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I. ENTROPICALLY DISFAVORED GENERALISTS

A. Model

To construct landscapes with entropically disfavored generalists, we model antibodies and antigens in a manner
similar to the one described by by Wang et. al[1]. In this model, the sequence of each antibody, x is a sequence of
length L with entries ±1. Each antigen, indexed by η, is assumed to have an epitope of sequence, hη. Each epitope is
length L with entries ±1. The binding energy of a given antigen to an antibody is given by an additive sum-over-sites
model:

E (x,hη) = − 1

L

L∑
i

hηi xi (1)

The fitness of each antibody x in the presence with antigen η is given by thresholding its binding affinity, as follows:

F (η) (x) = sεΘ

(
−
(
E(x,hη) +

T

L

))
− s (2)

Here, Θ(x) is the Heaviside function. T
L is the binding energy threshold that an antibody must overcome before

reaping a fitness benefit. The binding energy threshold, T
L can be translated into minimum number of binding

interactions needed to reap a fitness benefit, Tsites, by Tsites = (L+T )/2. By construction, all fit individuals have the
same fitness s(ε − 1) > 0 and all unfit individuals are equally unfit to an extent −s, resulting in a degeneracy of fit
and unfit genotypes.

B. Specialists and Generalists

Here, we demonstrate the fraction of antibodies that are generalists for two antigens. Biological constraints impose
that parts of an antigen’s epitope is conserved, while other parts are variable as the viral strain evolves. As such, we
suppose Lc sites of the L total sites are fixed across η, while the others are unique to each antigen. This constraint
results in the possibility that some antibody sequences have a positive fitness for all antigens. Such antibodies are
called generalists. The number of generalists is a function of the threshold T and the lengths of the conserved Lc
and variable Lv = L− Lc regions. In particular, if Tsites > Lc + 1

2Lv, there are no generalists. A simple equation to
compute the fraction of antibodies with positive fitness for an antigen that are generalists is given as follows:

Ωg
Ω
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k=Tsites

(
L
k

) (3)

where,
(
N
m

)
is the combinatorial function, Ωg is the number of generalists, and Ω is the number of antibodies with

positive fitness. By rule, this function is zero if m > N or m < 0. Here, j indices the number of sites matched in the
conserved portion of the antibody and k indices the number of overall sites matched along the string.

Here, we considered L = 19, Lc = 12, and T = 11. The proportion of antibodies with positive fitness that are
generalists for these parameter choices is ≈ 1.3%. This choice is qualitatively similar to the analysis developed in
[1] based on experiments there. The analysis can be repeated for longer sequences and the results are qualitatively
unchanged; the primary effect of changing L is explained by the change in entropy, as predicted by SI Equation 3.
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C. Finite population simulation

Affinity maturation is an evolutionary process for antibodies with complex population dynamics[2]. Here, we first
model this process using a simplified canonical birth-death-mutation model - a ‘Yule’ process [3] - commonly used
to study evolutionary dynamics. The ‘Yule’ process ignores many of the molecular details of affinity maturation
while still enabling us to develop a minimal model of evolutionary dynamics in time-varying environments. We then
verify our results with an independent simulation that accounts for population dynamics and complexities inherent
to affinity maturation.

1. Yule Process

The key ingredients in a Yule process are:

• Mutation with rate µ per individual, in which a single site on the genome is mutated (i.e. a single bit-flip of
x).

• Birth-death with rate λ per individual.

• The population size is maintained at a carrying capacity K by modulating the probability of replication
by a factor (1−N/K). With the particular fitness function of this model, we have Pr (x reproduces) =
Θ (E(x, hη)− T ) (1−N/K). If the individual does not reproduce, it is removed from the population. Here,
N is the current population size, K = 500 is a carrying capacity that prevents the population from growing
indefinitely, and F (η) is the fitness of that individual in the (current) landscape η.

At each event, time is advanced by the usual exponentially distributed amount. The environment η is taken to
alternate between η = 1 and η = 2 every τepoch.

Choosing units of time by setting the birth-death rate λ = 1, we set the mutation rate to µ = 0.05. Finally, we set
the carrying capacity K = 500. We can infer from these choices that s = 1, ε = 2− 2N

K .
We evolved an initially monoclonal population of size N = 10 (initialised with x = hη for all individuals). Simula-

tions were run for either a fixed time t = 100 (in units of λ) or for t = 10τepoch, whichever is longer, and we performed
25 replicates for each value of τepoch. For each run, we saved the number of generalists and the overall population
size at the end of the simulation. In Fig. 2b of the main text, we plotted the proportion of trials that had more than
10 generalist antibodies at the end of the simulation, finding that the proportion was high for an intermediate rate of
cycling.

2. Affinity Maturation Inspired Model

To more directly model affinity maturation, we also simulate a model that mirrors the known dynamics of B-cells
in germinal centers [1, 4, 5]. The steps are as follows:

• B-cell clones expand without significant mutation in the first week after vaccination. We model such a formation
of germinal centers by taking a B-cell with an antibody that meets the binding affinity threshold for one antigen
and replicate it to a size of 1500 B-cells.

• We model the reproduction and somatic hypermutation phase of affinity maturation in the dark zone of the
germinal center by allowing each B-cell to duplicate twice with a mutation rate of 0.00625 per replication per
base pair.

• We then model the selection phase in the light zone by determining if each B-cell in our B-cell population can
internalize antigens it encounters on a follicular dendritic cell (FDC). We say that a B-cell can internalize an
antigen if its antibody’s binding affinity for that antigen, as given by Equation 1 meets a threshold, T .

• B-cells receive T-cell help to avoid an apoptosis signal as a function of whether or not they internalized antigen.
As in earlier work[1, 4, 5], we assume the probability B-cells do not receive help increases with binding energy
is proportional to exp(α(F (η)(x)− Fthreshold)).

• The surviving B-cells are recycled into the dark zone. We repeat the steps above until the B-cell population
grows to be larger than 2000 or the process has cycled 100 times. These choices model antigen depletion on the
follicular dendritic cells (FDCs) in the germinal center and antigen decay.
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FIG. 1. Evolving generalists using a detailed model of affinity maturation. We simulated cycling antigens in a model with
known details of the population dynamics of B-cells in germinal centers. Here, we plot the probability that the population at
the end of affinity maturation has at least 75% of its population in a generalist genotype. We observe a resonant peak in this
probability, similar to results presented in the main paper for the simpler population dynamics model based on a Yule process.

