certain manner (e.g. sparsely connected) with appropriate kinetic            
parameters. In the case of drug naive melanoma cells, the transient state is characterized by               
an increased ability to survive drug therapy leading to uncontrolled proliferation of the             
resulting resistant cells. It is possible that these rare transient behaviors may exist across              
many sets of interacting genes which may or may not manifest into phenotypic             
consequences. Another possibility the transcriptional bursting model predicts is that even           
within the same cell, distinct modules of interacting genes can lead to distinct sets of rare                
coordinated high states that each can affect the cellular function and outcomes differently.             
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These possibilities can be tested for by using increasingly accessible single cell RNA             
sequencing techniques on clonal population of cells.  
 
The transcriptional bursting model also makes two key predictions regarding transitions into            
and out of rare coordinated high states. The first is that prolonged transcriptional bursts drive               
entry into the high expression state while exit from it is independent of the burst duration.                
The second is that genes entering the high expression state promote the entry of              
subsequent genes, whereas genes exiting the high expression state do so independently of             
each other. Both these predictions can be readily tested experimentally by simultaneous            
visualization of transcriptional bursting and mRNA counts using live cell (e.g. by using             
RNA-binding fluorescent proteins) or fixed cell (intron and exon FISH) imaging approaches            
(Bartman et al., 2016; Rodriguez et al., 2019).  
 
Additionally, we showed that increasing the network connectivity is one way to reach a              
drug-induced reprogrammed state, a prediction we verified by performing network inference           
analysis on the experimental data. The transcriptional bursting model proposes that there            
are many plausible ways to transition from networks that produce transient coordinated high             
expression states to stable high expression states. For example, the transition could be             
facilitated by different amounts of increases in connectivity between nodes (genes) and/or            
changes in parameter values of the gene expression model. Furthermore, it is possible that              
these changes may take place only for a subset of nodes and edges within the network.                
These computational scenarios suggest that there could be significant heterogeneity in the            
stable expression levels of network genes in the resistant colonies emerging even from             
clonal population of drug naive cells, a possibility that can be tested experimentally by              
isolating individual colonies and profiling them for molecular markers to identify the paths.             
Identification of dominant paths has relevance for rational targeted drug therapy design.            
Therefore, in addition to modeling rare-behaviors, our framework can be adapted for            
investigating the plasticity and reprogramming paradigm in cancer.  
 
One limitation of the transcriptional bursting model is that we have performed quantitative             
analysis only on symmetric networks with positive interactions between nodes. While the            
preliminary analysis on two cases of randomly selected asymmetric networks shows that            
they do exhibit the rare coordinated high states (Figure S2G-S4M), it remains to be seen               
whether these findings hold more generally for asymmetric networks. Inhibitory interactions           
between nodes is a separate and perhaps more interesting point. In principle, the model can               
be adapted to include inhibitory interactions. These inhibitory interactions may lead to            
non-monotonic effects of network connectivity on the occurrence of rare states, as positive             
and negative interactions can compete in non-linear ways. Similarly, a network with both             
negative and positive interactions may be more prone to instability, even for relatively             
smaller networks. Furthermore, inclusion of these interactions might also make the exit of             
genes from the high expression state dependent on one another, which occurs            
independently in the transcriptional bursting current model. 
 
While we have focused on rare, transient, and coordinated high expression states in             
melanoma, our study provides conceptual insights into other biological contexts such as            
stem cell reprogramming. Particularly, there is increasing evidence to suggest that stem cell             
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reprogramming to desired cellular states proceeds via non-genetic mechanisms in a very            
rare subset of cells (Hanna et al., 2009; Pour et al., 2015; Takahashi and Yamanaka, 2016).                
The transcriptional bursting model may explain the origins and transient nature of this type of               
rare cell variability. In sum, we have established the plausibility that a relatively parsimonious              
model comprising of transcriptional bursting and stochastic interactions of genes organized           
within a network can give rise to a new class of biological heterogeneities. Therefore, we               
believe that established principles of transcription and gene expression dynamics may be            
sufficient to explain the extreme heterogeneities that are being reported increasingly in a             
variety of biological contexts.  
 
