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Supporting Information Text15

Methods16

Subjects. Subjects were male Long-Evans rats. They were 12 weeks old at the beginning of the experiments, housed in groups17

of 4 rats in temperature-controlled ventilated racks and kept under 12 h–12 h light/dark cycle. All the experiments were18

performed during the light cycle. Food was available ad libitum in their homecage. Rats had restricted access to water19

while their body weights were regularly measured. A total of 111 rats were used in this study (the number of animals in20

each experimental condition is systematically shown in its respective figure). No animal was excluded from the analysis. All21

experimental procedures were conducted in accordance with standard ethical guidelines (European Communities Directive22

86/60 - EEC) and were approved by the relevant national ethics committee (Ministère de l’enseignement supérieur et de la23

recherche, France, Authorizations #00172.01 and #16195).24

Apparatus. Four identical treadmills were used for the experiments. Treadmills were 90 cm long and 14 cm wide, surrounded25

by plexiglass walls such that the animals were completely confined on top of the treadmill. Each treadmill was placed inside a26

sound-attenuating box. The treadmill belt covered the entire floor surface and was driven by a brushless digital motor (BGB27

44 SI, Dunkermotoren). A reward delivery port was installed on the front (relative to the turning direction of the belt) wall28

of the treadmill and in case of a full reward, released a ∼80 µL drop of 10% sucrose water solution. An infrared beam was29

installed 10 cm from the reward port and defined the limit of the reward area. In each trial, the first interruption of the beam30

was registered as entrance time in the reward area (ET ). A loudspeaker placed outside the treadmill was used to play an31

auditory noise (1.5 kHz, 65 db) to signal incorrect behavior (see below). Two strips of LED lights were installed on the ceiling32

along the treadmill to provide visible and infrared lighting during trials and intertrials, respectively (see below). The animals’33

position was tracked via a ceiling-mounted camera (Basler scout, 25 fps). A custom-made algorithm detected the animal’s body34

and recorded its centroid as animal’s position. The entire setup was fully automated by a custom-made program (LabVIEW,35

National Instruments). Experimenter was never present in the behavioral laboratory during the experiments.36

Behavior.37

Habituation. Animals were handled 30 m per day for 3 days, then habituated to the treadmill for 3 to 5 daily sessions of 30 min,38

while the treadmill’s motor remained turned off and a drop of reward was delivered every minute. Habituation sessions resulted39

in systematic consumption of the reward upon delivery.40

Treadmill Waiting Task. Training started after handling and habituation. Each animal was trained once a day, 5 times a week41

(no training on weekends). Each of the daily sessions lasted for 55 min and contained ∼130 trials. Trials were separated42

by intertrial periods lasting 15 s. During intertrials, the treadmill remained in the dark and infrared ceiling-mounted LEDs43

were turned on to enable video tracking of the animals. Position was not recorded during the last second of the intertrials44

to avoid buffer overflow of our tracking routine and allow for writing to the disk. The beginning of each trial was cued by45

turning on the ambient light, 1 s before motor onset. Since animals developed a preference to stay in the front (i.e., close to46

the reward port), the infrared beam was turned on 1.5 s after trial onset. This timeout period was sufficient to let the animals47

be carried out of the reward area by the treadmill, provided they did not move forward. The animals’ entrance time in the48

reward area (ET , detected by the first interruption of the infrared beam in each trial after 1.5 s) relative to a goal time (GT,49

7 s after motor onset) defined 3 types of trials. Trials in which animals entered the reward area after the GT were classified as50

correct (7 ≤ ET < 15, Figure S1b). Trials in which animals entered the reward area before the GT were classified as error51

(1.5 ≤ ET < 7, Figure S1c). If in 15 s an animal had not interrupted the infrared beam, the trial ended and was classified as52

omission (Figure S1d). Additionally, the exact value of the ET determined a reward/punishment ratio. The volume of the53

sucrose solution delivered, increased linearly for ET values between 1.5 s (no reward ) and GT (maximal reward, i.e., ∼80 µL)54

and decreased again between GT and 15 s (∼30 µL for ET s approaching 15 s). During training, to progressively encourage55

the animals to enter the reward area after the GT, partial reward was also delivered for error trials with ET > ET0, where56

ET0 denotes the minimum ET value delivering a drop of sucrose solution. The size of this partial reward increased linearly57

from zero for ET = ET0, to its maximum volume for ET = GT . ET0 was raised across sessions, according to each animal’s58

performance, until it reached the GT (Figure S1b, inset). In the first session of training, ET0 = 1.5 s. For each session (except59

the first one), ET0 was raised to the value of median ET s of the previous sessions. During training, ET0 was never decreased.60