We present the results of this simulation in Fig. 1.
We find that the results from using this affinity maturation-specific evolutionary scheme are qualitatively similar

to the minimal Yule process model. Note that this affinity maturation model incorporates numerous ingredients,
particular to affinity maturation, that are not captured by the Yule process used in the earlier section. E.g., the
specifics of birth and death, carrying capacity and details of how the affinity maturation process terminates differ.
And yet we obtain qualitatively similar results, showing that our results are primarily tied to the broad topology
of the fitnesss landscape and the ratio of broadly relevant timescales and not to particular details of evolutionary
population dynamics.

D. Evolution between Specialists and Generalists: χs→g and χg→g

As discussed in the main text, there are two possible failure modes: (1) at cycling rates too fast, the population does
not have the time to evolve a generalist before adverse selection result in population extinction, (2) at cycling rates
too slow, the population loses its ability to maintain generalists. In order to illustrate the tension between cycling too
fast and cycling too slow, we compute two quantities:

• χg→g, the fraction of trials starting from an initially generalist population maintaining at least 20% generalists
after one epoch.

• χs→g, the fraction of trials in which a monoclonal population of specialists, initialized at x = h(1), evolve a
single generalist within an epoch.

Both χg→g, χs→g are computed from 50 replicates for each τepoch. As plotted in Fig. 2c, we observe that χs→g

starts initially at 0 and rises with τepoch, while χg→g starts at 1 and falls with τepoch.

Population traces: Fig. 2d shows population traces in single runs. As in Section I C, we initialized a population
at x = h(1) with parameters as above. Generalist fraction is defined as number of generalists

population size .

We use the following values of τepoch for Fig.2(d): Fast cycling τepoch = 1 (Fig. 2d(i)), Intermediate cycling
τepoch = 60 (Fig.2d(ii)), Slow cycling τepoch = 400 (Fig.2d(iii))

E. Timescale Analysis

Our numerical study found that an intermediate timescale of environmental cycling, τmin < τepoch < τmax, was
most effective at obtaining generalists. Here we estimate the bounds, τminand τmax, in terms of the mutation rate
µ, the population size N , the length of the genotype L, and the distance from the initial ancestral genotype to the
generalist, di→g.
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Finding the generalist: τmin

Consider a population initialised as a specialist for antigen 1. For sufficiently strong selection pressure (s > µ logN),
purifying selection drives the population to extinction if a generalist has not been discovered before the environment
switches to antigen 2. Thus we demand that τepoch is long enough for the population to evolve a generalist in a single
epoch.

As fitness is uniform across the specialist region, the population must discover the generalist by diffusion. An
initially monoclonal population of size N diffuses out from the initial genotype. If the population size is much smaller
than the number of possible genotypes (N � 2L), there are two possible regimes of the diffusive search:

1. The initial genotype is far from the generalist: more precisely, the population size N is smaller than the set
of sequences between the initial genotype and the generalist. In terms of the Hamming distance between the

initial genotype to the generalist, di→g:
∑di→g
d=0

(
L
d

)
> N

In this regime, finding the generalist is a rare event, requiring time µτmin ∼ 2L, i.e. the time taken to explore
all of genotype space. It is therefore extremely improbable that the generalist will be found, and population
extinction is likely.

2. The initial genotype is close to the generalist: that is, the generalist is sufficiently close to the initial condition

that it may be found by the diffusing population of antibodies:
∑di→g
d=0

(
L
d

)
< N

For L = 19 and N = 500, as used in the simulation, this suggests that for di→g ≤ 4 the generalist may be
reasonably found by diffusion.

Assuming that we are in the latter regime, we may estimate τmin from 〈d(t)〉, the average distance away from the
initial condition that an individual has diffused in time t, by solving:

〈d(τmin)〉 ∼ di→g (4)

We compute 〈d(t)〉 as follows: the probability that a diffusing individual may be found at (Hamming) distance d
from its initial genotype is:

P (d, t) =

(
L

d

)
e−µt sinhd

(
µt

L

)
coshL−d

(
µt

L

)
(5)

Thus, 〈d(t)〉 =
∑L
d=0 dP (d, t) = Le−

µt
L sinh

(
µt
L

)
. Inserting into Eq. 4 and solving for τmin:

τmin =
L

2µ
log

(
L

L− 2di→g

)
≈ di→g

µ
(6)

where the approximation is valid for di→g/L � 1. For values used in the simulation (L = 19, di→g = 3), we obtain
µτmin ≈ 3.5, which is consistent with our numerical results.

Maintaining a generalist: τmax

We may similarly estimate the upper bound for effective cycling, τmax. Supposing that an evolving population has
found the generalist, it must now remain localised there. For this to happen, the environment must switch rapidly
enough to prune, by purifying selection, those individuals that diffuse away from the generalist.

Consider a monoclonal population of size N at a generalist at time t = 0. For simplicity, let us suppose that the
generalist has to accrue dg→s mutations to become a specialist. The number of generalists in sequence space, Ωg, is
then approximated by the volume of the Hamming ball of radius dg→s

Ωg =

dg→s∑
k=0

(
L

k

)
≈
(

L

dg→s

)
(7)

where we have replaced the sum by its dominant term, valid when the genome length L is large and dg→s � L.
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(a) (b)

FIG. 2. (a) We compute the probability of evolving generalists for varying Hamming distances from the generalist, given by
d, using the method described in Section I C. We note that as d increases, the time at which generalists begins to be evolved
increases, though the time at which they probability decays remains fixed. (b) We compute χs→g for each initial condition and
take τmin to be the smallest time where χs→g > 0.6. We find that this rises, eventually rising above τmax for large enough d.
By construction, τmax is independent of d.

From Eq. 5, the number of generalists remaining at time t is:

Pgeneralists(t) = e−µt
dg→s∑
k=0

sinhk
(
µt

L

)
coshL−k

(
µt

L

) (
L

k

)

≈ e−µt
(
µt

L

)dg→s
Ωg (8)

where we have once again replaced the sum by its dominant term, assumed that µt/L is small (valid when genome

length L is large), and used Eq. 7 to write
(

L
dg→s

)
≈ Ωg.

