Supporting Information For

A Cascade Reaction of Cinnamyl Azides with Acrylates Directly Generates Tetrahydro-Pyrrolo-Pyrazole Heterocycles

Angela S. Carlson[‡], En-Chih Liu[‡], and Joseph J. Topczewski*

Department of Chemistry, University of Minnesota Twin Cities, Minneapolis Minnesota 55455, United States jtopczew@umn.edu

Table of Contents

Reaction Optimization	
X-ray Data	
HPLC data	
References	S10
NMR Spectra Images	S11

Reaction Optimization

Procedure for screening reaction concentration (Table S1) - A stock solution of azide **1b** (150 mg, 0.942 mmol) and naphthalene (29.9 mg, 0.234 mmol, internal standard) was prepared in C_6H_6 (1.3 mL). Individual 4 mL vials were charged with 0.25 mL portions of this solution and diluted with C_6H_6 (0, 0.25, 0.75, and 1.75 mL) to the appropriate concentration. Methyl acrylate (20 μ L) and TEA (80 μ L) were added and the vials were sealed under air and heated to 70 °C. After 65 h, the reactions were concentrated under reduced pressure and analyzed by ¹H NMR. All other screens were performed via an analogues procedure varying the specified conditions.

Table S1. Concentration screen.

entry	concentration (M)	1a (%) ^a	5a (%) ^a	4a (%) ^a
1	0.8	8	16	30
2	0.4	4	29	32
3	0.2	10	49	20
4	0.1	22	50	7

^aConversion and yield were determined by ¹H NMR.

Table S2. Temperature screen.

^aConversion and yield were determined by ¹H NMR.

Procedure for screening solvents (Table S3) - Individual 4 mL vials were charged with cinnamyl azide (24.2-27.4 mg, 0.152-0.172 mmol, 1 equiv) and naphthalene (10.5-11.8 mg, 82.0-92.2 μ mol). Each respective solvent (0.8 mL, 0.2 M) was added followed by methyl acrylate (17 uL, 0.19 mmol, 1.2 equiv) and TEA (66 uL, 0.47 mmol, 3 equiv). The reactions were sealed under air and heated to 70 °C. After 24 h, the reactions were concentrated under reduced pressure and analyzed by ¹H NMR.

		CO ₂ Me			
Ph N	CO ₂ Me 1.2 equiv TEA (3 equiv) solvent (0.2 M) 70 °C, 24 h			+ Ph H NH	P H CO_2Me + Ph H CO_2I
Entry	Solvent	$1a (\%)^a$	$5a (\%)^a$	$3a (\%)^a$	$(1)^{-4a}$
1	MeOH	3	3	0	38
2	DMSO	-	21	0	34
3	EtOAc	37	37	6	6
4	Acetone	29	38	2	13
5	DME	34	38	7	8
6	Dioxane	34	41	12	10
7	MTBE	48	31	7	5
8	DCE	27	21	0	-
9	THF	24	37	4	7
10	C_6H_6	19	45	0	9
11	PhMe	40	50	7	8
12	$C_6H_4Cl_2$	29	45	1	12

Table S3. Solvent Screen.

^aConversion and yield were determined by ¹H NMR.

Table S4. Non-polar solvent screen.

^aConversion and yield were determined by ¹H NMR.

Ar 1d Ar = 4-CH ₃ -C	$\begin{array}{c} & CO_2Me \\ 3 \text{ equiv} \\ TEA (3 \text{ equiv}) \\ \mathbf{N}_3 \frac{\text{additive}}{C_6H_6 (0.2 \text{ M})} \\ 70 \text{ °C}, 24 \text{ h} \\ C_6H_4 \end{array} \xrightarrow[]{} \text{Ar} (\texttt{t})\text{-2}$	2Me + Ar H Ar H (±)-5d	CO ₂ Me -NH + Ar + (±)-	N CO ₂ Me NH ⁺ Ar	H CO ₂ Me H N CO ₂ Me (±)-4d
entry	additive	1d (%) ^{<i>a</i>}	5d (%) ^{<i>a</i>}	3d (%) ^{<i>a</i>}	4d $(\%)^a$
1	None	1	46	17	9
2	TFA (1.5 eq)	1	21	3	29
3	TFA (2.5 eq)	1	20	2	32
4	AcOH (1.5 eq)	6	9	0	56
5	AcOH (2.5 eq)	4	3	0	67

Table S5. Acid additive screen.

^aConversion and yield were determined by ¹H NMR.

Table S6. Base and buffer additive screen.

^aConversion and yield were determined by ¹H NMR.

Table S7. Equivalents of DIPEA screen.