SUPPLEMENTAL INFORMATION 
 
Supplemental Information includes 9 figures and 2 tables. 
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Figure 1. A transcriptional bursting model is able to mimic the rare coordinated high              
states observed in drug naive melanoma.  
(A) Drug naive melanoma cells exist in low (white cells) as well as rare coordinated high                
(blue cells) states. Cells in the rare coordinated high state characterize the pre-resistant             
state observed in drug naive melanoma. A schematic of the corresponding expression            
pattern is shown in the panel below. The cells in a high expression state are more likely to                  
survive and acquire resistance upon drug administration.  
(B) Schematic of the constitutive model for two nodes. Gene product is either produced at               
rate rprod or degraded with rate rdeg . Gene regulation is modeled by a Hill function, where the                 
gene product count of the regulating gene A increases the production rate of the gene               
product of the regulated gene B. 
(C) Schematic of the transcriptional bursting model for two nodes. DNA is either in an               
inactive (off) or active (on) state. Transitions take place with rates ron and roff, where gene                
product is synthesized with rates rpod and d*rprod, respectively, d>1. Gene product degrades             
with rate rdeg. Gene regulation is modeled by a Hill function, where the gene expression of                
the regulating gene A increases the activation of the DNA of the regulated gene B.  
(D-G) Depending on the network and the parameters of the transcriptional bursting model,             
we observe stably low expression (D), stably high expression (E), uncoordinated transient            
high expression (F) and rare transient coordinated high expression (G). 
See also Figure S1.  
 
Figure 2. Simulations of the transcriptional bursting model show similar behavior at            
the population level as the drug naive melanoma cells. 
(A) Frame of simulation showing rare coordinated high state (shaded area). The 1,000,000             
time unit simulation is split into frames of 1,000 time units to create a simulated cell                
population (shown for cell N). For a randomly determined time-point trand , the number of              
simultaneously highly expressed genes and the gene count per gene per cell are evaluated.              
The network of the corresponding simulation is given in the top left corner.  
(B,C) The simulated number of simultaneously highly expressed genes and expression           
distribution at the population level are qualitatively similar to experimental data from a drug              
naive melanoma population (data from (Shaffer et al., 2017)). The percentages are indicated             
above the histogram (in B). The network and parameter set as well as the particular node (in                 
C) used for comparison are shown in the right panel.  
(D) Rare coordinated high states occur ubiquitously across networks of all analyzed network             
sizes (for three independent and randomly sampled trand)(median, 25th and 75th percentiles).  
(E) Increasing connectivity within all networks of size 5 leads to a decrease in the number of                 
simulations with rare coordinated high states. 
(F) Networks with auto-regulation exhibit rare coordinated high states less frequently than            
the same networks without auto-regulation .  
(G) Simulations of a particular parameter set across different networks and sizes show             
largely the same class of gene expression profiles. 
(H) The eight rare coordinated high parameter sets give rise to simulations with rare              
coordinated high states more frequently than others for all 96 networks and cluster at the tail                
of the histogram. The cut-off is defined at 20%. 
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(I) Decision tree optimization of resulting parameter set classes reveal that only three out of               
seven parameters, ron, roff , and radd, show a strong correlation with the rare coordinated high                
parameter sets.  
(J) Three dimensional representation of all tested 1000 parameter sets for ron, roff , and radd                
show that the rare coordinated high parameter sets are narrowly constrained in the 3D              
space (orange dots). The orange box indicates the constrained parameter space enclosing            
all rare coordinated high parameter sets used for analysis in (K). 
(K) The constrained subregion defined by the rare coordinated high parameter sets (see             
Figure 2J) heavily favors the formation of rare coordinated high states.  
See also Figure S2, Figure S3, Figure S4, Figure S5 and Figure S6.  
 