Then, τmax is defined as the time taken for the occupancy of the generalist region to fall below 1 individual,
Pgeneralists(τmax) = 1/N , i.e. the solution of

e−µt
(
µt

L

)dg→s
=

1

NΩg
(9)

For t > 1µ, the expression on the left hand side is dominated by the exponential; we thereby solve for t to obtain:

τmax ∼
1

µ
log Ωg N (10)

For the parameters used in the simulations (N = 500, Ωg ≈ 7×105, as computed from Eq. 3), we have µτmax ≈ 20,
which is consistent with the numerical results (see χg→g in Fig. 4c in the main text).

Existence of an intermediate timescale

The existence of an intermediate timescale τepoch that produces generalists requires τmin < τmax. However, the
above expressions make it clear that τmin < τmax only if (a) the initial condition is close enough to generalists (small
di→g), (b) the fraction of generalists relative to specialists is large enough (large Ωg).

Fig SI 2a shows how the yield of generalists at intermediate timescales disappears as the initial conditions are made
less favorable. This panel was constructed using the simulation method described in Section I C with variations on
the initial condition for x such that the Hamming distance between x and the generalist varied by some distance d.
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Fig SI 2b shows that τmin rises in this limit and exceeds τmax. We approximated τmin by computing the smallest time
for which χs→g > 0.6 and τmax by computing the largest time for which χg→g > 0.6.

When τmin < τmax is not satisfied, there is no intermediate timescale. The time needed for generalists to specialize
is shorter than the time needed to evolve generalists from specialists. In this case, the chirp protocol described below
is still successful at producing generalists.

F. Simultaneous presentation of antigens

The cycling strategy explored in this paper may not be practical in the fast limit in the context of B-cell affinity
maturation. A common practical alternative is vaccination with a cocktail of antigens, i.e., simultaneous exposure to
multiple antigens.

Such simultaneous exposure to multiple antigens is mathematically equivalent to fast cycling of those antigens if
specific microscopic assumptions about antibody-antigen interactions in germinal centers hold[1]. During the affinity
maturation process, folicular dendritic cells (FDCs) host antigens on their surface for B-cells to interact with, and if
antibodies expressed on B-cells bind the antigens with high enough affinity, B-cells internalize those antigens. This
process enables those B-cells to avoid apoptosis, and thus proliferate and continue affinity maturation.

There are two currently experimentally unresolved hypotheses about antigen presentation by FDCs:
1. Antibodies are fit only if they can bind ALL presented antigens: In this hypothesis, FDCs only present a single

antigen or present antigens in a spatially heterogeneous manner. Consequently, each B-cell is randomly exposed to a
single antigen at the selection stage of the affinity maturation process. A B-cell must be able to bind ALL presented
antigens to survive selection.

Such simultaneous presentation is qualitatively similar to the fast cycling limit studied in this paper. When
presented with such a cocktail vaccine, antibodies starting from a naive repertoire are expected to go extinct since
such antibodies typically cannot bind all antigens with high affinity, as seen in the experiments of [1].

2. Antibodies are fit if they can bind ANY one of the presented antigens: If the FDCs present the antigens in a
homogeneous manner, each B-cell only needs to bind ANY single one of the presented antigens to avoid apoptosis.

In this case, specialists are fit enough to survive early rounds of selection and evolve generalists. But generalists
cannot be maintained in preference over specialists unless selection pressures are fine tuned (e.g., specialists are
strongly out-competed by generalists once generalists evolve, despite specialists having significant fitness to begin
with).

G. Death and fast cycling

In the fast cycling limit, τepoch → 0, the fitness of specialist antibodies is the average of their fitness in different
environments; as seen Eqn. 2, this fitness is s(ε− 2).

As discussed above for simultaneous presentation, we only consider the case where fast cycling corresponds to
hypothesis (1), where antibodies need to bind all antigens to survive. Hence, we need s(ε − 2) to be sufficiently
negative, so that a specialist population of size N typically dies out before reaching the generalists in this fast cycling
limit. Since the latter process takes time τmin ∼ di→g/µ as derived earlier and the initial population size is N , the
condition for a specialist population to go extinct in the fast limit is N exp(s(ε − 2)τmin) ∼ N exp(s(ε − 2)/µ) < 1.
Assuming that 1 < ε < 2, we find s > µ logN as a conservative criterion independent of ε.

Thus, cycling is necessitated because of population extinction in the fast cycling limit (or equivalently, in the
averaged environment). Population extinction does appear to be relevant in affinity maturation [1]. However, given
this reliance on population extinction, one can ask whether the cycling strategies proposed here are relevant to other
problems. For example, in other evolutionary contexts, can one evolve generalists easily in the fast cycling or averaged
environment limit by violating the 1 < ε < 2 condition?

In fact, reducing death in this manner reduces purifying selection and hence does not always make it easier to
evolve generalists. To see this, note that without death, the average fitness of specialists is positive. Consequently,
the purifying selection needed to proliferate generalists over specialists is much weaker. Such reduced purifying
selection is especially relevant in evolutionary processes that terminate at finite population sizes.

As a concrete example, in Sec I of the SI, we have run simulations of an affinity maturation process that terminates
once the population exceeds a threshold, a realistic termination criterion[1]. There, we find that if population death
is removed (i.e., ε > 2), we still fail to find generalists in the fast limit because the germinal centers are filled with
a large number of specialists which typically terminates the process. Thus, the principles developed here have larger
relevance to any context of evolving generalists where there is sufficient purifying selection.
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FIG. 3. Intermediate cycling increases the effective attractor size of generalists in models of entropically disfavored generalists.
Here, the color in the color map represents the proportion of trials leading to a generalist, where yellow corresponds to all trials,
while blue corresponds to no trials leading to a generalist. We initialize our population at size N = 10 with a carrying capacity
K = 500. We maintain L = 19, Lc = 12, and T = 11. We ran our simulations for a total of ten epochs. We ran each ordered
pair of conserved and variable matches for 50 replicates in environment η = 1 and assumed symmetry over environments.
(i) Fast cycling (µτepoch = 0.05) can only evolve generalists when initial conditions are already very close to generalists. (ii)
Intermediate cycling (µτepoch = 3) increases the number of viable initial conditions. (iii) Slow cycling (µτepoch = 15) does not
lead to generalists for any initial condition since this limit is unable to maintain generalists.