Once ET0 reached the GT, it was not updated anymore (late training reward profile in Figure S1b, inset). Finally, a penalty61

period of extra running started when the animals erroneously crossed the infrared beam before GT (1.5 ≤ ET < 7) and its62

duration varied between 10 s and 1 s, according to the error magnitude (Figure S1c, inset). This running penalty was applied63

for all sessions.64

Variable Speed Condition. In this condition, for each trial, treadmill speed was pseudo-randomly drawn from a uniform distribution65

between 5 and 30 cm/s. During any given trial, the speed remained constant. We used 5 cm/s as the lowest treadmill speed.66

Lower speeds generated choppy movements of the conveyor belt. Also, velocities higher than 30 cm/s were not used, to avoid67

any physical harm to the animals.68

No-timeout Condition. In the control condition, the infrared beam was not active during the first 1.5 s of the trials. This timeout69

period was sufficient to let the animals be carried out of the reward area by the treadmill, provided they did not move forward.70
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In the “no-timeout” condition, the infrared beam was activated as soon as the trial started. Thus, in this condition, error trials71

corresponded to ET s between 0 and 7 s. Consequently, animals were penalized if they were in the reward area when the trial72

started (i.e., ET = 0 s).73

Short Goal Time Condition. In this condition, the goal time (GT) was set to 3.5 s, half the value for the control condition. The74

reward profile in this condition followed the same rules as for the control condition, except that reward was maximal at75

ET = GT = 3.5 s. Two different groups of animals were trained in this condition, one with treadmill speed set to the normal76

value of 10 cm/s, and another with treadmill running twice as fast (20 cm/s, see Figure 4). In the short goal time condition,77

we also examined if the increased variability in ET could be attenuated when the penalty associated with early ET was78

increased and when reward magnitude was decreased for late ET . This was implemented by doubling the treadmill speed79

during the penalty period (from 10 cm/s to 20 cm/s), and the reward was delivered for a narrower window of ET s (maximal80

reward at ET = GT = 3.5 s, and no reward after ET = 4.5 s). For proper comparison, we also examined the behavior of rats81

trained with GT = 7 s when the running penalty was increased and the reward was decreased for late ET s (maximal reward at82

ET = GT = 7 s, and no reward after ET = 9 s, see Figure 4d,e).83

Immobile Condition. In this condition, the treadmill’s motor was never turned on. The ambient light was turned on during the84

trials and turned off during the intertrials. Error trials were penalized by an audio noise and extended exposure to the ambient85

light.86

Data Analysis. Position information derived from video tracking (sampling rate 25 fps) was scaled to the treadmill length, and87

smoothed (Gaussian kernel, σ = 0.3 s).88

Motor Routine Definition. We quantified the percentage of trials in which animals performed the front-back-front trajectory89

(wait-and-run motor routine). Trials were considered routine if all the following three conditions were met: 1) the animal90

started the trial in the front (initial position < 30cm); 2) the animal reached the rear portion of the treadmill after trial91

onset (maximum trial position > 50cm); 3) the animal completed the trial (i.e., they crossed the infrared beam). The same92

criteria were applied to the median trajectories after training (session #30) to classify animals into two groups: those that used93

the front-back-front trajectory and those that did not (Figure S3).94

Statistics. All statistical comparisons were performed using resampling methods (permutation test and bootstrapping). These95

non-parametric methods alleviate many concerns in traditional statistical hypothesis tests, such as distribution assumptions96

(e.g., normality assumption under analysis of variance), error inflation due to multiple comparisons, and sensitivity to unbalanced97

group size.98

We used the permutation test to compare the performance of two groups of animals during training on a session-by-session99

basis, such as in Figure 2b, and Figure 3b. To simplify the description (see (1) for more details), let’s assume, as in Figure 2b,100

we have X = [X1, X2, ..., Xn], where Xi is the set of ET s of all the animals in session i. Similarly, we have Y that contains101

ET s from another experimental condition. Here, the null hypothesis states that the assignment of each data point in Xi and102

Yi to either X or Y is random, hence there is no difference between X and Y.103

In short, the test statistic was defined as the difference between smoothed (using Gaussian kernel with σ = 0.05) average of104

X and Y for each session i: D0(i). We then generated one set of surrogate data by assigning ET of each animal in session i to105

either Xi or Yi, randomly. For each set of surrogate data, the test statistic was similarly calculated, i.e., Dm(i). This process106

was repeated 10,000 times for all the statistical comparisons in this study, obtaining: D1(i), . . . , D10000(i).107