Figure 3. Rare coordinated high state is initiated by a long transcriptional burst,             
maintained by an increase in burst frequency and terminated according to a random             
process. 
(A) An exemplary high region, with a baseline time-region, entry time-point, high time-region             
and an exit time-region. The time intervals for an additional gene to enter and exit the high                 
region are marked by tent and texit, respectively. The bursts below the exemplary simulation              
are representative schematics.  
(B) The system exhibits enhanced transcriptional activity, as measured by the burst fraction,             
when in the high time-region (two-sample Kolmogorov-Smirnov test, p-value < 0.001). 
(C) The frequency of transcriptional bursts is increased in the high time-region (two-sample             
Kolmogorov-Smirnov test, p-value < 0.001). 
(D) Positive regulatory interactions between the connected nodes (network) leads to an            
increased number of and total time in high states in comparison to independent nodes. 
(E) The bursts during entry time-points are significantly longer than bursts not in a high               
time-region (two-sample Kolmogorov-Smirnov test). 
(F) There is no statistical significant difference between the distributions underlying the            
duration of bursts in the high time-region and the exit time-region (two-sample            
Kolmogorov-Smirnov test). 
(G) While the mean burst duration ratio between entry time-point and baseline time-region is              
significantly increased, the mean burst duration ratio between bursts in the exit time-region             
and in the rest of the high time-region are comparable for all simulations with rare               
coordinated high states. Ratio close to 1 suggests no difference between the two regions. 
(H,I) The time intervals between genes entering and exiting the high time-region are             
distributed differently, as demonstrated by two representative simulations. While the time           
intervals for entering the high time-region are not exponentially distributed (H) (and hence             
not random), the time intervals for exiting the high time-region are exponentially distributed             
(I) (Lilliefors test, p-value < 0.001 and > 0.05, respectively). 
See also Figure S7.  
 
Figure 4. Increased connectivity of a network leads to stable high expression which is              
also observed in emerging resistant colonies post-drug treatment. 
(A) Upon drug treatment, the surviving cells acquire stable resistance. A schematic gene             
expression pattern is shown below. 
(B,C) Networks of size 5 with low (B) (1) and high (C) (5) connectivity and corresponding                
(D,E) simulations. 
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(F,G) The expression distribution underlying the simulation of the highly connected network            
(G) does not exhibit heavy-tails while the simulation of the lowly connected network (F)              
exhibits heavy-tails. 
(H) Network inference analysis shows that 6 out of 7 resistant colonies (post drug treatment)               
have higher connectivity in comparison to two biological replicates of drug naive cells for              
many edge weight thresholds. 
(I) Distribution of number of edges for the drug naive cells (red) is lower than an exemplary                 
resistant colony (black) when the network inference analysis is run 1,000 times.  
See also Figure S8. 
 
STAR METHODS 
 
Networks 
In our framework, the nodes in the network represent genes, where the expression of a gene                
is regulated by the expression of other genes. Gene regulation is represented by directed              
edges in the network, e.g. if the expression of gene Y is regulated by the expression of gene                  
X, then the network contains an edge from node X to node Y. These networks can be                 
defined by adjacency matrices given by: 
 

Aij = 1, if there is an edge from node i to j 
   0, else. 

 
Any node in a network of size N can be connected with up to N-1 other nodes and in the                    
case of self-loops, to N other nodes. Hence, the adjacency matrix A is of size N*N. This                 
means that there are 2 NxN possible adjacency matrices for a network of size N - each of the                  
possible N*N matrix entries can take on one of the values of 0 (no edge) and 1 (edge). For                   
example a network of size 3 has 2 (3*3) = 512 possible networks.  
 
Here, we focus on symmetric networks, where we assume a relational identity between all              
nodes in a network. Experimental data from Shaffer et al. (Shaffer et al., 2017) implies the                
absence of any obvious hierarchical structure within the genes, and that the driver genes              
may interact in a relatively non-hierarchical manner (Figure S1D). The structural embedding            
of a node in its network can increase or decrease its ability of being involved in coordinated                 
overexpression. For example, a centered node within a star-shaped network is involved            
more frequently in coordinated overexpression than the other nodes within the same network             
(Figure S1E), which is inconsistent with the experimental observations. To ensure for            
non-hierarchical behavior we define a set of symmetric networks (Figure S1F), where the             
number of in- and outgoing edges within a node and across nodes is identical and either all                 
nodes in a network have a self-loop or not, leading to adjacency matrices of which the rows                 
are cyclic permutations (to the right) with offset one of each other. We first compute all                
possible vectors {0,1}N, in total 2 N vectors. From each of these resulting vectors, we create               
an NxN matrix by using the given (row) vector as template, and creating the other N-1 rows                 
by cycling the prior row vector to the right by one step, where the right-most entry in the row                   
vector is added to the (so far empty) left-most entry. By applying this permutation N-1 times,                
all possible cyclic permutations are captured within a matrix, and each node in the given               
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