H. Dependence on initial repertoire

In the main paper, we initialize our population from a genotype that exactly binds the antigen characterized
by genotype h(1). In SI Fig 3, we show that not only does intermediate cycling increase the likelihood of evolving
generalists from a given initial condition, it also increases the number of initial conditions (e.g., initial B-cell repertoire)
that can lead to generalists. Hence, intermediate cycling increases the effective attractor size of the fitness peak
associated with a generalist. In SI Fig 3, we consider cycling fast (µτepoch = 0.05 < µτmin), cycling at an intermediate
rate (µτepoch = 3), and cycling slowly (µτepoch = 15 > τmax). Blue regions in the heatmap correspond to initial
conditions that led to few surviving populations after ten epochs. Yellow regions in the heatmap correspond to initial
conditions that led to many surviving populations after ten epochs. We ran each ordered pair of conserved matches
and variable matches for 50 replicates in environment η = 1 and symmetrized over environments.

I. Chirp protocol

Trade-off in fixed frequency cycling: The anticorrelated behavior of χs→g and χg→g is indicative of a trade-off
between evolving generalists and maintaining them in the population.

We first assess this by only considering simulation runs used in Fig 2b that did not result in extinction and computed
the number of generalists at the end of such simulations. This number is plotted in Fig 3a. We note that as epoch
length increases, the number of generalists remaining in the population decreases, but the probability of a population
evolving a single generalist increases.

To illustrate this point we compute two quantities for each simulation for a given τepoch:

• The number of generalists (if non-zero): The number of generalists is simply the average number of generalists
in the population for simulations where the population survived an evolutionary run. This is plotted on the
y-axis of Fig 3c.

• The probability of a surviving population: The proportion of trials for a given τepoch that a population does not
go extinct during the evolutionary run. This is plotted on the x-axis of Fig 3c.

By plotting these two quantities against each other, as in Fig 3c in black dots, we observe a tradeoff front.
Chirp Cycling Breaks the Trade-off: This trade-off leads us to proposing a ‘chirp’ protocol. In a ‘chirp’

cycling protocol, we decrease the length of the epoch using a multiplicative factor after each cycle, enabling us to take
advantage of high probability of population survival (favored by slow cycling) and still obtain high yield (favored by
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fast cycling). We update τepoch according to the following rule:

τepoch ← kτepoch (11)

where k is some number smaller than 1. We continue evolving the population until τepoch << λ. Plotted in Fig 3a
is a time trace of the population size and the fraction of the population that is of a generalist genotype. Generalist
fraction is Number of Generalists

Population Size . We note that as the length of each epoch decreases, the generalist fraction decreases

less in time, until eventually, it remains stabilized at ≈ 1. Additionally, fluctuations in population size are suppressed.
We ran the chirp protocol for 25 replicates and computed the number of generalists at the end of each run, if the
population survived the run, and the probability that the population survived a chirp protocol. Plotting this in Fig 3d.
demonstrates that the tradeoff boundary has been broken. Finally, we compared the chirp protocol to fixed frequency
cycling for Lc ranging from 11 to 14. We computed the mean number of generalists observed over 50 replicates in
fixed frequency cycling and plot the results in Fig 3b. We compare this to the mean number of generalists discovered
under chirp cycling. For this particular chirp, we set κ = 1

6 and initial µτepoch = 5. We demonstrate that even in
regimes where entropic cost is high, chirped cycling can yield generalists robustly.

We note that a similar tradeoff can be observed in Figure 4c of the main text. This indicates that the chirp protocol
will work for models with other fitness landscape topologies, so long as there exists a tension between χs→g and χg→g.

Chirped Cycling Evolves Generalists when τmax < τmin By implementing the same chirped strategy for
initial conditions where τmax < τmin, we find that we have high generalist yield at rates match are near the maximum
probability of evolving generalists of the fixed frequency evolutionary runs, as demonstrated in Fig 3b.

II. GENERALISTS SEPARATED BY VALLEYS

A. Model

We model the fitness landscape of an antibody binding to an antigen with multiple epitopes through a phenomeno-
logical construction, inspired by Hopfield’s spin glass landscape.

Consider an antigen η with Pη epitopes (i.e., sets of residues on the antigen that form binding locations for

antibodies). Suppose that for each epitope, an antibody with sequence h
(η)
α of length L with entries ±1 binds with

high affinity (with α ∈ {1, ..., Pη} indexing epitopes). Then, the overall binding affinity to antigen η of any antibody
with sequence x, of length L with entries ±1 is taken to be:

F (η)(x) = s
∑
α

κ(η)
α

(
h

(η)
α · x
L

)p
(12)

This construction naturally produces islands of high fitness around the epitope-binding antibodies h(η), separated
by regions of low fitness. Our results are tied to the topology of fitness islands and not to details of the functions
used to achieve them, provided genotypic space is of sufficiently high dimension. The specific mathematical choice of
p has a limitation set by capacity; in a sequence space of dimension L, this method only allows us to program fewer
than αL(p−1) fitness islands. Beyond this ‘capacity’, there is a spin glass transition and the mathematical function
above actually models a glassy landscape with many other fitness peaks. We can increase this capacity by increasing
the non-linearity p of the model. In what follows, we choose p large enough to stay under this spin glass transition.
Note that in the mathematical construction of this landscape , −x is as equally fit as x. Such a degeneracy can be

lifted by adding a linear term,
∑L
i=1 hixi to the fitness function. However, we found we did not need such a term

since the degenerate pairs of fitness peaks, x and−x}, are far from each other in sequence space. Here, κ
(η)
α is the

binding affinity of the ideal antibody h(η) to its cognate epitope. We shall take epitope α = 1 to be present for all
antigens, thus defining the generalist. In keeping with the assumption that the generalist is less fit in any landscape,

we take its binding affinity κ
(1)
1 = κ

(2)
1 = 0.8 and all other κ

(η)
α = 1.