At this step, two-tailed pointwise p-values could be directly calculated for each i, from the Dm(i) quantiles (see (1)).108

Moreover, to compensate for the issue of multiple comparisons, we defined global bands of significant differences along the109

session index dimension (1)). From 10,000 sets of surrogate data, a band of the largest α-percentile was constructed, such that110

less than 5% of Dm(i)s broke the band at any given session i. This band (denoted as the global band) represents the threshold111

for significance, and any break-point by D0(i) at any i is a point of significant difference between X and Y.112

A similar permutation test was also used when comparing only two sets of unpaired data points (such as in Figure 4e,113

comparing control vs. short goal time groups). The same algorithm was employed, having only one value for index i. If none of114

the Dm(i)s exceeded D0(i), the value p < 0.0001 was reported (i.e., less than one chance in 10,000).115

For paired comparisons (such as in Figure 2f), we generated the bootstrap distribution of mean differences (n = 10000 with116

replacement). Significance was reported (yellow asterisks) if 95% Confidence Interval (CI) of the pairwise differences differed117

from zero (i.e., zero was not within the CI) (2). For example, in Figure 2f, right, the 95% CI of pairwise differences is (19, 27)%.118

Since this interval does not contain zero, it is reported significant, whereas in Figure 4e, the CI of the comparison between119

normal and sharp short goal time is (−0.17, 0.01) which includes zero, and hence is reported non-significant.120

Exceptionally, for the comparison in Figure 4h, even though it is not paired, we used bootstrapping, because we did not have121

enough data points to perform the permutation test. In this case, the resampled distribution (n = 10000 with replacement) for122

each group was calculated, and it was reported significant, since the distributions did not overlap at 95% CI.123

In Figure 5f, we used repeated measures correlation implemented in the Pingouin package (3). This technique relaxes the124

assumption of independent data points, since each animal contributes more than one.125
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Reinforcement Learning Models. We used the Markov Decision Process (MDP) formalism to analyze how artificial agents learn to126

perform a simplified version of the treadmill task. According to the MDP formalism, at each time step, the agent occupies a127

state and selects an action. The probability to transition to a new state depends entirely on the previous action and state, and128

each transition is associated with a certain reward. The agent tries to maximize future rewards and, in our simulations, we129

used a simple Q-learning algorithm ((4), see below) to model the way the agent learned an optimal policy (i.e., which action to130

take for any possible state).131

We modeled the treadmill task using a deterministic environment in which the time was discretized and the treadmill was132

divided in 5 regions of equal length. In this simplified setting, we simulated two types of agents that differed only by the type133

of the information available to them to select actions and analyzed how their behaviour varied.134

The first type of agents did not use an explicit representation of time to perform the task. At each time step t, the state st135

(i.e., the information used to select actions) consisted in the agent’s position pt, in the treadmill and in a boolean variable wt,136

whose value was equal to 1, if the agent had previously reached the rear wall during the trial and 0, otherwise. Given these137

assumptions, each state can be written as st = {pt, wt} and the state space consisted of 5 pair of states (a total of 10 states).138

The second type of agents in addition, benefited from the information on the elapsed time since the beginning of the trial.139

Thus, each state was represented as st = {pt, wt, t}.140

For both types of agents, the task was simulated in an episodic manner and the initial position p0 at the beginning of each141

trial was assigned randomly as follows: the probability P (p0) that the initial state corresponds to p0 was proportional to142

q(1− q)p0 for p0 = 0, . . . , 4. We set the parameter q = 0.5 such as to account for the tendency of the rats to initiate trials in143

the reward area.144

During the rest of the trial, at each time step t, agents occupied a state st, and could select one of three different actions145

that determined a transition to a new state st+1. Action at = 0 corresponded to remaining still and, considering that the146

treadmill was on, moving one position backward on the treadmill. Action at = 1 consisted in moving at the same speed of the147

treadmill (vT ), but in the opposite direction. Thus after performing this action, the agents remained at the same position on148

the treadmill. Finally, performing action at = 2, the agents moved at twice the treadmill speed which made him move one149

position step forward. We also introduced two physical constraints that limited the action space at the extreme sides of the150

treadmill. In the front of the treadmill, the agents cannot move forward (i.e., when the position was p = 0 the action a = 2 was151

forbidden). In the rear of the treadmill the agents could not stay still, as otherwise it would hit the rear wall (i.e., when p = 4152

the action a = 0 was not available).153

After entering a new state at time t+ 1, the agents received a reward rt+1 = r̄. The value r̄ varied depending on the position154

pt+1 and on the current time t. Similarly than in the real task, the agent had to reach the most frontal region of the treadmill155

