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SUPPLEMENTARY NOTE 1. ENTANGLEMENT SWAPPING

Here we derive the expected measurement dynamics for the entanglement swapping ex-

periment. We label the quantum dots respectively 1, 2, 3, and 4. The electrons in dots 1

and 2 are initialized in the following two qubit entangled state,

|ψ12〉 =
1√
2

(
eiφ| ↑〉1| ↓〉2 − e−iφ| ↓〉1| ↑〉2

)
, (1)

where we take φ = −π
4

. The electrons in quantum dots 3 and 4 are also initialized in a two

qubit entangled state,

|ψ34〉 =
1√
2

(
eiχ(t)| ↑〉3| ↓〉4 − e−iχ(t)| ↓〉3| ↑〉4

)
, (2)

where χ(t) is the time dependent phase generated by the magnetic field gradient ∆B34. The

joint spin state of four qubits is,

|ψ0〉 =
1√
2

(
eiφ| ↑〉1| ↓〉2 − e−iφ| ↓〉1| ↑〉2

)
⊗ 1√

2

(
eiχ(t)| ↑〉3| ↓〉4 − e−iχ(t)| ↓〉3| ↑〉4

)
=

1

2

(
ei[φ+χ(t)]| ↑〉1| ↓〉2| ↑〉3| ↓〉4 − e−i[φ−χ(t)]| ↓〉1| ↑〉2| ↑〉3| ↓〉4

+ e−i[φ+χ(t)]| ↓〉1| ↑〉2| ↓〉3| ↑〉4 − ei[φ−χ(t)]| ↑〉1| ↓〉2| ↓〉3| ↑〉4
)
. (3)

In principle, entanglement swapping via joint measurements can be demonstrated on this

quantum state, by jointly measuring the qubits 2 and 3 (or 1 and 4), but for the ease of

implementing the joint measurement in our four qubit processor, we apply a unitary SWAP

operation between the qubits 2 and 3 that swaps the quantum states of electrons between

quantum dots 2 and 3, yielding the modified quantum state,

|ψ′0〉 =
1

2

(
ei[φ+χ(t)]| ↑〉1| ↑〉2| ↓〉3| ↓〉4 − e−i[φ−χ(t)]| ↓〉1| ↑〉2| ↑〉3| ↓〉4

+ e−i[φ+χ(t)]| ↓〉1| ↓〉2| ↑〉3| ↑〉4 − ei[φ−χ(t)]| ↑〉1| ↓〉2| ↓〉3| ↑〉4
)
. (4)

The electron in quantum dot 1 is now entangled to the electron in quantum dot 3, and the

electron in quantum dot 2 is entangled to the electron in quantum dot 4. When we perform

a joint measurement of qubits 3 and 4 in the {|S〉 , |T 〉} basis, and look at cases where the

outcome is a singlet, we find that the conditional state of electrons in quantum dots 1 and

2 is,

|ΦS34
12 〉 = 〈S34|ψ′0〉 =

1

2
√

2

(
ei[φ−χ(t)]| ↑〉1| ↓〉2 − e−i[φ−χ(t)]| ↓〉1| ↑〉2

)
. (5)
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Recall |S〉 = 1√
2

(
| ↑↓〉 − | ↓↑〉

)
. We find that, as a result of the joint measurement of the

electrons in dots 3 and 4, in cases where the measurement outcome is a singlet entangled

state, the reduced state of electrons in dots 1 and 2 is maximally entangled. Also note that

the coherent singlet-triplet evolution previously occurring between the qubits 3 and 4 now

happens between qubits 1 and 2, provided a singlet is measured on qubits 3 and 4.

We may also derive the unconditional quantum density matrix for qubits 1 and 2, after

an ideal joint measurement of qubits 3 and 4 in the {S, T} basis. We obtain the following

conditional states for qubits 1 and 2 for any of the triplet outcomes on qubits 3 and 4:

|ΦT 0
34

12 〉 = 〈T 0
34|ψ′0〉 = − 1

2
√

2

(
ei[φ−χ(t)]| ↑〉1| ↓〉2 + e−i[φ−χ(t)]| ↓〉1| ↑〉2

)
,

|ΦT+
34

12 〉 = 〈T+
34|ψ′0〉 =

e−i[φ+χ(t)]

2
| ↓〉1| ↓〉2 =

e−i[φ+χ(t)]

2
|T−12〉

|ΦT−34
12 〉 = 〈T−34|ψ′0〉 =

ei[φ+χ(t)]

2
| ↑〉1| ↑〉2 =

ei[φ+χ(t)]

2
|T+

12〉 . (6)

We have denoted |T 0〉 = 1√
2
(|↑↓〉+ |↓↑〉), |T+〉 = |↑↑〉 and |T−〉 = |↓↓〉. To simplify notation,

in this section we have distinguished the triplet states with superscripts.