Fitness penalty for generalists: We impose that the height of the fitness peak associated with the generalist is

lower than the peaks of the specialist (
κ
(η)
1

κ
(η)
α 6=1

= 0.8), reflecting fitness costs associated with being a generalist relative

to specialists in a fixed environment.
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B. Population Simulations

We simulate a population of antibodies evolving in these landscapes by implementing a Moran process[6] with three
events:

• Environment shifts with a deterministic rate, 1
τepoch

• Mutation with a rate, µ per individual, where a single site on x is bit-flipped

• Reproduction with a rate, λ per individual, where an individual is selected from the population with probability
proportional to exp(F (η)), with F (η) defined above with p = 2 (Hopfield model), to be duplicated and another
individual from the population to be removed with uniform probability

and a population size of N .
In our population simulations, we impose the following values for our simulation parameters. We fix the total

number of epitopes for each landscape, Pη = 11 across all η, keeping just one generalist. We impose sequence length
to be L = 100, generating each optimal epitope-binding antibody randomly. We initialize our simulations from
a monoclonal specialist initial condition of size N = 100 unless otherwise specified. We impose a per individual
mutation rate of µ = 0.25 and a reproduction rate of λ = 1. The overall selection strength is set to s = 0.1.

C. Fig 4b: Resonance Peak in Generalist Discovery as a function of τepoch

We ran our simulation for 50 replicates from random monoclonal initial conditions of size N = 100 with sequences of
length L = 100. We initialize the landscapes with 10 specialist antibodies and 1 generalist antibody (i.e. Pη = 11 for
all η). Our simulations were run for a total of 30 τepochs. We swept over τepochs. We note that during the simulations,
regardless of the frequency of environmental shifts, the population remains tightly clustered as it evolves in time.
This behavior corresponds to evolution in the strong selection and weak mutation limit. We consider a generalist to
have been discovered if, after a run, there exists at least one individual whose overlap with the generalist antibody
is 90%. Using these simulations, we demonstrate that an intermediate regime of switching enhances the discovery of
generalists. We plot the results of these simulations in Fig. 4b.

Time traces of the population from its initial condition: To identify the reason for this resonant peak, we
run the simulation for a 100 cycles and plot in SI Fig 4 how far the population is from its initial condition in hamming
distance after a fixed number of epochs We initialize a population at a specialist antibody and a generalist antibody,
comparing the behavior for fast cycling and slow cycling. We show that for generalist initial conditions, regardless
of cycling rate, the population remains in the generalist. There is some fluctuation out but the population returns
to the generalists often. Given enough time, the population will escape though this is a slow process. However, for
specialist initial condition, slow cycling enables the population to escape its initial condition, while fast cycling does
not allow such escape.

D. Timescale Analysis

Computing the minimum epoch length, τmin:
Cycling benefits evolution of generalists in fitness landscapes with valleys by enabling the population to escape

specialist peaks in one landscape by evolving subject to a different fitness landscape. To escape from a specialist
peak in environment 1, the population must accrue enough mutations when subject to environment 2, such that when
environment 1 returns again, the population is not likely to return to the original specialist peak.

We first consider the strong selection limit sN � 1. Consider a monoclonal population at a specialist peak h(1)
α

in fitness landscape F (1). When such a population is now subject to landscape F (2) for a time τepoch, h(1)
α serves

as an initial condition of typical low fitness and will evolve towards a fitness peak h(2)
β in F (2). If we switch back

to F (1) after a sufficiently long time, the population genotype x will be sufficiently mutated compared to h(1)
α that

the population will likely fix to an alternative fitness peak h(1)
β in F (1). Let us assume that the number of such

mutations needed is d12.
Since the population in genotype h(1)

α is typically of low fitness in landscape F (2), most mutations are beneficial.
Then, in the strong selection limit, the time needed to acquire d12 beneficial mutations is by the mutation rate,

τmin ≈
d12

µ
.
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FIG. 4. Specialist populations evolve significantly through sequence space for intermediate timescale cycling but not fast
cycling; generalists do not evolve significantly for any timescale cycling. (a) An initially specialist population does not evolve
away from the initial genotype for fast cycling. However, with slower cycling, the population evolves to a significantly different
genotype(s). (b) An initially-generalist population does not significantly evolve away from the initial genotype for fast or slow
cycling.

This minimal number of mutations d12 to escape the ‘attractor basin’ of a fitness peak h(1)
α is model dependent.

- d12 depends on the size of the attractor basin around h(1)
α and the correlations between F (1) and F (2). In our

Hopfield-inspired model of fitness landscapes F (i), if the fitness peaks are randomly distributed in a sequence space
of length L, then the empirical value of d12 ∼ 1

4L. In real fitness landscapes, this distance d12 can vary widely for
different specialists which can have attractor regions of different size.

Computing the maximum epoch length, τmax:
Unnecessarily long times τepoch > τmin spent in each environment is counter-productive. To see this, note that

specialists are most likely to evolve to generalists in a short duration of time after an environmental switch. Any extra
time spent τepoch > τmin in the same environment is simply ‘dead time’ that does not increase the yield of generalists
further. Hence the effective rate of evolving generalists from specialists falls as 1/τepoch for τepoch > τmin.

Meanwhile, existing generalists can specialize again. Let the rate of this process be rg→s. The yield of generalists
is reduced when this escape rate rg→s from generalists to specialists is larger than the switching-induced rate from
specialists to generalists 1/τepoch. Hence, τmax ∼ 1/rg→s.

The rate rg→s at which generalists specialize is easily estimated since the fitness landscape does not change in time
for sequences near the generalist. Hence this process is the well-studied process of an asexual population crossing a
fitness valley by picking up a sequence of deleterious mutations. This process has been studied in numerous regimes
with different assumptions about population sizes, selection pressure [7–9]. Here, we assume strong selection and weak
mutation, allowing us to use the simple result rgs ∼ µ e−N∆Fg result obtained from the analogy of statistical physics
and population dynamics; population size N plays the role of temperature and ∆Fg, the fitness difference between
the generalist peak and the fitness valley, plays the role of an energy barrier. Hence,

τmax ≈
exp(N∆Fg)

µ
.

Real populations can often violate these assumptions; in that case, any other relevant result[7–9] for valley crossing
rates can be used in place of rg→s.

E. Fig 4c: Transitions Amongst Specialists and Generalists: χs→g and χg→g

The presence of a resonant peak in Fig. 4b is suggestive an underlying tension between discovering the generalist
and escaping the generalist, similar to that in the earlier model of entropically disfavored generalists. As such, we
re-introduce the quantities χs→g and χg→g:

• χs→g is the proportion of trials initialized from a monoclonal specialist initial condition that evolve a generalist

10
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FIG. 5. We compute the success rate of finding a generalist using fixed frequency cycling and chirped strategies when the
fitness of binding a generalist is 70% of binding a specialist site. We see, in black, that fixed frequency cycling finds generalists

with very low probability. However, in orange, we see that chirped protocols, where τ
(n+1)
epoch ←

15
16
τ
(n)
epoch and µτ

(0)
epoch = 100, find

the generalists at a probability 0.16± 0.05, which is higher than the best fixed frequency cycling strategy. This demonstrates
the success of chirped strategies.

