Supporting Information for

Free Base Porphyrins as CEST MRI Contrast Agents with Highly Upfield Shifted Labile Protons

Xiaoxiao Zhang, Yaping Yuan, Sha Li, Qingbin Zeng, Qianni Guo, Na Liu, Minghui Yang, Yunhuang Yang, Maili Liu, Michael T. McMahon and Xin Zhou*

*Corresponding author: Email: <u>xinzhou@wipm.ac.cn</u>

2 Supporting Information Figure S1 Influence of pH on the contrast of TPPS₄ ($\omega_1 = 5.4 \mu$ T, t_{sat}= 3 s, 12.5 3 mM).

5 Supporting Information Figure S2 Influence of concentration on the contrast of TPPS₄. The

6 concentration dependence of the contrast of TPPS₄ at pH 7.0-7.2 was measured at a saturation field 7 strength (ω_1) = 5.4 µT. The Z-spectra and MTR_{asym} spectra at concentrations 0 mM,1.25 mM, 2.5 mM, 5 8 mM, 7.5 mM, 10 mM, 15 mM and 20 mM were collected and are shown below. 1.5% contrast was 9 obtained at 2.5 mM.

4

1

Supporting Information Figure S3 Influence of pH on the contrast of porphobilinogen ($\omega_1 = 5.4 \,\mu\text{T}$, $t_{sat} =$ 14 3 s, 12.5 mM).

Supporting Information Figure S4 Influence of pH on the contrast of uroporphyrin I ($\omega_1 = 5.4 \mu T$, $t_{sat} = 3$

18 s, 25 mM).

21 Supporting Information Figure S5 Influence of pH on the contrast of coproporphyrin I ($\omega_1 = 5.4 \mu T$, $t_{sat} =$

22 3 s, 12.5 mM).

32

12.5 mM).

Supporting Information Figure S8 Z-spectra and MTR_{asym} of Chlorin e6 using different saturation field strengths. The saturation power dependence of the contrast of Ce6 at pH 7.0 was measured using different saturation field strength. The Z-spectra and MTR_{asym} spectra using $\omega_1 = 1.2 \mu$ T, 2.4 μ T, 3.6 μ T, 5.4 μ T, 7.2 μ T, 10.8 μ T and 11.4 μ T were collected and are shown below. Two peaks were observed at -8.75 ppm and -10.25 ppm when weak saturation power ($\omega_1 = 1.2 \mu$ T, 2.4 μ T, 3.6 μ T or 5.4 μ T) was employed.

41 **Supporting Information Figure S9** Influence of pH on the contrast of TCPP ($\omega_1 = 5.4 \mu T$, $t_{sat} = 3 s$, 12.5

- 42 mM).
- . .

- 43 44
- 45

46

47 **Supporting Information Figure S10** Influence of pH on the contrast of TGPP complex ($\omega_1 = 5.4 \mu T$, t_{sat}= 48 3 s, 12.5 mM).

Supporting Information Figure S11 CEST contrast of TPPS₄ in the presence of various metal ions (1 eq.). The effect of metal ions on the contrast of TPPS₄ were tested at a concentration of 12.5 mM, pH= 7, $\omega_1 = 5.4 \,\mu\text{T}$. After simply mixed metal ions with TPPS₄ solution at 37 °C for 4 h under constant shaking and titrated using high-concentration HCl/NaOH to neutral pH, the Z-spectra in presence of 1 eq. metal salts include ZnCl₂, CaCl₂, MgCl₂, CdCl₂ and AlCl₃ were collected.

59 Supporting Information Figure S12 In vitro test of TPPS₄ in the presence of 10% HSA (pH=7.3, 37 °C,

60 5.4 μ T, 3 s for saturation).

62

Supporting Information Figure S13 In vivo Z-spectra and MTR_{asym} spectra for the tumor of mouse 2
with data collected pre-injection and post injection. a) Z-spectra of tumor at different time points (pre, 20
min, 40 min, 60 min, 80 min, 100 min, 120 min, 140 min and 160 min); b) MTR_{asym} of tumor at different
time points. For these experiments, 50 µl of 0.1 M TPPS₄ solution was injected into mouse through

67	Intratumoral (IT) injections. Before injection, the B ₀ inhomogeneity was measured and corrected using the
68	water saturation shift referencing approach. An 105-offset Z-spectrum (from 15 ppm to -15 ppm) was also
69	acquired using saturation field strength of 3.6 μ T. For the dynamic CEST contrast measurements, a series
70	of whole Z-spectra and water saturation shift referencing experiments were acquired after injection. The
71	CEST contrast map was calculated by $MTR_{asym} = [S(+\Delta\omega) - S(-\Delta\omega)]/S(+\Delta\omega)$. The images at every three
72	adjacent time points were averaged to increase the contrast-noise-ratio. The maximum CEST contrast at -
73	9.75 ppm was up to 14.5% after injection of $TPPS_4$ and markedly decreased over 3 hours. The contrast
74	map before and after injection are showed in Supporting Information Table S8 and S9.

рН	QUESP fiting
pH= 5.8	$K_{sw} = 4300 \text{ s}^{-1}$
pH=6.0	$K_{sw} = 2000 \text{ s}^{-1}$

Supporting Information Table S1 Measured proton exchange rates of TPPS₄ at different pH values.

Page 9 of 24

- 78 Supporting Information Table S2 Measured proton exchange rates of uroporphyrin I at different pH
- 79 values.

pH= 7.4

$$pH= 7.4$$
 $k_{sw}= 1050 \text{ s}^{-1}$
 0.1
 0.2
 0.1
 0.2
 0.1
 0.2
 0.1
 0.2
 0.1
 0.2
 0.1
 0.2
 0.1
 0.1
 0.2
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0

Supporting Information Table S3 Measured proton exchange rates of coproporphyrin I at different pH.

Supporting Information Table S4 Measured proton exchange rates of hematoporphyrin at different pH.

91 Supporting Information Table S5 Measured proton exchange rates of Ce6 at different pH.

Supporting Information Table S6 Measured proton exchange rates of TCPP at different pH.

рН	QUESP fiting	
		Page 15 of

Supporting Information Table S7 Measured proton exchange rates of TGPP at different pH.

- **Supporting Information Table S8** T_{2w} map and CEST contrast map of Mouse 1 and Mouse 2.

	Mouse 1	Mouse 2
T_{2w} map		

Supporting Information Table S9 T_{2w} map and CEST contrast map of Mouse 3 and Mouse 4.

	Mouse 3	Mouse 4
T_{2w} map		
Pre- injection	0.2 0.16 0.12 0.08 0.04 0	0.2 0.16 0.12 0.08 0.04 0
20 min	0.2 0.16 0.12 0.08 0.04 0	0.2 0.16 0.12 0.08 0.04 0

120 min	0.2 0.16 0.12 0.08 0.04 0	0.2 0.16 0.12 0.08 0.04 0
140 min	0.2 0.16 0.12 0.08 0.04 0	0.2 0.16 0.12 0.08 0.04 0
160 min	0.2 0.16 0.12 0.08 0.04 0	0.2 0.16 0.12 0.08 0.04 0