It is easily verified that

|ΦS34
12 〉〈ΦS34

12 |+ |Φ
T 0
34

12 〉〈Φ
T 0
34

12 | =
1

4

(
|↑↓〉 〈↑↓|+ |↓↑〉 〈↓↑|

)
=

1

8

((
|S〉+ |T 0〉

) (
〈S|+ 〈T 0|

)
+
(
|S〉 − |T 0〉

) (
〈S| − 〈T 0|

))
=

1

4

(
|S〉 〈S|+ |T 0〉 〈T 0|

)
. (7)

The unconditioned state after measurement in the {S, T} basis is therefore,

ρ̂12 = |ΦS34
12 〉〈ΦS34

12 |+ |Φ
T 0
34

12 〉〈Φ
T 0
34

12 |+ |Φ
T+
34

12 〉〈Φ
T+
34

12 |+ |Φ
T−34
12 〉〈Φ

T−34
12 | =

Î4×4
4

(8)

in the {S, T} basis. This density matrix represents the completely mixed state, having no

time-dependence.

SUPPLEMENTARY NOTE 2. CLASSICAL FIDELITY BOUND FOR

ENTANGLEMENT SWAPPING

In this section, we argue that the classical bound on the teleportation fidelity for the

entanglement swap experiment is 2/3.
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The fidelity of classical teleportation of a single qubit is 2/3 [1]. The reason for this is the

following. If Alice wishes to teleport an unknown single qubit quantum state to Bob, she

could simply measure her qubit (to the best of her abilities using generalized measurements)

and transmit her result to Bob, who could then prepare his qubit according to Alice’s

measurement. The average probability that Bob’s state matches Alice’s original state is

2/3. This fidelity estimate is based on the arguments of Ref. [1], and it is the best one can

achieve in the absence of systematic errors and not using additional quantum resources. A

fidelity exceeding this bound, 2/3 for a single qubit, is a strong indication that additional

quantum features are present in the experiment and has been used as a good benchmark to

verify successful quantum teleportation.

To extend this result to entangled states of the type we use in this experiment, we note

that each pair of qubits initially occupies the ms = 0 subspace, where ms is the total z-

component of angular momentum. Therefore, the state of each pair of qubits is spanned

by the |S〉 and |T0〉 joint spin states and is a singlet-triplet qubit. Assuming conservation

of ms, upon post selection of one pair as a singlet, the other pair thus must have ms = 0

and is also a singlet-triplet qubit. Thus, we can view teleportation of entangled states in

our experiment as a transfer of singlet-triplet qubit states, and we may ask, how well can

Alice classically transmit an individual singlet-triplet qubit. Note also that our experiment

involves teleportation not of arbitrary singlet-triplet states, but only states of the form

cos(θ/2) |S〉+exp(±iπ/2) sin(θ/2) |T0〉. Because the fidelity with which Bob can approximate

Alice’s states does not depend on the azimuthal angle (here ±π/2) of her state on her Bloch

sphere, we expect that the relevant classical bound for this experiment is identical to the

usual single-qubit result of 2/3. Below we provide a proof of this result.

Let |ψ〉 = cos (θ/2) |0〉 + eiφ sin (θ/2) |1〉 be an arbitrary qubit state. Suppose Alice

measures |ψ〉, and finds |0〉. This occurs with probability P0 = cos2 (θ/2). Bob then prepares

his qubit as |0〉. The fidelity of Bob’s qubit with respect to the initial state |ψ〉 is S0 =

| 〈0|ψ〉 |2 = cos2 (θ/2).

Suppose instead that Alice measures |ψ〉 and finds |1〉. This occurs with probability

P1 = sin2(θ/2). In this case, the fidelity of Bob’s qubit with respect to the initial state is

S1 = | 〈1|ψ〉 |2 = sin2(θ/2).