(i.e. a single member of the population matches 90% of the generalist) antibody within 30 epochs of an
evolutionary run for a given τepoch

• χg→g is the number of trials in which a population, initialized from the generalist initial condition, maintains

20% of its population in the generalist (i.e. a given antibody maintains 90% overlap with h
(η)
1 ) after 30 epochs

for a given τepoch.

We chose 30 epochs in the definitions above as 30 epochs are needed to give the population enough time to accrue
enough cycling-induced stochasticity to explore genotype space. This extension was not necessary for entropically dis-
favored generalists because multiple epochs are not needed to induce cycling induced stochasticity in such landscapes.
We discuss cycling induced stochasticity in more detail in SI Section II G. Plots for χg→g and χs→g are shown in Fig.
4c and illustrate the same behavior as in the entropically disfavored models.

F. Chirping in Rugged Landscapes

Here, we demonstrate that chirp cycling provides benefits over fixed frequency cycling in fitness landscapes where
peaks are separated by fitness valleys. We begin by changing the binding affinity of the antibody to the generalist site

to κ
(1)
1 = κ

(2)
1 = 0.7. This results in the performance of fixed frequency cycling decreasing dramatically. Chirping,

however, continues to provide generalists in a robust manner, as demonstrated in SI Figure 5.

G. Cycling-induced variance and correlations between environments

To illustrate how cycling enables the discovery of generalists, we consider population trajectories during cycling. We
consider the impact of the initial condition of the population on these trajectories and the impact of the correlation
structure between the different environments. To this end, we introduce a measure of correlation and introduce a new
simulation to capture the effective behavior of the population.

1. Definition of Correlations between Environments

We measure the correlation between landscapes, denoted 〈F (1)|F (2)〉s using the following equation:

〈F (1)|F (2)〉s ≡
c(h(1),h(1))

c(h(1),h(2))c(h(2),h(2))
(13)
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where we have defined the function c(h(1),h(2)) =
∑P1,P2

α1,α2=2 h
(1)
α1 · h

(2)
α2 /(L

√
P1P2).

This measure of correlation is high if the specialist genotypes for different antigens are highly similar in pairs; e.g.,
if each specialist for antigen 1 is similar to a specialist for antigen 2. As seen below, a high correlation by this measure
implies that specialist antibodies do not evolve significantly due to cycling and thus generalists are not easily evolved.

Note that this measure is normalized so the measure is unaffected by the diversity c(h(η),h(η)) of specialist genotypes
for a single antigen η.

2. Modeling Population Trajectories with Single Walkers

To measure the role of cycling between landscapes and the correlation structure of the landscape, we studied the
dynamics of single walkers. This is justified as the population is shown to be roughly monoclonal in its evolution-
ary trajectories. Single walkers were simulated via the well-known Metropolis-Hasting algorithm[10]. We preserve
definitions of x, F (η)(x), and all related quantities from before. The process is as follows:

• Randomly select a single site to mutate to create new variant x′ from original x

• Compute fitness of new variant

• Accept new variant with probability exp(β(F (η)(x′)− F (η)(x))) and repeat.

Because of the differences between single walker dynamics and population dynamics, we include an overall scale for
the landscapes, β. β is chosen to be β = 4.

3. Fig 4f: Cycling-Induced stochasticity

We begin by considering antigens with uncorrelated specialists (ie, 〈F (1)|F (2)〉s ≈ 0). Starting from two initial
conditions, a generalist antibody and a specialist antibody for antigen η = 1, we evolve the walker for k proposals in
the presence of antigen 2, and then allowed the walker enough proposals to relax to a stable solution in the presence
of antigen 1. By computing the final state for 20 different walkers in a given landscape, and averaging over 20 random
landscapes, we can compute the variance in the final positions of the walkers. This is accomplished by computing the
average pairwise distance between walkers in the same landscape, and then averaging over landscapes. To demonstrate
the importance of the number of proposals, k, which is serving as a proxy for τepoch, we swept over k. The result is
plotted in Fig. 4f.

We see that when starting from a specialist initial condition, cycling-induced variance rises when τepoch is sufficiently
large. Generalists, as predicted, are unaffected by cycling, as those genotypes are fit in both environments.

4. Fig 4g: Impact of Correlation Structures Between Cycled Environments

We then repeated the same simulations as above with increasing correlation structure between the landscapes. We
enforced that k = 250 was large enough to ensure high stochasticity in uncorrelated environments. We see that
as correlation between the landscapes rises, cycling-induced stochasticity decreases. This indicates that generalist
discovery hinges on the landscapes being sufficiently uncorrelated. The results are plotted in Fig. 4g.

H. More than 2 Antigens

Throughout the main text, we only consider the evolution of generalists in the presence of two antigens. Here, we
demonstrate that when we increase the number of antigens, discovery of the generalist becomes easier. We demonstrate
this in the Moran simulations by increasing the number of randomly constructed landscapes with a single generalist
peak shared across the landscapes. In order to probe a dynamic range of antigen number, we weight the generalist to

be smaller than in previous trials, setting κ
(η)
1 = 0.07, rather than 0.08. We ensure each antigen is presented at least

once, cycling for at least 30 epochs. We maintain the parameters used before.
We find that increasing the number of antigens increases the discovery-likelihood of generalists, as plotted in SI Fig

6. We interpret these results as due to effectively reduced correlation between landscapes since correlations shared
across a subset of the antigens may not be shared across all antigens. For example, the population can settle into
a limit cycle between specialists with only 3 antigens but evolution in the presence of other antigens allows escape
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FIG. 6. An increased number of distinct antigens makes it easier to evolve generalists through cycling. We increased the
number of distinct antigens in stepsfrom 2 through 20, each with 10 randomly chosen specialist epitopes, and one generalist
epitope common to all of them. We cycle between these landscapes using the Moran simulation described in Section II B for
30 τepoch. We consider the evolutionary run to have evolved a generalist if at least one antibody has an overlap of 90% with
the generalist. We find that increasing the number presented increases the likelihood that generalist genotypes are discovered.
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FIG. 7. The number of vaccine shots required to evolve generalists is reduced if distinct antigens are used. We repeat the
simulation described in SI Figure 6, except we run until a generalist is discovered for a fixed µτepoch = 40. We compute the
average first arrival time across 50 replicates and the standard error. We find that increasing the number of distinct antigens
used decreases the number of doses needed up.

from such cycles. As a result, we increase the rate of evolution from specialists to generalists without enhancing the
reverse process.

