Supporting Information

Paper title: Assessment of cerebral autoregulation indices – a modelling perspective

Xiuyun Liu^{1,2*}, PhD, Marek Czosnyka^{1,3}, PhD, Joseph Donnelly^{1,4}, PhD, Danilo Cardim^{1,5}, PhD, Manuel Cabeleira¹, MSc, Despina Aphroditi Lalou¹, MD, Xiao Hu⁶, PhD, Peter J. Hutchinson¹, PhD, Peter Smielewski¹, PhD

Running title: assessment of cerebral autoregulation

- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- 2. Department of Anesthesiology & Critical Care Medicine, School of Medicine, Johns Hopkins University,

Baltimore, MD, USA

- 3. Institute of Electronic Systems, Warsaw University of Technology, Poland
- 4. Department of Anaesthesiology, University of Auckland, Auckland, New Zealand
- 5. Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX,
- USA

6. School of Nursing, Duke University, Durham, NC, USA

S1 Tiecks' ARI Model¹

The cerebral blood flow velocities in response to different levels of cerebral autoregulation, was evaluated by a second-order linear differential equation (Supplementary equation 1-4)¹, where C is a constant value, denoting the initial value of ABP. ABP(n) represents mean ABP at time (sample) n and f stands for the sampling frequency of ABP. Tiecks' model separated CA into 10 levels through a set of parameters, which are the value of time constant (tau), damping factor (D), and the autoregulatory dynamic gain (K) (Supplementary Table 1). x₁ and x₂ are intermediate, state variables, which are set to zero at the start of the simulation process.

$$P(n) = ABP(n) - c$$
⁽¹⁾

$$x_1(n) = x_1(n-1) + \frac{P(n) - x_2(n-1)}{f \cdot tau}$$
 (2)

$$x_{2}(n) = x_{2}(n-1) + \frac{x_{1}(n) - 2D \cdot x_{2}(n-1)}{f \cdot tau}$$
(3)

$$V(n) = P(n) - K \cdot x_2(n)$$
(4)

Supplementary Table 1. Parameters used in Tiecks' model related to different levels of cerebral autoregulation

tau [s]	D	К	ARI	dROR,%/s
	0.00	0	0	0, Absent
				autoregulation
2.00	1.60	0.20	1	2.5
2.00	1.50	0.40	2	5.0
2.00	1.15	0.60	3	10.0
2.00	0.90	0.80	4	15.0
1.90	0.75	0.90	5	20.0, Normal
				autoregulation
1.60	0.65	0.94	6	30.0
1.20	0.55	0.96	7	40.0
0.87	0.52	0.97	8	60.0
0.65	0.50	0.98	9	80.0 Overly active
				autoregulation

tau is time constant, D is damping factor, K is autoregulatory dynamic gain, ARI is autoregulation index, dROR is dynamic rate of regulation according to Aaslid et al

References

1. Tiecks, F. P., Lam, A. M., Aaslid, R. & Newell, D. W. Comparison of Static and Dynamic Cerebral

Autoregulation Measurements. Stroke 26, 1014–1019 (1995).