Supporting Information for:

The structure of the extracellular domains of the human interleukin 11 α -receptor elucidates mechanisms of cytokine engagement

Riley D. Metcalfe¹, Kaheina Aizel^{1,2}, Courtney O. Zlatic¹, Paul M. Nguyen^{2,3}, Craig J. Morton¹, Daisy Sio-Seng Lio^{1,4}, Heung-Chin Cheng¹, Renwick C.J. Dobson^{1,5}, Michael W. Parker^{1,6}, Paul R. Gooley¹, Tracy L. Putoczki^{2,3,7}, Michael D.W. Griffin¹.

¹ Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia,

² Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia

³ Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia

⁴ Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia

⁵ Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand

⁶ ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia

⁷ Department of Medical Biology and Department of Surgery, University of Melbourne, Parkville, Victoria, Australia

This Supporting Information comprises:

Table S1 Figures S1-S10 Movies S1-S4
 Table S1. SAXS data collection and analysis.

	IL-11 _{Δ10}	IL-11 _{FL}	IL-11Rα _{D1-D3}	IL-11Rα _{D1-D3} / IL-11 _{Δ10} complex
SAXS data collectio	n			
Instrument/source	Australian Synchrotron SAXS/WAXS beamline equipped with Pilatus 2M detector and sheath-flow cell for SEC-SAXS.			
Wavelength (Å)	1.078			
Beam energy (keV)	11.5			
Beam size (µm)	250 × 130			
Sample-to- detector distance (mm)	2038		2539	
<i>q</i> measurement range (Å ⁻¹) ^a	0.007-0.664		0.006-0.534	
Absolute scaling method	Comparison with scattering from 1 mm pure water			
Normalization	To transmitted intensity from beamstop counter			
Exposure time	1 s measurem	ents from SEC	-SAXS elution	
Sample	293			
temperature (K)				
SEC-SAXS paramete	ers			
Column	Superdex 200	5/150 Increas	e	
Flow	0.45			
rate (mL/min)	-	-	2.2	2.65
Loading	5	5	2.2	2.65
(IIIg/IIIL)	50			
	50			
Solvent	20 mM Tris-H	Cl pH 8.5, 150	mM NaCl. 0.2% sodi	um azide
Solvent	20 1110 113 11	ci pi 0.5, 150		
Software employed	ł			
SAXS data	I(q) vs q using	Scatterbrain 2	2.8.2, SEC-SAXS solve	nt subtraction using
reduction	CHROMIXS from ATSAS 2.8.3			
Basic analysis	PRIMUS from ATSAS 2.8.3			
(Guinier <i>, P(r),</i>	GNOM from A	<i>TSAS</i> 2.83		
molecular mass)				
Shape modelling	DAMMIF from	n <i>ATSAS</i> 2.8.3		
	DAMAVER fro	m ATSAS 2.8.3	5	
	DAMMIN from	n AISAS 2.8.3		

Calculation of	CRYSOL from ATSAS 2.8.3
theoretical	
intensities	

Structural parameters

Structural parameters					
Mass from $V_{\rm c}$	16.3 (18.2,	17.2 (19.2,0.90)	33.5 (32.2,	50.1 (50.4, 0.99)	
(kDa) (expected	0.90)		1.04)		
mass, ratio to					
expected, in					
brackets) ^b					

Guinier analysis ^C

Guillel allarysis				
<i>R</i> _g (Å)	17.43 ± 0.11	18.89 ± 0.11	30.16 ± 0.32	33.07 ± 0.37
<i>I(0)</i> (cm ⁻¹)	0.0061	0.0068	0.011	0.0094
	± 2.4 ×10 ⁻⁵	± 2.4 ×10 ⁻⁵	± 6.7 ×10 ⁻⁵	± 6.4 ×10 ⁻⁵
<i>qR</i> g min,max	0.18, 1.31	0.21,1.31	0.25, 1.30	0.27, 1.29
<i>P(r)</i> analysis ^C				
<i>R</i> g (Å)	17.59 ± 0.74	19.00 ± 0.90	31.20 ± 0.14	33.41 ± 0.21
<i>I(0)</i> (cm⁻¹)	0.0061	0.0068	0.0094	0.0093
	± 2.1 ×10 ⁻³	± 2.3 ×10 ⁻³	± 5.7 ×10 ⁻³	± 5.1 ×10 ⁻³
D _{max} (Å)	54	61	95	102
Porod volume (Å ³)	21700	27600	41200	85500