We further consider the number of cycles needed for the first generalist to appear as a function of the number of
antigens. This can be interpreted as the number of vaccine doses needed when using a particular number of strains in

the vaccine course. We probe this by running Moran dynamics at a fixed µτepoch = 40 with κ
(η)
1 = 0.08, as in other

simulations, for as many epochs as needed to discover a generalist. We run 50 replicates of this simulation, reporting
the average time at which a generalist first appeared across those replicates. Our choice of epoch length is the epoch
length at probability of evolving generalists appears to maximize. We find that the number of vaccine doses decreases
as the number of antigen strains increases, as plotted in Fig. 7.
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I. Molecular specificity

A critical requirement of antibodies, including broadly neutralizing antibodies, is molecular specificity. This is,
antibodies must show higher binding affinity for their particular target and low binding affinities for all other antigens.
We quantify molecular specificity of antibodies in our models by comparing the binding energies of antibodies to
antigens featuring the conserved epitope to the binding energies of antibodies to antigens without the conserved
epitope. We use these comparisons to identify parameter regimes in which antibodies show molecular specificity; all
analyses in the paper are carried out in such regimes.

1. Molecular Specificity in the Entropic Model

We consider antibodies of length L = 20. We impose that the first 15 sites of this antibody bind to a conserved
region on some set of antigens. We further impose that for the antibody to be considered to bind to an antigen,

its binding energy, as given by Equation 1 to be below T
L = − 1

2 , which is to say that − 1
L

∑L
i hixi + T

L must be
negative. We randomly generate 1000 antigens featuring the conserved eptiope and compute the binding energies of
the antibody to the antigens. We then compare these binding energies to the binding energy of the same antibody
against 1000 randomly generated antigens that are not obligated to feature the conserved epitope. We present the
results of this in Fig. 8a, with the antigens featuring the conserved epitope in blue and the antigens without in black.
We observe that while the antibody strongly binds all antigens featuring the conserved epitope, it only binds a small
fraction of random antigens, showing molecular specificity in this parameter regime.

To ensure molecular specificity is achieved, we must ensure that the number of antigens to which an antibody binds
must be small compared to the space of all antigens. We determine the choice of binding energy thresholds T that
enforces molecular specificity by first stating that the fraction of antigens bound by a particular antibody is given by∑L

i=Tsites
(Li)

2L
, where the numerator represents the volume of the Hamming ball associated with the antigens that the

antibody binds and the denominator represents the space of all antigens. We note that for T ∼ O(1), the volume of
the Hamming ball is similar to that of the whole space, and for this choice of binding energy threshold, molecular

specificity is not achieved. For T ∼ L, the volume of the Hamming ball can be upper bounded by LL

TT

(
1

(L−T )L−T

)
.

This results in a vanishingly small fraction antigens being bound by our antibody when T ∼ L. We work only in this
regime.

2. Molecular Specificity in Landscapes with Barriers

We begin by initializing an antibody of length L = 100 to bind to a conserved epitope. We then randomly construct
1000 antigens using the prescription described in Section II A with 11 epitopes, 1 fixed across all antigens, and the
remaining 10 random. We compute the binding energy of the antibody against these antigens. We then compare these
binding energies to the binding energy of the antibody to 1000 antigens, each with 11 randomly generated epitopes.
The results are plotted in Fig. 8b, with the binding energies associated with the conserved epitope in blue and the
binding energies with random epitopes in black. We observe a large separation between the binding energies of the
the antigens featuring the conserved epitope and the antigens without. In general, we expect that for conditions
where the number of epitopes is below the Hopfield capacity[11], the probability that a random antigen is bound by
an antibody that does not bind one of its epitopes to be vanishingly small.

J. HIV Antibody Data

The success of our proposed cycling strategy depends on specific assumptions about correlations between different
antigens. In particular, antigens need to be sufficiently correlated in that the same generalist antibodies can bind them
(e.g., the antigens share a epitope). And yet antigens need to be sufficiently uncorrelated : i.e., specialist antibodies
that bind different antigens must be sufficiently distinct as measured by 〈F (1)|F (2)〉s (e.g., the specialist epitopes on
antigens must be sufficiently distinct).

We sought to test whether these correlation conditions are met by antibodies evolved in response to real HIV strains.
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FIG. 8. (a) We fix an antibody of length L = 20. We construct 1000 antigens, each of which with a conserved portion of
length 15. We compute the binding energies of the antibody with each of these antigens and plot them in blue. We note that
the binding energy for each of these falls below the binding energy threshold. We compare this to the binding energy of the
same antibody to 1000 random antigens, plotted in black, and find it to be unlikely that the binding energy to fall below the
threshold, indicating the antibody is unlikely to bind random antigens. (b) We fix an antibody of length L = 100 to bind to
some conserved epitope. We generate 1000 antigens, each with 11 epitopes, 1 of which is conserved. We compute the binding
energy of the antibody to these antigens and plot them in blue. We compare these binding energies to the binding energy of the
same antibody to 1000 antigens, each with their own random 11 epitopes, plotted in black. We observe that a large separation
in the binding energies, suggesting it is unlikely that an antibody will spontaneously bind a random antigen.

1. Antibody sequences and Binding Affinity Data

Several works have studied observed antibodies from individuals afflicted with different strains of HIV[12–14]. These
works sequenced the observed antibodies, studied their binding affinities to different strains, and proposed intermediate
antibodies in between the germline antibody and the discovered broadly neutralizing antibody. They evaluated the
binding affinities of each of these antibodies using the ELISA assay. The binding affinity data is presented in SI Table
I. The mutational distance between each antibody is given in SI Table II.

Antibody Sequence Data: Two classes of antibodies are presented here: mature antibodies observed in patients
during their course with HIV and antibody sequences inferred to be [12–14] intermediate between the germline and
the mature broadly neutralizing antibody. The natural antibodies appear with the prefix ’CH’, and the inferred
antibodies, which were synthesized, appear with the prefix ’IA’.

