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Supplementary Materials and Methods 

Supplementary Table 1: List of features used in the predictive model for somatic mutation 
identification. ‘Allele frequency’ is the mutation allele frequency, ‘Ref depth’ is the read depth of 
the reference allele, ‘Fre cohort’ is the number of appearances of this mutation in the cohort. SNP 
common is a binary variable indicating that the mutation appears in the database of dbSNP after 
removing those flagged SNPs (SNPs < 1% minor allele frequency (MAF) (or unknown), mapping 
only once to reference assembly, flagged in dbSNP as "clinically associated"). ‘COSMIC’ is a 
binary variable indicating whether the mutation appears in the COSMIC version 80. The other 
features were derived from functional annotations from functional annotation tools. 

Allele frequency Polyphen2 HVAR pred MetaLR score 

Ref depth LRT score MetaLR pred 

Freq cohort LRT pred VEST3 score 

SNP common Mutation Taster score CADD raw 

ExAC Mutation Taster pred CADD phred 

COSMIC Mutation Assessor score GERP score 

SIFT score Mutation Assessor pred phyloP20 way mammalian 

SIFT pred FATHMM score phyloP100 way vertebrate 

Polyphen2 HDIV score FATHMM pred SiPhy 29 way logOdds 

Polyphen2 HDIV pred MetaSVM score  

Polyphen2 HVAR score MetaSVM pred  

 

Supplementary Table 2: The number of mutations in the train set and test set and the 
prediction performance achieved in the multiple layer perceptron (MLP). The germline 
variants were treated as predictive negative and somatic mutations were treated as predictive 
positive. Using tuned multiple layer perceptron model to predict mutations in the holdout test set, 
the AUC score, precision, recall, and F-Measure are reported. 

  Train Set  Test Set 
 Germline 10464  3315 
 Somatic 2817  1115 

MLP     



 

 

Supplementary Table 3: The number of missense mutations within MUC17 that resulted in 
the gain or loss of either serine or threonine residues. While 8.7% of missense mutations in 
MUC17 would be predicted to result in the loss of serine, 16.8% in the loss of threonine, 14.2% in 
the gain of serine and 17.8% in the gain of threonine, there was no significant difference in between 
cases and controls. Pearson’s Chi-squared tests were performed for categorical variables.   

 Serine lose Serine gain Threonine lose Threonine gain 

  
Case 

       

 

19 (10.9%) 23 (13.2%) 31 (17.8%) 25 (14.4%) 
Control 8 (5.9%) 21 (15.5%) 21 (15.5%) 30 (22.2%) 
Sum 27 (8.7%) 44 (14.2%) 52 (16.8%) 55 (17.8%) 
P-value 0.12 0.56 0.60 0.07 

 

Supplementary Table 4: The ten most frequently mutated genes shared between the BBB of 
cases and their tumors.  TSG=tumor suppressor *OG=oncogene 
 

 Description N Consensus 
FAT1 FAT Atypical Cadherin 1 8 TSG 
EPG5 Ectopic P-granules autophagy protein 5 

 

7  
BZRAP1 TSPO associated protein 1 6  
CTNNA2

  

Catenin Alpha2  6 OG, TSG 
MYH11  Myosin Heavy chain 11 6  
ABCA13 ATP binding cassette subfamily A 

  

5  
ATR  ATR Serine/Threonine Kinase  5 TSG 
DNAH14 Dynein axonemal heavy chain 14 5  
ETAA1 ETAA1 activator of ATR kinase 5  
FBXL18 F-box and leucine rich repeat protein 18 5  

  

AUC 

 

Precision Recall F1-score 
0.98 0.95 0.98 0.96 



 

Supplementary Figure 1:  Examples of benign non-atypical breast lesions.  Nonproliferative 
lesions included:  (a) adenosis – lobule with increased number of acini with open lumens, (b) cysts 
– dilated ducts lined by flattened epithelial cells, (c) apocrine metaplasia – cystically dilated ducts 
lined by epithelial cells with abundant granular eosinophilic cytoplasm and round nuclei, (d) 
columnar cell change – dilated glands lined by tall cells with ovoid nuclei perpendicular to the 
basement membrane, and (e) fibroadenoma without epithelial hyperplasia – biphasic proliferation 
of benign epithelium and surrounding intralobular stroma.  Proliferative lesions included:  (f) florid 
ductal hyperplasia without atypia – distended ducts lined by increased numbers of a mixed 
population of luminal and myoepithelial cells with irregular slit like fenestrations, (g) sclerosing 
adenosis – enlarged terminal duct lobular unit with increased number of acini that are compressed 
and distorted by dense stroma, (h) radial scar – central nidus of hyalinized stroma with entrapped 
glands surrounded by long radiating projections containing epithelium with varying degrees of 
cyst formation and hyperplasia, and (i) papilloma – dilated duct with multiple branching 
fibrovascular cores lined by myoepithelial and epithelial cells. 
  