Define S(θ, φ) = P0S0 +P1S1 = sin4(θ/2) + cos4(θ/2) to be the fidelity of Bob’s qubit for

a particular choice of θ and φ. Thus, the average fidelity of Bob’s qubit with respect to |ψ〉,
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averaged over all possible states, is

F =

∫ 2π

0
dφ
∫ π
0
dθ sin(θ)S(θ, φ)∫ 2π

0
dφ
∫ π
0
dθ sin(θ)

=
2

3
. (9)

We now proceed to show that the same bound holds for states |ψ〉 in the experiment

in the y − z plane containing the two poles of the Bloch sphere, |0〉 and |1〉. The fidelity

computed for this sub-ensemble of states becomes,

F ′ =

∫ 2π

0
dφ
∫ π
0
dθ sin(θ)S(θ, φ))[δ(φ− π/2) + δ(φ− 3π/2)]∫ 2π

0
dφ
∫ π
0
dθ sin(θ)[δ(φ− π/2) + δ(φ− 3π/2)]

=
2

3
. (10)

The above equation indicates that 2/3 is a classical bound for the fidelity with respect to

states in the y − z plane.

Any realistic teleportation experiment involves choosing a subset of all possible input

states. A common choice is a complete set of orthogonal input states [2–8]. As we have

discussed in the paper, the input states available to us in this work correspond to singlet-

triplet qubit states on the y− z plane of the Bloch sphere. When choosing a subset of input

states, one must take care not to assume any additional information about the teleportation

protocol that could be advantageously used during verification. In the case of F ′, for exam-

ple, we do not assume that states following teleportation lie along a particular plane of the

Bloch sphere. Full quantum state tomography is required to establish teleportation fidelity

above the classical bound. Our assumption that teleportation can take qubit states out of

the initial plane justifies the spherical integral discussed above.

SUPPLEMENTARY NOTE 3. ESTIMATED FIDELITY

We simulate the fidelity of the conditional teleport operation for spin eigenstates by

starting with the initial state |ψi〉 = |T+,12〉 ⊗ |S̃34〉, and we simulate the following operator

sequence, as discussed above: |ψ〉 = UBS23UB |ψi〉. We seek to compute the probability that

a singlet outcome on the left pair coincides with qubit 4 having the |↑〉 state. To assess this

probability, we compute all correlators Cα,β as before. To incorporate readout errors and

relaxation, we set

C
′

|S〉,β = (1− rL)C|S〉,β + (gL + rL)
∑

α 6=|S〉,β

Cα,β. (11)
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The probability for qubit 4 to have the |↑〉 state, conditioned on the left pair yielding a

singlet, is

P↑ =
C
′

|S〉,|T+〉 + 1
2

(
C
′

|S〉,|S〉 + C
′

|S〉,|T0〉

)
∑

β C
′
|S〉,β

. (12)

We averaged P↑ over 100 different realizations of the magnetic and electric noise and state

preparation errors, as discussed above.

The fidelity of the combined teleport and SWAP operation for entangled states is de-

termined through a simulation similar to that described above. We initialized the array in the

|ψi〉 = |G̃12〉⊗|S34〉 state, and the final state is computed as |ψ〉 = S
1/2
12 UBS23UBS

1/2
12 U

R
B (t) |ψi〉.

We have assumed perfect state preparation on the right pair of qubits. Now, we compute

all possible correlators Cα,β, where α and β are any one of {|S〉 , |T+〉 , |T0〉 , |T−〉}. We

incorporate readout errors as above, and the fidelity was computed as the maximum value

of C
′

|S〉,|S〉 as the evolution time t varies in a quasi-static gradient. Choosing the maximum

value in this way is equivalent to picking a single-qubit z rotation to undo the effects of

singlet-triplet evolution in a gradient.

A first estimate of the fidelity for singlet teleportation may be obtained from our entangle-

ment swap data p(SL|SR) by determining the maximum value of p(SL|SR) while correcting

for left-side readout errors and right-side state preparation errors. To correct the p(SL|SR)

data for left side readout errors, we invert Eq. 13 to obtain

PSS =
P ′SS − gL − rL
1− gL − 2rL

. (13)

In writing this equation, we have set rR = gR = 0 and PTS = 1 − PSS, since we neglect

right-side readout errors and only consider those experimental runs yielding a singlet on the

right side. We apply Eq. 13 to our data (P ′SS) to extract PSS. We then fit the first period

of the resulting data to a function of the form P (t) = A + B cos(ωt + δ), where A, B, ω,

and δ are fit parameters. To correct for preparation errors of the state to be teleported, we

set B′ = B/(2fs− 1), where fs is the singlet load fidelity, discussed above. We compute the

maximum singlet return probability as P (15 ns) = 0.71 ± 0.04 with B′ used in place of B.

