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Supplementary Figures

Supplementary Figure 1 |Actomyosin waves are generated near the droplet
boundary. Time-lapse confocal images of F-actin near the droplet equator. Ar-
rowheads show newly-formed F-actin networks, indicating that actomyosin waves
were generated near the droplet boundary, followed by rapid contraction towards the
droplet center. Actin polymerization was initiated at 0 s. Scale bars, 50 µm.
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Supplementary Figure 2 | Cluster formation and periodic wave generation
in bulk-scale systems. Cluster formation followed by periodic wave generation (a)
in a mm-sized extract-in-oil droplet, (b) in a mm-sized droplet surrounded by air,
and (c) in a test-tube. (d) Time-lapse images and (e) the kymograph of a. (f)
Fluorescence intensity along the each broken line in e, which also corresponds to the
intensity at the arrows with the same color in d. Both F-actin densities on the rim
and inside of the wave increased during contraction. The thickness of the spacer was
100 µm. Scale bars, 1 mm.
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Supplementary Figure 3 | Comparison between metaphase and interphase
extracts. (a) Metaphase and (b) Interphase extracts. The interphase extracts were
prepared by treating the metaphase extracts with 0.4 mM CaCl2, followed by 30 min
incubation at 20◦C. The interphase extracts did not form clear cluster and generate
periodic actomyosin waves. Scale bars, 100 µm.
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Supplementary Figure 4 | F-actin density of the ring increases as the ring
contracts. (a) Time-lapse images showing the actomyosin wave propagation. (b)
The kymograph is extracted from broken line in a. (c) Fluorescence intensity along
the each broken line in b, which also corresponds to the intensity at the arrows
with the same color in a. F-actin density on the ring significantly increases during
contraction, whereas F-actin density inside of the ring remains nearly constant. Scale
bars, 100 µm.
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Supplementary Figure 5 | Actomyosin waves opened up just after cutting.
A ring-shaped actomyosin wave was cut by a UV pulsed laser during contraction to
the droplet center. Just after the laser ablation, the ring was opened up. Typical
two examples are shown. Supplementary Movies 4 and 5 correspond to (a) and
(b), respectively. Although the contraction was not completely disrupted by the
laser ablation, some opened rings did not contract toward the center, but contracted
along the arcs. Scale bars, 100 µm.

6



7



Supplementary Figure 6 | Partial inhibition and activation of actin nucle-
ation and myosin contraction activities. (left) Time-lapse images and (right)
the kymographs of cluster formation and actomyosin waves. The cluster was formed
at 0 s. The actomyosin wave shows a biphasic velocity profile; the initial contraction
velocity shows almost constant velocity, while the contraction velocity decreases on
approaching the cluster. In this figure, a different batch of the extracts was used from
the main text. (a) A control experiment (Supplementary Movie 6). Droplet diam-
eter, 317 µm. The wave period and the initial contraction velocity (Supplementary
Fig. 7) were analyzed from the kymograph. (b) In the presence of CK666 (10 mM)
(Supplementary Movie 6). CK666 inhibits actin nucleation activity of the Arp2/3
complex. The period of actomyosin wave exceeded that of the control. Droplet di-
ameter, 314 µm. (c) In the presence of calyculin A (300 nM) (Supplementary Movie
6). Calyculin A activates myosin motor activity by inhibiting dephosphorylation of
myosin regulatory light chain by phosphatases. The contraction velocity was greater
than that of the control experiment. Droplet diameter, 279 µm. (d) In the pres-
ence of Y27632 (100 µM) (Supplementary Movie 6). Y27632 inhibits myosin motor
activity by inhibiting phosphorylation of myosin regulatory light chain by ROCK.
The contraction velocity decreased compared to the control experiment. Droplet
diameter, 292 µm. (e) In the presence of Y27632 (1 mM) (Supplementary Movie
6). The initial cluster formation was significantly decelerated, suggesting that the
cluster formation is regulated by myosin. Droplet diameter, 305 µm. Scale bars, 100
µm.
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Supplementary Figure 7 | Period and velocity of actomyosin waves in the
presence of actomyosin inhibitor/activator (a,b) Effects of molecular pertur-
bation on the actomyosin wave period. (a) The wave periods of each droplet and
(b) mean values. Inhibition of actin nucleator Arp2/3 by CK666 (10 mM) extended
the wave period, indicating that Arp2/3 polymerizes actin filaments at the droplet
boundary. Inhibition of myosin by Y27632 (100 µM) slightly extended the period,
suggesting that myosin binding on polymerized actin filaments became less efficient
owing to the decreased effective myosin concentration. (a) The wave period T was
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fitted by T = 1.2× 10−2Ddroplet + 40 (Control, n = 11), T = 4.7× 10−2Ddroplet + 41
(CK666 (10 mM), n = 6), T = 1.6 × 10−2Ddroplet + 40 (Calyculin A (300 nM), n
= 9), T = 0.94 × 10−2Ddroplet + 47 (Y27632 (100 µM), n = 7). Error bars repre-
sent standard deviations (SDs) from the mean periods averaged over three successive
wave periods. (b) The mean wave periods averaged over the droplets shown in a.
Error bars represent SDs. The corresponding data points are plotted as the circles.
(c,d) Effects of molecular perturbation on the contraction velocity of actomyosin
waves. (c) The initial contraction velocities of each droplet and (d) the mean values
averaged over the droplets shown in c. Myosin activation by calyculin A (300 nM)
drastically increased the velocity, while inactivation by Y27632 (100 µM) decreased
the velocity, suggesting that myosin is involved in wave propagation. (c) The initial
contraction velocity v was fitted by v = 1.6 × 10−2Ddroplet − 2.2 (Control, n = 11),
v = 1.6× 10−2Ddroplet − 1.3 (CK666 (10 mM), n = 6), v = 1.8× 10−2Ddroplet + 0.75
(Calyculin A (300 nM), n = 9), v = 0.63×10−2Ddroplet−0.16 (Y27632 (100 µM), n =
7). Error bars represent SDs from the mean velocity averaged over three successive
waves. (d) The mean contraction velocity averaged over the droplets shown in c.
Error bars represent SDs. The corresponding data points are plotted as the circles.
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Supplementary Figure 8 | Continuous actin filament turnover is essential
for periodic actomyosin wave generation. (a) Addition of cytochalasin D (200
µM), an actin polymerization inhibitor, eliminated cluster formation and actomyosin
wave generation (Supplementary Movie 7). (b) Addition of phalloidin (10 µM),
an actin depolymerization inhibitor, decreased the initial actin network contraction
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velocity and eliminated actomyosin wave generation after two wave propagations
(see arrows and Supplementary Movie 8). Actin polymerization was initiated at 0 s.
Scale bars, 100 µm.