Antibody Binding Data: The binding affinity of each antibody to two different strains of HIV, 31D8gp120/293F
and 11D8gp120, is evaluated using the ELISA assay. Particular values for binding are presented in table I. We impose
a cutoff of 10 log(AUC) to indicate when an antibody has bound an HIV strain. By this rule,

• 31D8gp120/293F is bound by antibodies IA2, IA3, CH105, and CH103.

• 11D8gp120 is bound by antibodies CH186, CH187, CH200, and CH103.

2. Constructing landscapes F (1) and F (2)

Let F (1) and F (2) define the fitness landscape of antibody space corresponding to 31D8gp120/293F and 11D8gp120
respectively. In each landscape, the experimentally discovered and synthetically produced antibodies will define
disconnected neighborhoods of antibodies that are fit for that landscape.

We begin constructing these landscapes by converting the sequence of each antibody into a binary vector with
entries ±1, noting that each antibody is length L = 121. We accomplish this randomly generating a binary vector
with entries ±1 of length L to represent the unmutated common ancestor. Then, using the sequence data given by
[12–14], we determine where each antibody differs from the unmutated common ancestor and introduce a binary spin
vector for each that preserve the differences from the unmutated common ancestor as presented in the real data. We

define the sequences associated with F (η) as h
(η)
α . We set h

(1)
1 = h

(2)
1 to the sequence of the generalist antibody

CH103.
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HIV strain, Ab CH105 CH186 CH187 CH200 IA2 IA3 CH103

31D8gp120/293F 13.52 1.13 0.00 5.80 13.34 13.01 13.63
11D8gp120 8.97 13.59 10.21 10.92 9.12 6.82 10.92

TABLE I. Binding affinity of different antibodies (columns) to two different HIV strains (rows), measured via the ELISA assay
(units of the logarithm of the area under the curve (logAUC) of the absorbance of the sample)[12–14]. Higher values reflect
stronger affinity. We consider an antibody to be a specialist for a strain using a cutoff of 10 logAUC. Note that only CH103 is
a generalist in this dataset.

Antibody UCA CH105 CH186 CH187 CH200 IA2 IA3 CH103
UCA 0 27 8 16 20 27 19 28

CH105 27 0 25 24 38 21 9 24
CH186 8 25 0 11 20 25 25 26
CH187 16 24 11 0 27 23 19 24
CH200 20 38 20 27 0 37 31 38

IA2 27 21 25 23 37 0 15 4
IA3 19 9 25 19 31 15 0 19

CH103 28 24 26 24 38 4 19 0

TABLE II. Mutational distances (Hamming Distance) between antibody sequences for antibodies observed in an HIV patient
who eventually developed bnAbs. Sequences for these antibodies are found in [12–14]. Using the raw sequence data and the

binding energy presented in I, we can construct fitness landscapes F (1) and F (2) with fitness peaks that reflect these mutational
distances.

We take the fitness of each antibody, represented by x with entries ±1 and length L, to be:

F (η)(x) = s
∑
α

(
h

(η)
α · x
L

)p
. (14)

In the main text, we take p = 10 to stay below the spin glass transition for the sequences under consideration. s is
a scalar that controls overall magnitude of fitness, which we take to be s = 200.

3. Simulations

We simulated evolution using the technique described in Section II G 2. Given that mutation rates in B-cells
undergoing somatic hypermutation are taken to be 10−3 per base pair per division[1], we choose our epoch length to
be long enough that the population accumulates 100 mutations. This corresponds to an epoch length that allows 800
total divisions. The initial condition for these simulations was set to be the unmutated common ancestor (UCA). We
note that if the population is not started from the UCA, the simulation fails to find successful antibodies.

4. Shuffled assignment

We earlier demonstrated that the correlation structure of the landscape impacted the ability of the landscape to
effectively cycle its way to a generalist. Here, we find that

〈F (1)|F (2)〉s = 0.43 (15)

which reflects the distance between specialist sequences for the two strains in the data of [12–14] (see Table II).
With such low correlations between specialists, the simulations discover generalists around 60% of the time when
cycling in this landscape, as shown in Fig. 5b.

To understand how increasing the correlation structure can impact generalist discovery in real data, we artificially
shuffled the antibody binding data. In particular, we treated CH186 as a specialist antibody for 11D8gp120 and
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FIG. 9. We construct a landscape only using sites along the antibodies which feature genotypic diversity, reducing the overall
length of the antibodies from L = 121 to L = 47. We set p = 10 and s = 200 and repeat the simulation described in Section
II J 3 and observe qualitatively similar results to those observed in Figure 5 of the main text.

CH105 as a specialist antibody for 31D8gp120/293F and then followed the same construction of landscapes described
in II J 2. In the new constrution, we find that the two things are substantially more correlated.

〈F (1)|F (2)〉s = 0.78 (16)

Then, after running simulations with changing environments, we find that recovery rates of the generalist drops
significantly, as shown in Fig. 5b. This demonstrates that our results are relevant when the fitness landscapes are
sufficiently uncorrelated.

5. Sequences Restricted to Variable Regions

In Fig. 9, we repeat the simulation described above, but construct the patterns using only the antibody sites that
are variable across the antibodies considered. This restriction reduces the length of the antibody sequences from
L = 121 to L = 47. As a result, the correlation measure for the unshuffled landscape drops from 0.43 to 0.07, while
the correlation measure for the shuffled landscape drops from 0.78 to 0.54. We set the epoch length to be longer than
before, as a result of the differences in the magnitudes of correlations and the sequence length. The results of the
simulation are shown in Fig.9.

Despite the resulting quantitative differences, qualitatively, these results are similar to those displayed in Figure 5
of the main text for the full L = 121 length sequences.

Thus, our conclusions primarily depend on the correlations between the fitness landscape and not the mathematical
details of how we construct the fitness landscape. In particular, the dimensionality of sequence space affects our
results to the extent that the dimensionality changes correlation structure across environments. We expect the
effects of cycling to be weaker in lower dimensions, such as the case explored in [15] where there are fewer paths
from specialists to generalists. For example, in 1 dimension, cycling can be entirely unproductive if cycling-induced
evolution repeatedly traps the population at specialist peaks adjacent to the generalist genotype.
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