The quoted uncertainty is the 95%-confidence interval associated with the fit. The data and

fits are shown in Supplementary Fig. 9.
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SUPPLEMENTARY NOTE 4. HYPOTHESIS TESTING

We consider the following two hypotheses for the time-series data presented as verification

of entanglement swapping,

• Hypothesis Q: Entanglement swapping is achieved using quantum correlations as a

resource. This means that the measurement outcome on the left pair of qubits depends

on the measurement outcome of the right pair of qubits in a predictable way.

• Hypothesis C: The quantum information is transmitted via classical means. This

means that the measurement outcomes on the left pair of qubits would not have a

conditional dependence on the measurement outcome on the right pair of qubits.

The key test of quantum effects in this experiment is thus the observation of oscillations on

the left pair of qubits that appear only when the left-side measurements are conditioned on

the right-side measurements. On the one hand, when entanglement swapping is successful,

p(SL|SR) and p(SL|TR) (shown in Fig. 4(b) in the main text and in Supplementary Fig. 13

here) should both oscillate in time as the input state |ψ〉 precesses in the y − z plane of the

S−T0- qubit Bloch sphere. This oscillation occurs even though the unconditioned data p(SL)

show no oscillations. The absence of oscillations in the unconditioned data happens because

on average, Bob’s member of the EPR pair and the single-qubit state to be teleported (a

member of another entangled pair) are completely uncorrelated, as discussed in detail above.

On the other hand, if the unconditioned data p(SL) were to show the same oscillation

as p(SL|SR), for example, the claim of conditional entanglement swapping using quantum

resources would be invalidated. This could occur, for instance, when the oscillations on the

left pair of qubits are a result of a local preparation/driving when the information about the

quantum state on the right pair is received via classical means (i.e. classical teleportation).

As discussed in the caption to Supplementary Fig. 6, the amplitude of oscillations associ-

ated with p(SL|TR) is expected to be smaller than the oscillations associated with p(SL|SR)

because our measurements do not distinguish the three triplets, which are linear combina-

tions of the three Bell states |Ψ+〉, |Φ+〉, and |Φ−〉.

To assess the probability of the classical hypothesis (C), we first quantify the amplitude

of the residual oscillations in the unconditioned data p(SL), which may occur because of

incomplete averaging, or an imperfect SWAP. We fit these data to a function of the form
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g(t) = p0 +Ae−t/τ cos(2πft+ φ), where p0, A, τ , ω, and φ are fit parameters. The uncondi-

tioned data have an amplitude AU = 0.030±0.007. Here the uncertainty is a standard error

σU . Similarly, to test the quantum hypothesis (Q), we fit the data p(SL|SR) and p(SL|TR)

to the same function, and we extract AS = 0.201 ± 0.021 and AT = 0.102 ± 0.009. The

uncertainties are the standard errors σS and σT , respectively. Our fitting routine in Mat-

lab computes the confidence intervals using the t-distribution. Using the t-distribution, we

convert the confidence interval to a standard error. Table 1 shows the fitted parameters,

standard errors σ, and 95% confidence intervals c. Note the close agreement between the

usual relation c = 1.96σ for a normal distribution. Note that σU < σS � AS − AU , and

σU < σT � AT − AU , suggesting a very low probability for the classical hypothesis.

Define

G(x, σ, µ) =
1√
2πσ

e−
1
2(x−µσ )

2

. (14)

The probability of the classical hypothesis for the case of singlet conditioning is the proba-

bility that the amplitude of p(SL|SR) is less than AU . Assuming that the amplitude values

of p(SL|SR) are normally distributed between experimental runs, we assess this probability

as

pS =

∫ AU

−∞
G (x, σS, AS) dx < 0.00001. (15)

Note that since σS > σU , it is reasonable to neglect the variance of AU to a first approxi-

mation. The probability of a classical explanation for the case of triplet conditioning is the

probability that the amplitude of p(SL|TR) is less than AU . We assess this probability as

pT =

∫ AU

−∞
G (x, σT , AT ) dx < 0.00001. (16)

Since σT < σU , it is also reasonable to neglect the variance of AC to a first approximation.