Ar 1d Ar = 4-CH ₃ -C	$N_{3} \xrightarrow[C_{6}H_{4}]{C_{6}H_{6}(0.2 M)} \xrightarrow[N_{1}]{C_{6}H_{4}(0.2 M)} \xrightarrow[N_{1}]{C_{6}H_{4}(0.2 M)} \xrightarrow[A_{1}]{C_{6}H_{4}(0.2 M)} \xrightarrow[A_{1}]{C_{6}H_{$	+ Ar H 2d (±)-5d	CO ₂ Me NH + Ar H (±)-	N CO ₂ Me NH ⁺ Ar	H CO ₂ Me CO ₂ Me H N (±)-4d
entry	DIPEA (equiv)	2d (%) ^{<i>a</i>}	5d (%) ^{<i>a</i>}	$3d (\%)^a$	4d $(\%)^a$
1	3.0	0	22	58	6
2	1.5	0	17	65	3
3	1.0	0	17	65	3
4	0.5	0	41	23	0
5	0	41	0	42	0

^aConversion and yield were determined by ¹H NMR.

Table S8 X-ray Data

v	2hh	5a	5bb	5v·HCl	S1
structure			NO ₂ N ⁻ Me H NH	Me CO ₂ Me NH ₂ CI NH ₂ ·1/2 H ·1/2 CI	N ^{-H} , CO ₂ Me
CCDC number	1978783	1978781	1978782	1980239	1986830
formula	$C_{24}H_{20}N_4O_3$	$C_{13}H_{15}N_3O_2$	$C_{14}H_{16}N_4O_4$	$\begin{array}{c} C_{17}H_{22}ClN_3O_2 \cdot 1/2 \\ HCl \end{array}$	$C_{38}H_{33}N_3O_2$
formula weight	412.1535	245.1164	304.1172	353.1285	563.2573
crystal system	monoclinic	orthorhombic	monoclinic	monoclinic	monoclinic
space group	$P2_{1}/c$	$P2_{1}2_{1}2_{1}$	$P2_{1}/c$	$P2_{1}/c$	C_2
a (Å)	29.875(10)	6.0964(2)	7.1080(4)	14.0598(19)	17.0760(16)
b (Å)	5.607(2)	10.1676(3)	10.7667(6)	15.723(2)	9.7625(10)
c (Å)	12.349(4)	19.2632(7)	18.9286(9)	32.139(4)	18.847(3)
α (°)	90	90	90	90	90
β (°)	101.081(13)	90	91.471(2)	91.764(5)	110.108(3)
γ (°)	90	90	90	90	90
\dot{V} (Å ³)	2030.1(12)	1194.04(7)	1448.12(13)	7101.3(17)	2950.4(6)
Ζ	4	4	4	4	4
D_{calcd} (g/cm ³)	1.349	1.364	1.396	1.325	1.269
temperature (K)	100	100	125	125	126
θ_{\min}	2.78	2.91	2.18	2.67	2.30
θ_{max}	30.40	30.41	30.52	27.60	26.07
number of reflections	6181	3562	4439	9879	7390
<i>R</i> 1	0.0573	0.0384	0.0395	0.0403	0.0543
wR2	0.1475	0.1073	0.1503	0.1145	0.1518
sample preparation	slow evaporation with DCM	slow diffusion using DCM/hexanes	slow diffusion using DCM/hexanes	slow diffusion using HCl in dioxane/toluene	slow diffusion using DCM/hexanes

Figure S1. ORTEP drawing of compound **2hh** showing thermal ellipsoids at the 50% probability level

Figure S2. ORTEP drawing of compound 5a showing thermal ellipsoids at the 50% probability level

Figure S3. ORTEP drawing of compound **5bb** showing thermal ellipsoids at the 50% probability level

Figure S4. ORTEP drawing of compound 5v·HCl showing thermal ellipsoids at the 50% probability level (omit hydrogens for clarity)

Figure S5. ORTEP drawing of compound S1 showing thermal ellipsoids at the 50% probability level

HPLC data

General: Enantiomeric ratios were determined using a Shimadzu HPLC with a PDA detector and a RegisPack 5 Micron column or Regis Reflect column (C-Amylose A; 3μ , 250 mm x 4.6 mm). The purification of enantioenriched azide **1v** was adapted from a known method using a semipreparative chiral HPLC.¹ The absolute configuration of enantioenriched azide **1v** was assigned arbitrarily. Each enantioenriched azide **1v** was converted to the corresponding bicyclic amine **5v**. The yield and er were determined individually and the average value were reported as duplicate trials. Each sample was injected in duplicate. For each sample, the racemic retention time standard was run before and after the sample (4 total injections per sample).

HPLC Images

Compound **1v**: RegisPack 5 Micron, hexane : i PrOH = 98.8: 0.2 at 1.5 mL/min, T = 40 °C, λ = 249 nm: t_{ent1} = 5.4 min, t_{ent2} = 6.4 min

Figure S6. HPLC trace

Figure	S7.	HPLC	trace

Total

Total

Table 510. Tabulated Fileas					
Peak#	Ret. Time	Area	Area%		
1	5.4	8421249	99.5		
2	6.4	43427	0.5		

8464676

9870996

100.0

100.0

Compound **5v**: Reflect, C-Amylose A, hexane : i PrOH = 85: 15 at 1.0 mL/min, T = 40 °C, λ = 215 nm: t_{ent1} = 10.6 min, t_{ent2} = 12.7 min