  



Supplementary Figure 2: Genetic aberrations that distinguish case and control and mutational 
positions. a. For each gene, the percentage of mutated individuals in the case and control were 
shown. Onc are known oncogenes; TS are known tumor suppressor genes. The p-values were 
derived using the case/control as output and the mutated individual as inputs in logistic regression. 
The middle panel shows the synonymous versus nonsynonymous rate. In the right panel, each 
column is an individual, and the color represents the mutation class. b. Position of mutational 
alterations in the protein structure of FLG, GNAS, and CTNNA2.   
 

 
Supplementary Figure 3: Genome wide amplifications and deletions among the 20 cases with 
matched normal DNA. Left: amplification. Right, deletion. The results were generated by 
VarScan2 and GISTIC2.  

 
Pathology/Histology 

Benign breast diseases were classified based on previously established categories 1-3 according to 

subsequent risk of developing breast cancer as follows: (1) nonproliferative, (2) proliferative 

without atypia, or (3) proliferative with atypia.  Nonproliferative lesions included cases with a 

diagnosis of adenosis, cysts, apocrine metaplasia, fibroadenoma without epithelial hyperplasia, 

columnar cell change, and mild ductal hyperplasia of the usual type (Supplementary Figure 1, a-

e).  Proliferative lesions without atypia included cases with a diagnosis of moderate to florid 

ductal hyperplasia of the usual type, papilloma, sclerosing adenosis, and complex sclerosing 



lesions including radial scar (Supplementary Figure 1, f-i).  Proliferative lesions with atypia 

included cases with a diagnosis of atypical ductal hyperplasia (ADH) and atypical lobular 

hyperplasia (ALH). 

 

Library construction and sequencing 

Ten 10-micron sections per sample were cut from formalin-fixed, paraffin-embedded (FFPE) 

tissue blocks, and the matched areas of interest isolated by laser capture microdissection (LCM). 

In detail, we took slides to Center for Advanced Microscopy (CAM) and used Zeiss Palm 

microscope to micro-dissect and collect areas of interest in a 500μl adhesive cap (AdhesiceCap 

500 opaque -Zeiss order number 415190-9201-000). Total genomic DNA was extracted from the 

LCM samples, using Qiagen AllPrep DNA/RNA FFPE it (Cat. No. 80234). DNA concentration 

was measured by Nanodrop. Samples used for this study yielded >300ng of DNA.  The 

concentration and quality of gDNA samples were first assessed using Agilent 4200 TapeStation. 

Then 100-200 nanograms of DNA per sample were used to prepare single-indexed cDNA library 

using SureSelectXT Human All Exon V6 (58Mb) (Agilent). The resulting libraries were assessed 

for its quantity and size distribution using Qubit and Agilent 2100 Bioanalyzer. Two hundred pico 

molar per liter pooled libraries were utilized per flow cell for clustering amplification on cBot 

using HiSeq 3000/4000 PE Cluster Kit and sequenced with 2×75bp paired-end configuration on 

HiSeq4000 (Illumina) using HiSeq 3000/4000 PE SBS Kit. A Phred quality score (Q score) was 

used to measure the quality of sequencing. More than 90% of the sequencing reads reached Q30 

(99.9% base call accuracy).  With the goal of sequencing at 100X, the final average sequencing 

depth was 69X, and there were 80-90 million sequencing reads per sample. To note, after the first 



round of sequencing, 27 samples had the coverage under 50X, and were re-sequenced for deeper 

coverage under the same protocol.  

 

Microarray genotyping  

To evaluate the performance of called somatic mutations, a subset of samples was separately LCM 

dissected, and the extracted DNA were genotyped using Infinium Exome-24 Kit, which covers 

240,000 markers in a catalog of exome variants. Of note, the quality control sample had a call rate 

of 99.34%. During the QC period, no samples failed restoration. For quality control, three samples 

were repeatedly genotyped twice, and R-square rates were calculated for the overlap. The reported 

R-square rates are 98.86%, 99.29%, and 99.39%. The high overlap rates indicate a high stability 

of calling variants from our DNA. Genotyped variants from the 17 samples were mapped to 

genomic assemblies (hg19). To note, only the calls with GCScore larger than 0.15 were retained. 

The coordinates that appear both in genotype array and somatic mutations called by MuTect2, 

VarScan2, or VarDict were retrieved. The allele frequencies derived from both technologies were 

compared. The overlap number between array and MuTec2, VarScan2, VarDict are 384, 963, and 

124,511 respectively.  