To account for the variance of AU , we may perform Welch’s t-test accounting for unequal

sample variances,

tS =
AS − AU√
σ2
U + σ2

S

= 7.72, (17)

and

tT =
AT − AU√
σ2
U + σ2

T

= 6.32, (18)
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We use the Welch–Satterthwaite equation to estimate the number of degrees of freedom,

finding 150 and 232 for the cases of singlet and triplet conditioning respectively. The p-values

associated with the tS and tT scores both satisfy p < 0.00001. Given these probabilities, a

classical explanation for the data is extremely unlikely.

A further, more conservative estimate for the classical hypothesis probability is obtained

by analyzing all of the data shown in Supplementary Fig. 7. For each repetition i =

1, 2, · · · , 256, we calculate Ui = max(p(SL))−min(p(SL))
2

, Si = max(p(SL|SR))−min(p(SL|SR))
2

, and Ti =

max(p(SL|TR))−min(p(SL|TR))
2

. Si, Ti, and Ui quantify the maximum amplitude of the singlet-

conditioned, triplet-conditioned, and unconditioned time series data for each repetition i.

Supplementary Figure 14 shows the distributions of Si, Ti, and Ui over all 256 different

repetitions. We calculate µS = 0.234, σS = 0.036, µT = 0.162, σT = 0.021, µU = 0.113, and

σU = 0.015. Here, µ indicates an average, and σ refers to the estimated standard deviation.

As before, we compute the t-scores associated with these distributions:

tS =
µS − µU√

σ2
U/N + σ2

S/N
= 49.46, (19)

and

tT =
µT − µU√

σ2
U/N + σ2

T/N
= 29.92, (20)

where N = 256 is the sample size. These large t-score values result from the large sample

sizes and well-separated distributions. Using the Welch–Satterthwaite equation, we find the

number of degrees of freedom to be 339 and 463 for singlet and triplet conditioning. The

p-values associated with these t-scores both satisfy p < 0.00001. Both p-values are below

0.05, indicating that the classical hypothesis is extremely unlikely.

We may assess the impact of potential spurious classical correlations in our data as follows.

As discussed in the main text, the data shown in Supplementary Fig. 5 represent the same

experiment as the entanglement swap, but the SWAP gate to distribute the entangled pair

was omitted. Thus, the left-side measurements in Supplementary Fig. 5(a) provide a bound

on the presence of oscillations caused by classical means, including readout cross-talk. We

have fit these data as described above in this section, and as shown in Supplementary Fig. 15.

The fitted parameters are shown in Supplementary Table 2.

We may determine if the observed oscillations in the control experiment are statistically

different from the oscillations associated with the full entanglement-swap data using the
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following t scores:

tcS =
AS − AcS√
σ2
S + (σcS)2

= 7.01, (21)

and

tcT =
AT − AcT√
σ2
T + (σcT )2

= 3.05, (22)

Here, the variables with a “c” superscript are obtained from Supplementary Table 2. In

both of these cases, we obtain the degrees of freedom as discussed above, and the p-values

associated with the t scores both satisfy p < 0.005. Given these probabilities, it is unlikely

that classical correlations could explain our data.
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p(SL) p(SL|SR) p(SL|TR)

Parameter value c σ value c σ value c σ

p0 0.362 0.007 0.004 0.464 0.011 0.006 0.287 0.008 0.004

A 0.030 0.014 0.007 0.201 0.042 0.021 0.102 0.017 0.009

f (GHz) 0.026 .002 0.001 0.028 0.0005 0.0003 0.029 0.0008 0.0004

φ 4.54 0.76 0.38 3.84 0.19 0.10 0.557 0.271 0.137

τ (ns) 151 0 0 142 71 36 151 0 0

Supplementary Table 1. Fitted parameters. c denotes half of the 95%-confidence interval width,

and σ is the standard error. In the case of the unconditioned data p(SL) and p(SL|TR), we did not

fit for the decay time τ . Instead, we fixed it at the value obtained from the fit to p(SL|SR).

p(SL) p(SL|SR) p(SL|TR)