Shape modelling

DAMMIF (10 calculations, default parameters)	
<i>q</i> range for fitting	0.008-0.16
(Å)	
Symmetry,	P1, none
anisotropy	
assumptions	
NSD (standard	0.797 (0.100)
deviations)	
χ^2 range	1.035-1.036
Constant	8.31 ×10 ⁻⁵
adjustment to	0.01 / 10
intensities	
Resolution (from	36
SASRES) ^d (Å)	
DAMMIN (default narameters)	
a range for fitting	0 008-0 16
	0.000-0.10

Symmetry,	<i>P</i> 1, none
anisotropy	
assumptions	
χ ²	1.035
Constant	8 36 ×10 ⁻⁵
adjustment to	0.00
intensities	

Atomic modelling

CRYSOL (no constant subtraction)					
Structure	PDB ID: 6040	PDB ID: 6040	PDB ID: 6O4P, chain A, residues 2-297 ^e	Docked model	
χ ²	1.43	3.21	1.05	1.03	
Calculated R _g (Å)	17.41	17.69	32.17	33.97	
SASBDB IDs for data and models:					
	SASDGH2	SASDGJ2	SASDGG2	SASDGK2	

^a q=($4\pi sin\theta$)/ λ

^b(1)

^c Errors from *AUTORG* or *GNOM*, ± standard deviation

^d (2)

^e Corresponding to the residues present in the IL-11R α_{D1-D3} construct.

60 r (Å)

20 40 80 100

1.5 2 2.5 Volume (mL)

З

0.5

Figure S1: A) Electron density for the two disulfide bonds in D1 of IL-11R α (contorted at 1 σ), i) 2Fo-Fc map, ii) simulated annealing composite-omit map. B) Electron density for the WSXWS motif and surrounding residues for D3 of IL-11R α (contoured at 1 σ), i) 2Fo-Fc map, ii) simulated annealing composite-omit map. C) The cytokine-binding domains of IL-11R α overlaid with the cytokine-binding domains of (i) IL-6R α (PDB ID: 1N26) (3), and (ii) gp130 (PDB ID: 111R, gp130 chain) (4). D) Surface electrostatics for IL-11R α , i) and IL-6R α , ii) (PDB ID: 1N26), calculated using APBS. E) Raw AUC data (circles) overlaid with the best fit to a continuous size distribution [c(s)] model for the distributions shown in Figure 1D and 1E. F) Supporting SAXS data for IL-11R α _{D1-D3}, showing the SEC-SAXS chromatograms, a pairwise distance distribution (P(r)) plot and a Guinier plot, for the data shown in Figure 1E.

Figure S2: Supporting MD data. A) C α RMSD and order parameter values for all residues in IL-11R α . B) i) Interdomain distance distributions for the D1-D2 interdomain distance, and ii) Interdomain distance distributions for the D2-D3 interdomain distance through each of the 50 ns simulations. C) C α RMSD, i) and D1-D2 interdomain distance distribution, ii) for the C72F mutation. D) C α RMSD, i) and D1-D2 interdomain distance distribution, ii) for the P178T

mutation. E) Overlay of frames from each of the three MD simulations conducted for the IL-11R α P178T mutant. F) C α RMSD, i) and D2-D3 interdomain distance distribution, ii) for the R274W mutation. G) C α RMSD, i) and D2-D3 interdomain distance distribution, ii) for the P199R mutation. H) Overlay of frames from an MD simulation of the P43T mutation. WT IL-11R α is shown for direct comparison. I) Overlay of frames from an MD simulation of the C108S mutation. WT IL-11R α is shown for direct comparison. C98, which forms a disulphide bond with C108 in IL-11R α is also shown in the figure. J) Overlay of frames from an MD simulation of the R239C mutation. WT IL-11R α is shown for direct comparison. The other residues in the tryptophan-arginine ladder are shown in cyan. Error bars in all plots are standard deviations, calculated from three 50 ns simulations.