 

Classification model for somatic mutations 

Our initial objective was to develop and test a predictive model for somatic mutation identification. 

MuTect2 is known as one of the most reliable and sensitive cancer somatic mutation callers.4 We 

have learned that mutations identified by MuTect2 have higher accuracy than the other callers. In 

this study, MuTect2 was used to call somatic mutations from the 26 benign biopsies and matched 

normal germline DNA. To reduce the false positive call rates, the following mutations were labeled 



as germline variants: those that appear in dbSNP with ANNOVAR5 index files (after removing 

those SNPs < 1% minor allele frequency (or unknown), or mapping only once to reference 

assembly, or flagged in dbSnp as "clinically associated") and not in COSMIC database (version 

80). The called mutations from these 26 matched samples were used as the gold standard for the 

predictive model training and testing. The 28177 called mutations were randomly split to cross-

validation set and holdout test set based on a 7:3 ratio.  

Tools predicting somatic mutations for germline DNA free samples have been developed. 

However, the developed tools attempted to predict somatic mutations in tumor-only samples. 

Tools that have been developed and validated using the mutations derived from tumor samples 

cannot be applied to benign biopsies directly, mostly due to the different feature landscapes in 

mutations derived from tumors and benign biopsies. For example, allele frequency derived in 

tumor samples are expected to be higher than allele frequencies in benign biopsies6 In order to 

predict somatic mutations in the benign-only biopsies without matched normal DNA, in this study, 

we attempted to develop and evaluate a new predictive model to predict somatic mutations in 

benign biopsies.  

In total, 31 features (Supplementary Table 1) were retrieved or developed to create the 

predictive model for somatic mutation identification. Multiple tools have been developed for 

potential pathogenicity prediction. These tools consider either the protein structure, population 

frequency, or evolutionary factors.7 Various functional annotation or toxicity scores were derived 

from ANNOVAR,5 COSMIC (https://cancer.sanger.ac.uk/cosmic), dbSNP/common 

(https://www.ncbi.nlm.nih.gov), along with intrinsic sequencing features, such as mutation allele 

frequency, depth of reference reads, mutation frequency in the cohort. Not all mutations were 

annotated in each of the database. However, missing data that appear in more than one feature 



could challenge some of the classifiers (e.g. logistic regression). Considering that the features are 

a mix of continuous number, binary feature, and categorical variables, Multivariate Imputation 

by Chained Equations (MICE)8 was used to impute the missing values. In detail, 20 sets of data 

were imputed with the iteration equal to 20.  Utilizing the derived features, we evaluated 

multiple linear and nonlinear machine learning models for somatic mutation classification. Grid 

search was applied to tune each model’s parameters using five-fold cross-validation on the 

training set. To reduce the risk of having false positives, precision was used as selection criteria 

for parameter tuning and model selection. Once the model was tuned, it was applied on the held-

out test set for precision, recall, F-measure, and AUC score reporting. The model with the 

highest precision was selected as our somatic mutation predictive model. To maximize the 

prediction power, we evaluated multiple machine learning methods, including penalized logistic 

regression (LR), linear SVM, random forest classifier (RFC), gradient boosted tree (GBT), k-

nearest neighbor algorithm (K-NN), SVM with rbf kernel, and multi-layer perceptron (MLP). 

With the parameters tuned, the models were evaluated within the holdout test. The machining 

learning models achieved different performances in the somatic mutation classification (Fig. 2b). 

The MLP model achieved the highest precision (95%) in the held-out test set, and was selected 

as our predictive model for somatic mutation classification (Fig. 2a). In short, MLP is a class of 

feedforward artificial neural network. The tuned MLP model has two layers and each layer with 

10 and 5 neurons respectively. Learning rate was set as ‘invscaling’ and solver was set as ‘lbfgs’. 

The ‘logistic’ activation function was applied in the MLP model. 

 

Validate predicted somatic mutations 



We applied the tuned MLP model to predict germline variants/somatic mutations on the mutations 

derived from the178 benign biopsies without matching germline DNA. In total, out of the 93,653 

mutations, 38,210 were predicted to be somatic mutations. To estimate the overall accuracy of 

predicted somatic mutations, we randomly selected and genotyped three samples for an evaluation 

study. Three samples were separately LCM dissected. The extracted DNA were genotyped using 

Infinium Exome-24 Kit. Genotyped probes with GCSCORE larger than 0.15 from the three 

samples were mapped to hg19 assemblies. Overlapped coordinates were retrieved and the allele 

frequencies derived from both technologies were compared.  
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