1. ¹H NMR data

KLVFF ¹H NMR (500 MHz, DMSO-d6) δ 8.46 (d, 1H, NH Leu, J = 7.9 Hz), 8.22 (d, 1H, NH Phe2, J = 7.8 Hz), 7.93 – 7.90 (m, 2H, NH Val, NH Phe1), 7.28 – 7.18 (m, 10H, ArH), 4.56 (m, 1H, CaH Phe1), 4.43 (m, 1H, CaH Phe2), 4.38 (m, 1H, CaH Leu), 4.08 (m, 1H, CaH Val), 3.75 (m, 1H, CaH Lys), 3.05 (m, 1H, CaH (Phe2) CHH), 2.97 (m, 1H, CaH (Phe1) CHH), 2.92 (m, 1H, CaH (Phe2) CHH), 2.73 (m, 1H, CaH (Phe1) CHH), 2.68 (m, 2H, CaH (Lys) CH₂CH₂CH₂CH₂CH₂CH₂), 1.85 (m, 1H, CaH (Val) CH), 1.69 – 1.63 (m, 2H, CaH (Lys) CH₂CH₂CH₂CH₂CH₂), 1.58 (m, 1H, CaH (Leu) CH₂CH), 1.51 – 1.47 (m, 2H, CaH (Lys) CH₂CH₂CH₂CH₂), 1.42 – 1.34 (m, 2H, CaH (Leu) CH₂CH), 1.31 – 1.26 (m, 2H, CaH (Lys) CH₂CH₂CH₂CH₂), 0.88 – 0.83 (m, 6H, (Leu) 2 x CH₃), 0.72 – 0.69 (m, 6H, (Val) 2 x CH₃).

HRMS $[M+H]^+$ calc'd = 653.4027, $[M+H]^+$ found = 653.4023.

2. ROESY spectra for peptide 2

Supplementary Figure S1. Peptide 2 CaHs to NHs (i+1)

Supplementary Figure S2. Peptide **2** C β Hs to NHs (*i*+1)

3. IR spectra for peptides 1 and 2

Supplementary Figure S3. IR spectrum for peptide 1, indicative of parallel β -strand structure.

Supplementary Figure S4. IR spectrum for peptide 2, indicative of antiparallel β -strand structure.

4. Computational molecular modelling

Supplementary Table S1. Backbone dihedral angles and ${}^{3}J_{NHC\alpha H}$ coupling constants for peptide **2**, indicating a β -strand geometry for residues 1-5, with the exception of the Aib residue.

peptide 2						
D-amino acid residue	ф	Ψ	Ω	³ J _{NHCaH} NMR coupling constants (Hz)		
Lys	-	-143	-168			
Leu	96	-148	-178	8.0		
Val	130	-134	179	9.1		
Phe	129	-145	-171	8.1		
Тгр	117	-153	-176	8.2		
Aib	178	175	179			

Supplementary Table S2. Peptide **2**: Distances between C α H (*i*) to NH (*i*+1), C β H₂ (*i*) to NH (*i*+1), and NH (*i*) to NH (*i*+1), characteristic of a β -strand. **[1]**

	Ideal β-strand distances (Å)	peptide 2 (Å)
CaH (i) to NH (i+1)	2.2	2.3
CβH ₂ (<i>i</i>) to NH (<i>i</i> +1)	3.2 - 4.5	2.7 - 4.2
NH (<i>i</i>) to NH (<i>i</i> +1)	4.3	4.3 – 4.4

Supplementary Figure S5. Ideal peptide β -strand backbone with torsional angles Φ , Ψ , and optimal distance d = 8.0 Å. [2]

Supplementary Figure S6. Model of peptide **2**, showing optimal distance of 8.0 Å for region specified in Supplementary Figure S5.

Supplementary Figure S7. Model of **2**, showing length of peptide as 13.8 Å. An ideal β -strand is approx. 13.2 Å to 14.5 Å between (*i*) and (*i*+4) residues. [3]

Supplementary Figure S8. A. Peptide 1 is prone to self-association via intermolecular Hbonding. B. Peptide 2 does not self-aggregate.

Supplementary Figure S9. Model of peptide 2 from above. Residues 1-5 are in a β -strand geometry, with backbone carbonyls and amide hydrogens positioned as such (red circles). In contrast, those associated with the Aib residue adopt a dissimilar orientation (yellow circle).

5. αS aggregation assays

Supplementary Figure S10: Designed peptide inhibitors confer $A\beta_{42}$ specificity and do not prevent αS fibril aggregation. ThT fluorescence assay monitoring fibril formation of αS WT in the absence (50 μ M, 5% w/w seed, black) and presence of either wAib, KLVFF, peptides **1** and **2** at various molar ratios. Data reported is presented as mean \pm SEM (n = 3).

Supplementary '	Table S3.	Elongation	rates of	Aβ ₄₂ fi	ibrils in	the a	absence	and	present	ce of
peptide inhibitors	. The data	is reported	as mean	\pm SEN	M(n=3)	3).				

Molar ratio	Elongation Rate (ΔThT fluorescence.h ⁻¹)					
(Aβ ₄₂ :Inhibitor)	wAib	KLVFF	Peptide 1	Peptide 2		
Αβ ₄₂	0.250 ± 0.013					
1:1	0.214 ± 0.009	0.197 ± 0.031	0.176 ± 0.007	0.098 ± 0.018		
1:2	0.195 ± 0.009	0.179 ± 0.023	0.139 ± 0.008	0.0360 ± 0.006		
1:10	0.177 ± 0.010	0.127 ± 0.027	0.069 ± 0.007	-0.025 ± 0.007		
1:20	0.115 ± 0.014	0.124 ± 0.059	0.054 ± 0.004	-0.0257 ± 0.017		

6. HRMS

Supplementary Figure S11. HRMS for peptide 1.

Supplementary Figure S12. HRMS for peptide 2.

Supplementary Figure S13. HRMS for KLVFF.

7. References

1 Wüthrich, K. (1986) NMR of proteins and nucleic acids. Wiley

2 Gillespie, P., Cicariello, J. and Olson, G. L. (1997) Conformational analysis of dipeptide mimetics Peptide Science. **43**, 191-217

Loughlin, W. A., Tyndall, J. D. A., Glenn, M. P. and Fairlie, D. P. (2004) Beta-strand mimetics. Chemical Reviews. **104**, 6085-6117