Figure S3: A) Differential scanning fluorimetry data, showing that IL-11_{FL} and IL-11_{Δ10} have very similar thermal stability, and that both are highly stable. IL-11_{Δ10} has a temperature of hydrophobic exposure (*T*_h) of 83.8 °C, and IL-11_{FL} has a *T*_h of 87.0 °C. B) Representative density for the structure of IL-11_{Δ10}. i) a portion of the polyproline helix, and ii) a C-terminal portion of helix D. Maps contoured at 1 σ . C) Structural alignment of previous (PDB ID: 4MHL) and current IL-11 structures, showing that they have a similar structure (rmsd 0.5 Å), with a slight difference in position of the A and D helices. D) Comparison of P103 in 4MHL and the structure of IL-11_{Δ10}. i) an overlay of the 3₁₀ helix in both structures, showing the *cis-trans* isomerism exhibited by Pro103, ii-iii) the density supporting the position of Pro 103 in, ii) IL-11_{Δ10} and iii), 4MHL (maps contoured at 1.5 σ). E) C α RMSD and order parameter values for all residues in IL-11 (n=3 100 ns simulations), calculated from the MD simulation. Error bars are standard deviations. F) Raw AUC data (circles) overlaid with the best fit to a continuous size distribution [c(s)] model for the distributions shown in Figure 3G. G) SEC-SAXS chromatogram, a pairwise distance distribution (P(r)) plot, and a Guinier plot for the SAXS data shown in Figure 3H.

Figure S4: Biophysical characterisation of IL-11_{FL}. A) c(s) distributions for IL-11_{FL}, at three concentrations, showing that it is monomeric in solution. B) Raw AUC data (circles) overlaid with the best fit to a continuous size distribution [c(s)] model for the distribution shown in (A). C) SAXS data for IL-11_{FL}, with the fit to the structure of IL-11_{Δ10} overlaid (χ^2 = 3.21). D) SEC-SAXS chromatogram, pairwise distance distribution (P(r)) plot, and Guinier plot for IL-11_{FL}.

Figure S5: Raw AUC data (circles) overlaid with the best fit to a continuous size distribution [c(s)] model for the distributions shown in, A) i) Figure 4Ai, ii) Figure 4Aii, B) Figure 4B, C) the titration shown in Figure 4D.

Figure S6: Biophysical characterization of muGFP-IL-11 and the IL-11/IL-11R α complex. A) c(s) distribution for the complexes formed between IL-11_{FL} and IL-11R α_{ECD} , and IL-11_{FL} and IL-11R α_{D1-D3} . The complexes were formed by mixing 5 µM IL-11 and IL-11R α prior to the experiment, with no further purification. B) SEC-MALS chromatograms (showing light scattering at 90 ° against elution volume) and molecular weight traces for IL-11 Δ_{10} (M_w 21.0 kDa), and IL-11R α_{D1-D3} (M_w 36.3 kDa). C) c(s) distributions for muGFP-IL-11 at four concentrations measured using both absorbance (black) and fluorescence (green) detection, showing that it is monomeric in solution. D) Isothermal titration calorimetry isotherm for the interaction between IL-11_{FL} and IL-11R α_{EC} . The K_D was 55 ± 8 nM (n=3 titrations, representative titration shown). E) Measurement of ΔC_p for the IL-11 Δ_{10} /IL-11R α_{D1-D3} interaction. Titrations at two additional temperatures are shown in i), 283 K and ii) 298 K. The heat capacity plot is shown in iii).