Parameter value c σ value c σ value c σ

p0 0.534 0.006 0.003 0.538 0.008 0.004 0.521 0.010 0.005

A 0.010 0.015 0.008 0.038 0.019 0.010 0.056 0.024 0.012

f (GHz) 0.027 0 0 0.027 0 0 0.027 0 0

φ 4.46 1.51 0.763 -0.92 0.54 0.27 2.38 0.47 0.24

τ (ns) 78 0 0 78 0 0 78 0 0

Supplementary Table 2. Fitted parameters for the control experiment. c denotes half of the 95%-

confidence interval width, and σ is the standard error. We used the data in Supplementary Fig. 5(b)

to fix the values of f and τ in the fits.
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Supplementary Figure 1. Conditional teleportation of a classical mixed spin state. (a) Quantum

circuit used. The conditional singlet-triplet measurement on qubits 1 and 2 induces teleportation,

and the gray measurement of the right pair verifies teleportation. In contrast to the experiment

of Fig. 2, in this experiment, we adiabatically separate the electrons in the left pair. This process

generates either |↓〉1 |↑〉2 or |↑〉1 |↓〉2, depending on the sign of the hyperfine gradient ∆B12. The

hyperfine gradient fluctuates randomly during the course of the experiment, leading to the gener-

ation of a classical mixed state on qubit 1 (and qubit 2). Likewise, the measurement on the right

pair projects either |↓〉3 |↑〉4 or |↑〉3 |↓〉4 to |S34〉, depending on the sign of ∆B34. (b) Experimentally

measured probability distribution for 65,536 single-shot realizations of the teleportation sequence

in (a). The white cross indicates the threshold used to calculate probabilities. (c) Extracted prob-

abilities p from the distribution in (b). (d) Simulated probabilities computed neglecting any errors.

(e) Simulated probabilities accounting for readout errors, state preparation errors, charge noise,

and hyperfine fields. All probabilities are rounded to the nearest hundredth.
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Supplementary Figure 2. Verification of conditional teleportation of a classical spin state. (a) We

apply a variable exchange gate to the right pair after measuring the left pair. Here, φ = 2πJ34t,

where J34 is the exchange coupling between qubits 3 and 4, and t is the evolution time given by the

x-coordinate of each data point. (φ = π corresponds to a SWAP operation.) When then left pair

give a singlet, the right pair have the same spin, and no oscillations should be visible. The inset

shows the same data from 0-32 ns. (b) Control experiment with no SWAP operation. Residual

oscillations result from errors in preparing the EPR pair. (c) Control experiment with the EPR

pair replaced by a product state. Oscillations occur because the fluctuating hyperfine gradient

between the right pair sometimes favors the |↑↓〉 orientation. (d) Applying an exchange gate to

the left pair after measuring the right pair generates exchange oscillations on the left pair only if

the right pair yields a triplet. The inset shows the same data from 0-32 ns. (e) Control experiment

with no SWAP operation. No oscillations occur because qubits 1 and 2 are prepared in the |↑↑〉

state. (f) Control experiment with the EPR pair replaced by a product state. Here, the oscillations

are small because the hyperfine gradient between qubits 3 and 4 fluctuates around zero. Each data

point represents the average of 16,384 single shot measurements.



14

0 20 40 60
Time (ns)

0

0.2

0.4

0.6

0.8

1

p
a

0 20 40 60
Time (ns)

0

0.2

0.4

0.6

0.8

1

p

c

0 20 40 60
Time (ns)

0

0.2

0.4

0.6

0.8

1

p

b

0 20 40 60
Time (ns)

0

0.2

0.4

0.6

0.8

1

p

d

0 20 40 60
Time (ns)

0

0.2

0.4

0.6

0.8

1

p

f

0 20 40 60
Time (ns)