(equivalent of the reward area) after 7 time steps (the minimum ET in the frontal region to obtain a reward is 8 time steps).156

We also created an equivalent of the time out period (see above in experimental method section), such as the agent was not157

penalized to start a trial in the reward area. Still, the agents had to leave the front of the treadmill (i.e., p = 0) within 2158

time steps. Finally, agents had a maximum amount of time (15 time steps) to perform the task. More specifically, reward159

rules were as follows. The punishment associated with an early ET (2 ≤ ET < 8) had a maximum (negative) value of r̄ = −2160

and its absolute value decreased linearly between 2 and 7. Correct trials occurred when agents reached the frontal region of161

the treadmill between 8 and 15 time step (8 ≤ ET ≤ 15), which delivered a reward with a maximum value of r̄ = +3, that162

decreased linearly with ET . Omission trials (i.e., those trials in which the agent did not approach the front area within 15 time163

steps) were associated with the delivery of a small punishment r̄ = −0.5. We also modeled the cost of the passage of time while164

the treadmill was on, by adding a small punishment r̄ = −0.1 at each time step in all trial types.165

Agents learned the value (expressed in terms of future rewards) of selecting a particular action in a specific internal state166

via the Q-learning algorithm. Specifically, for any state-action pair {s, a}, a state-action value function Q(s, a) can be defined167

as follows:

Q(s, a) = E
[
Gt | st = s, at = a

]
[1]

168

where Gt =
∑T−t

i=0 γ
i · rt+1+i is the discounted sum of expected future rewards, and γ is the discount factor (0 ≤ γ ≤ 1).169

Equation 1 implies that each value Q(s, a) is a measure of the future reward that the agent expects to receive after performing170

action a when its current state is s.171

Following the Q-learning algorithm, after each time step t, the Q(st, at) will change according to:

∆Q(st, at) = α
(
rt+1 + γ maxa′{Q(st+1, a

′)} −Q(st, at)
)

[2]

172

where the parameter α represents the learning rate.173

These state-action values are then used to determine the policy π: a mapping from states to actions (i.e., the way agents174

acted in any possible state). In our model, the policy was stochastic and depended on the Q-values via a softmax distribution:175

where the parameter β governs the exploitation/exploration trade-off (when β → 0, the policy becomes more and more random).176
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P (a | st) = exp(βQ(st, a))∑
a′ exp(βQ(st, a′))

[3]

Updates in Equation 2 can be proved to converge to the optimal Q-value for each pair {s, a} (4). Optimal value means the177

value (in terms of rewards) that action a assumes in state s, when the policy of agent across all the sequence of states and178

actions is such to maximize future rewards. Therefore selecting actions with a probability that increases with the Q-values179

allows learning of the optimal behavior.180

We used the formalism described above to simulate n = 15 agents of the first type and n = 15 of the second type. Each181

agent differed in the exploitation/exploration parameter (see below) and performed the task for 30 sessions of 100 trials each.182

The exploitation/exploration parameter started with an initial value β0, and was increased after each session of training183

by an amount ∆β (i.e., the policy became more and more greedy), up to a maximum of βmax = 10. Different agents were184

represented by different values of β0 and ∆β. The agents of our simulations corresponded to all the possible combinations of185

β0 = {0, 2, 2.5, 3, 4} and ∆β = {0.3, 0.35, 0.4}. In all the simulation, we set the parameters α = 0.1, and γ = 0.99.186

Data Organization and Availability. Data from each session was stored in separate text files, containing position information, entrance187

times, treadmill speeds, and all the task parameters. The entire data processing pipeline was implemented in python, using188

open-source libraries and custom-made scripts. We used a series of Jupyter Notebooks to process, quantify, and visualize every189

aspect of behavior, to develop and run the reinforcement learning algorithms, and to generate all the figures in this manuscript.190

All the Jupyter Notebooks, as well as the raw data necessary for full replication of the figures and videos are publicly available191

via the Open Science Foundation (https://osf.io/7s2r8/?view_only=7db3818dcf5e49e88d708b2597a21956).192
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Movie S1. Video clip showing several consecutive trials from an animal performing its first training session193

in control condition. Information about trial number, time since light on, GT, ET , and ongoing task status194

are given on the upper left corner.195

Movie S2. Same as Video 1 for a well-trained animal performing the task in control condition.196

Movie S3. Same as Video 2 for an animal performing the task in the immobile treadmill condition.197
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