Figure S9. HPLC trace

Table S12. Tabulated Areas

Peak#	Ret. Time	Area	Area%
1	10.6	1410043	50.1
2	12.7	1402667	49.9
Total		2812709	100.0

Figure S10. HPLC trace

Table S	S13.	Tabulated	Areas

Peak#	Ret. Time	Area	Area%
1	10.7	7234990	100
Total		7234990	100

Figure S11. HPLC trace

Table S14. Tabulated Areas

Peak#	Ret. Time	Area	Area%
1	10.9	6973	0.3
2	12.8	2757567	99.7
Total		2764540	100.0

References

 Ott, A. A.; Packard, M. H.; Ortuño, M. A.; Johnson, A.; Suding, V. P.; Cramer, C. J.; Topczewski, J. J. Evidence for a Sigmatropic and an Ionic Pathway in the Winstein Rearrangement. J. Org. Chem. 2018, 83, 8214–8224.

NMR Spectra Images

Compound **1b**. 400 MHz ¹H NMR spectrum in CDCl₃

Compound 1i. 400 MHz ¹H NMR spectrum in CDCl₃

Compound 1i. 101 MHz ¹³C NMR spectrum in CDCl₃

Compound 1i. 101 MHz ¹⁹F NMR spectrum in CDCl₃

Compound 11. 400 MHz ¹H NMR spectrum in CDCl₃

Compound 1m. 400 MHz ¹H NMR spectrum in CDCl₃

Compound 1n. 400 MHz ¹H NMR spectrum in CDCl₃

Compound 1s'. 101 MHz ¹³C NMR spectrum in CDCl₃

Compound 1s'. 376 MHz ¹⁹F NMR spectrum in CDCl₃

Compound 1s". 400 MHz ¹H NMR spectrum in CDCl₃

Compound 1s". 101 MHz ¹³C NMR spectrum in CDCl₃

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

Compound 1s". 376 MHz ¹⁹F NMR spectrum in CDCl₃

Compound 1s. 400 MHz ¹H NMR spectrum in CDCl₃

Compound 1s. 101 MHz ¹³C NMR spectrum in CDCl₃

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

Compound 1s. 376 MHz $^{19}\mathrm{F}$ NMR spectrum in CDCl3

Compound 5a. 400 MHz ¹H NMR spectrum in CDCl₃

Compound **5b**. 400 MHz 1 H NMR spectrum in CD₂Cl₂

Compound 5c. 500 MHz 1 H NMR spectrum in C₆D₆

Compound **5d**. 500 MHz 1 H NMR spectrum in C₆D₆

Compound **5e**. 500 MHz ¹H NMR spectrum in C_6D_6

S43

S44

Compound **5f**. 471 MHz ¹⁹F NMR spectrum in CDCl₃

20

Compound **5g**. 101 MHz ¹³C NMR spectrum in CD₂Cl₂

Compound **5h**. 500 MHz 1 H NMR spectrum in C₆D₆

Compound 5i. 400 MHz ¹H NMR spectrum in CD₂Cl₂

Compound **5i**. 101 MHz 13 C NMR spectrum in CD₂Cl₂

Compound **5i**. 376 MHz 19 F NMR spectrum in CD₂Cl₂

Compound **5j**. 400 MHz ¹H NMR spectrum in CD₃CN

Compound 5k. 500 MHz 1 H NMR spectrum in CD₂Cl₂

Compound **51**. 500 MHz 1 H NMR spectrum in C₆D₆

Compound **51**. 126 MHz 13 C NMR spectrum in C₆D₆

Compound 5m. 400 MHz ¹H NMR spectrum in CD₂Cl₂

Compound **5p**. 500 MHz ¹H NMR spectrum in CDCl₃

Compound **5q**. 400 MHz 1 H NMR spectrum in CD₃CN

S68

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

Compound 5s. 376 MHz ¹⁹F NMR spectrum in CDCl₃

. . .

Compound 5s. COSY NMR spectrum in CDCl₃

Compound **5s**. COSY NMR spectrum in CDCl₃ (expansion)

Compound **5s**. NOESY spectrum in CDCl₃

Compound 5s. NOESY spectrum in CDCl₃ (expansion)

S78

S80

S81

S82

Compound 5w. 500 MHz ¹H NMR spectrum in CDCl₃

S86

Compound 5y. 500 MHz ¹H NMR spectrum in CDCl₃

Compound 5z. 500 MHz ¹H NMR spectrum in CDCl₃

Compound 5aa. 500 MHz ¹H NMR spectrum in CDCl₃

Compound **5bb**. 500 MHz ¹H NMR spectrum in CDCl₃

Compound 5cc. 500 MHz ¹H NMR spectrum in CDCl₃

S97

Compound **5ee**. 500 MHz ¹H NMR spectrum in DMSO-*d*₆

Compound **5ff**. 500 MHz ¹H NMR spectrum in DMSO-*d*₆

S106

S111

S115

Compound 11: 500 MHz ¹H NMR spectrum in CDCl₃

S122

S125

Compound 14. 101 MHz ¹³C NMR spectrum in CDCl₃

Compound 15. 500 MHz ¹H NMR spectrum in CDCl₃

S128