0

0.2

0.4

0.6

0.8

1
p

e

Supplementary Figure 3. Simulated variable-exchange experiments. Panels (a)-(f) present a sim-

ulation of the corresponding panel in Supplementary Fig. 2. Above each panel is the operator

sequence used in the simulation and the initial state used in the simulation. In panels (a)-(c),

p(SR|SL) indicates the right-side singlet probability given a singlet on the left, and p(SR|TL) indi-

cates the right-side singlet probability given a triplet on the left. In (d)-(f), p(SL|SR) indicates the

left-side singlet probability given a singlet on the right, and p(SL|TR) indicates the left-side singlet

probability given a triplet on the right.
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Supplementary Figure 4. Simulated variable-exchange experiments with no errors associated with

pulses, hyperfine fluctuations, state preparation, or readout. Panels (a)-(f) present a simulation

of the corresponding panel in Supplementary Fig. 2. In panels (a)-(c), p(SR|SL) indicates the

right-side singlet probability given a singlet on the left, and p(SR|TL) indicates the right-side

singlet probability given a triplet on the left. In (d)-(f), p(SL|SR) indicates the left-side singlet

probability given a singlet on the right, and p(SL|TR) indicates the left-side singlet probability

given a triplet on the right. The oscillations in (a) and (b) have visibility 2/3, as expected. In the

case of (a), for example, there is a 1/3 chance that a triplet outcome on the left corresponds to a

|T0〉, in which case successful teleportation of the |↑〉 state occurs. The dominant mechanism that

reduces the visibility of these oscillations in practice is the fluctuating sign of the hyperfine gradient.

The absence of oscillations in (c) is a result of the fixed hyperfine gradient in this simulation. For

example, if the gradient were such that the ground state of the right pair were |↑3〉 |↓4〉, oscillations

with unit visibility would be expected. Similarly, the unit-visibility oscillations in panel (f) occur

because of the assumed ground orientation of qubits 3 and 4. The apparent conditional effect

in this panel occurs because there is zero probability to measure a singlet on the right side, i.e.,

p(SR) = 0.
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Supplementary Figure 5. Control experiments for entanglement swapping and gate teleportation

without the SWAP operation between qubits 2 and 3. To omit the SWAP gate, we enforce a wait

for the same length of time with no voltage pulse. (a) Measured singlet probabilities on the left

side. As before, simulations are overlaid in smooth lines of the same color. Inset: circuit diagram

for the control experiment. (b) Measured right-side probabilities. Simulations are overlaid with

smooth lines of the same color. The absence of any conditional effect in the left- and right-side

measurements confirms that the behavior we observe in Fig. 4 is due to entanglement swapping

and gate teleportation. These data were acquired in a separate run from the data in Fig. 4 in the

main text. The data in panels (a) and (b) of this figure are from one repetition.
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Supplementary Figure 6. Simulated entanglement swapping with no errors associated with pulses,

hyperfine fluctuations, state preparation, or readout. The oscillations associated with p(SL|TR)

occur with visibility 1/3, because in 1/3 of the cases where we measure a triplet on the right pair,

it is a |T0〉, and successful teleportation has occurred.



18

50 100 150 200 250
Repetition

0

50

100

E
v
o

lu
ti
o

n
 T

im
e
 (

n
s
) a

0

0.5

1

p(S
L
)

50 100 150 200 250
Repetition

0

50

100

E
v
o
lu

ti
o

n
 T

im
e

 (
n
s
) c

0

0.5

1

p(S
L
|S

R
)

0 50 100 150 200 250
Repitition

0

50

100

F
re

q
u

e
n

c
y
 (

M
H

z
)e

50 100 150 200 250
Repetition

0

50

100

E
v
o

lu
ti
o

n
 T

im
e
 (

n
s
) b

0

0.5

1

p(S
R

)

50 100 150 200 250
Repetition

0

50

100

E
v
o
lu

ti
o

n
 T

im
e

 (
n
s
) d

0

0.5

1

p(S
R

|S
L
)

0 50 100 150 200 250
Repetition

0

50

100

F
re

q
u

e
n

c
y
 (

M
H

z
) f

Supplementary Figure 7. Conditional teleportation of entangled states and conditional gate tele-

portation. (a) Averaged singlet probability on the left pair of qubits p(SL). (b) Averaged singlet

probability on the right pair of qubits p(SR). (c) Averaged singlet probability on the left pair of

qubits given a singlet on the right pair p(SL|SR). (d) Averaged singlet probability on the right pair

of qubits given a singlet on the left pair p(SR|SL). (e) Absolute value of the fast Fourier transform

of the data in (c). The extracted peak frequency is overlaid in green. (f) Absolute value of the fast

Fourier transform of the data in (d). The extracted peak frequency is overlaid in green.
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Supplementary Figure 8. Measurement of ∆B. (a) Averaged measurements of ∆B12 oscillations

[9]. Acquisition of each vertical line was interleaved with the data shown in Fig. 4. (b) Absolute

value of the fast Fourier transform of the data in (a), with the extracted frequency shown in green.