Figure S7: A) SEC-SAXS chromatogram, pairwise distance distribution (P(r)) plot, and Guinier plot for the IL-11_{Δ10}/IL-11Rα_{D1-D3} complex data shown in Figure 5C. B) Western blot, showing activation of STAT3 by both IL-11_{Δ10} and IL-11_{Δ10/R169A} in the colon cancer cell line DLD1. Complete membrane images are shown in Figure S10B. C) CD spectrum for IL-11Rα D3, showing a characteristic all-β spectrum, showing the protein is well folded. D) c(s) distributions for IL-11Rα_{D3} at three concentrations, showing that it is monomeric in solution. E) ¹⁵N-¹H HSQC spectrum of purified, refolded IL-11Rα_{D3}. The spectrum was collected on 130 μ M ¹⁵N-IL-11Rα_{D3} in 20 mM bis-tris, 50 mM arginine, 10% ²H₂O, pH 7. Of 108 predicted backbone amide peaks, 93 peaks are observed. Tryptophan indole NH resonances are indicated by the dashed outline.

Figure S8: Raw AUC data (circles) overlaid with the best fit to a continuous size distribution [c(s)] model for the distributions shown in, A) Figure 5D ,B) Figure 5E, C) Figure 5F, D) Figure S6A, E) Figure S6B, F) Figure S7D.

Figure S9: A) Overlay of final, top-scoring docked model and initial starting model. B) Overlay of top ten scoring docked models. C) Overlay of top-scoring model with the crystal structure of the IL-6/IL-6R α complex (PDB ID: 1P9M) (5). D) *Ab initio* model of the IL-11R $\alpha_{D1-D3}/IL-11_{\Delta 10}$ complex. (calculated using *DAMMIN*, see Methods), overlaid with the docked model. E) the fit of the *DAMMIN* model to the data ($\chi^2 = 1.04$). F) Position of residues previously studied by mutagenesis (6,7) on the model of the IL-11/IL-11R α complex.

Figure S10: Complete membrane images for, A) the blots shown in Figure 3 and B) the blots shown in Figure S7.

Movie Captions:

Movie S1: Animation of MD simulation of WT IL-11R α and the IL-11R α C72F mutant. Movie S2: Animation of MD simulation of WT IL-11R α and the IL-11R α P176T mutant. Movie S3: Animation of MD simulation of WT IL-11R α and the IL-11R α R274W mutant. Movie S4: Animation of MD simulation of WT IL-11R α and the IL-11R α P199R mutant.

Supporting Information References:

- 1. Rambo, R. P., and Tainer, J. A. (2013) Accurate assessment of mass, models and resolution by small-angle scattering. *Nature* **496**, 477-481
- 2. Tuukkanen, A. T., Kleywegt, G. J., and Svergun, D. I. (2016) Resolution of ab initio shapes determined from small-angle scattering *IUCrJ* **3**, 440-447
- Varghese, J., Moritz, R., Lou, M., Van Donkelaar, A., Ji, H., Ivancic, N., Branson, K., Hall, N., and Simpson, R. (2002) Structure of the extracellular domains of the human interleukin-6 receptor α-chain. *P Natl Acad Sci USA* **99**, 15959-15964
- 4. Chow, D., He, X., Snow, a. L., Rose-John, S., and Garcia, K. C. (2001) Structure of an extracellular gp130 cytokine receptor signaling complex. *Science* **291**, 2150-2155
- 5. Boulanger, M. J., Chow, D.-c., Brevnova, E. E., and Garcia, K. C. (2003) Hexameric structure and assembly of the interleukin-6/IL-6 alpha-receptor/gp130 complex. *Science* **300**, 2101-2104
- Tacken, I., Dahmen, H., Boisteau, O., Minvielle, S., Jacques, Y., Grötzinger, J., Küster, A., Horsten, U., Blanc, C., Montero-Julian, F. a., Heinrich, P. C., and Müller-Newen, G. (1999) Definition of receptor binding sites on human interleukin-11 by molecular modeling-guided mutagenesis. *European Journal of Biochemistry* 265, 645-655
- Barton, V., Hudson, K. R., and Heath, J. K. (1999) Identification of three distinct receptor binding sites of murine interleukin-11. *Journal of Biological Chemistry* 274, 5755-5761