(c) Averaged measurements of ∆B34 oscillations. Acquisition of these data were also interleaved

with the data in Fig. 4. (d) Absolute value of the fast Fourier transform of the data in (c), with

the extracted frequency shown in green.
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Supplementary Figure 9. Experimental estimation of the maximum singlet teleportation proba-

bility. The dark blue dots are the data p(SL|SR) from Fig. 4(b). The light blue dots have been

corrected for left-side readout errors. The light-blue line is a fit of the light-blue dots to a sinusoid.

The gold line is the same sinusoid with the amplitude corrected for the right-side preparation error.

The maximum singlet return probability is obtained at about 15 ns.
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Supplementary Figure 10. State preparation fidelity. (a) Experimentally measured |T+〉 loading

curve, obtained by sweeping µ1, the electrochemical potential of dot 1, across the (1,1)-(2,1) charge

transition, where (m,n) indicates m electrons in dot 1 and n electrons in dot 2 [10, 11]. The peak

in the data indicates where the value of µ1 where the |T+〉 loading probability is highest. Inset:

Simulated results of the loading process. The blue simulation gives the expected triplet signal,

and the red simulation is the probability of loading a |T+〉. The simulation assumes a load time

of 2 µs, a ramp time of 200 ns, a temperature of 75 mK, and a magnetic field of 0.5 T. The x

axis represents the chemical potential αµ1 in units of the magnetic field, where α is the effective

lever-arm. (b) Triplet probability as a function of loading time. All experiments were conducted

with a loading time of 2 µs. The blue points are data, and the red line is a fit to an exponential

decay. These data are taken in the same tuning used to acquire all data in this work with one

electron in each dot.
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Supplementary Figure 11. Readout fidelity. (a) Measurement histogram and fit for the left pair of

qubits for the data shown in Fig. 2(b). The extracted average fidelity for singlets and triplets is

0.93. (b) Measurement histogram and fit for the right pair of qubits for the data shown in Fig. 2(a).

The extracted average fidelity for both singlets and triplets is 0.87. In both panels, the red lines

are fits to equations (1) and (2) of Ref. [12]. In both panels, the VRF represents the raw voltage

from our readout circuit. In both panels, the threshold which maximizes the visibility is indicated.
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Supplementary Figure 12. Relaxation during readout. (a) Data and fit showing the relaxation of

the left pair of qubits during readout. (b) Data and relaxation of the right pair of qubits during

readout. The data in both panels are obtained by subtracting the results of two measurements.

The first involves preparing a mixed state and measuring it for 60 µs. Then, we prepare a singlet

state and also measure it for 60 µs. We repeat this set of two measurements 10,000 times. For

each repetition, we record the entire 60 µs measurement record. We plot the difference of the

two experiments, averaged across all repetitions, as a function of integration time from 0-60 µs.

We fit this difference to a decaying exponential and extract the relaxation time T1. The fits give

relaxation times of 65 µs and 48 µs. These data are taken in the same tuning used to acquire

all data in this work with one electron in each dot. In both panels, there appears to be a slight

deviation from single-exponential decay. We attribute this deviation to the multiple relaxation

pathways and rates involved in our shelving readout method. [10, 13].
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Supplementary Figure 13. Data and fits. (a) p(SL) from Fig. 4b of the main text and fit. (b)

p(SL|SR) from Fig. 4b of the main text and fit. (c) p(SL|TR) from Fig. 4b of the main text and

fit. These data and fits are used to assess the probability that a classical teleportation strategy

could reproduce the results of the entanglement-swap experiment.
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Supplementary Figure 14. Distributions of Si, Ti, and Ui. The pronounced difference between

these distributions indicates that a classical explanation for the entanglement-swap experiment is

unlikely.
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Supplementary Figure 15. Data and fits for the control experiment. (a) p(SL) from Supplementary

Fig. 5 and fit. (b) p(SL|SR) from Supplementary Fig. 5. and fit. (c) p(SL|TR) from Supplementary

Fig. 5. and fit. These data and fits are used to assess the probability that spurious classical

correlations could explain the entanglement-swap data.
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