Supplementary Figure 9 | Effect of surface passivation on wave generation.
Kymograph of the time-lapse TMR-LifeAct images of the droplet surrounded by (a)
eggPC or (b) PEG30-DPHS. The periodic waves were generated in both cases.
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Supplementary Figure 10 | Wave period under different droplet surfaces.
Comparison of the wave periods among the droplets having different surface prop-
erties. The wave period T was fitted by T = 3.2 × 10−2Ddroplet + 32 (Control,
n = 12), T = 4.1 × 10−2Ddroplet + 38 (His-VCA+NiNTA-lipids, n = 15), T =
3.8 × 10−3Ddroplet + 42 (PEG30-DPHS, n = 18). Error bars represent standard
deviations (SDs) from the mean periods averaged over three successive wave periods.
Note that the different batch of the extracts from the main text was used.
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Supplementary Figure 11 | Relationship between wave propagation and
cluster motion. (a) Images of the droplet used for analysis and (b) correlation
between the wave and the cluster motion. When the wave approached the cluster,
the cluster moved toward the center. The cluster motion was analyzed from the
bright field image. The wave intensity was measured from the ROI in TMR-LifeAct
image. Scale bar, 100 µm.
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Supplementary Figure 12 | Measurements of the length distribution of F-
actin. The length distributions of F-actin is measured by fluorescence microscopy.
F-actin is fixed and visualized by rhodamine-phalloidin. The length distribution of
gelsolin and mDia2 are significantly different from the control experiment (p-values
are displayed; Kolmogorov-Smirnov test). (a) Control experiment. Mean F-actin
length: 1.78 ± 1.40 µm (sample size, n = 4966). (b) Addition of 300 nM gelsolin.
Mean F-actin length: 0.85± 0.77 µm (n = 7025, p < 10−26). (c) Addition of 30 nM
mDia2. Mean F-actin length: 2.01± 1.41 µm (n = 4613, p < 10−26). Scale bars, 10
µm.
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Supplementary Figure 13 | Numerical simulation of the actomyosin wave
propagation (a) Time evolution of the actomyosin wave and (b) the kymograph.
The wave was simulated in accordance with the active gel model with the following
parameters: v0 = 5.0 (µm s−1) and r0 = 30 (µm) (Supplementary Note 1).
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Supplementary Figure 14 | Numerical simulation of the tug-of-war model.
(a,b) Wave period and contraction velocity used for numerical simulations of the
cluster positioning. The size-dependent velocity of the actomyosin wave and the
size-dependent wave period were set as v = 1.25 × 10−2Ddroplet and T = 2.5 ×
10−2Ddroplet + 40, respectively. It was assumed that the contraction velocity of the
actomyosin bridge was equal to the velocity of the actomyosin wave. (c,d) The phase
diagrams of cluster positioning. (c) The turnover rate of the crosslinkers was fixed
as τ = 0.5 s, and filament length L was varied. (d) The filament length was fixed
as L = 8 µm, and the turnover rate of the crosslinkers τ was varied (Supplementary
Note 4).
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Supplementary Figure 15 | Cluster positioning in non-circular geometries.
(a) Schematic illustration of the experimental setup. The extracts were confined in
patterned PDMS chambers and sealed by the oil containing PEG30-DPHS. The sur-
face of PDMS chambers had been coated by PEG-PLL, Therefore, both the extract-
PDMS interface and the extract-oil interface were passivated with PEG. (b) A bright-
field image of the extracts confined in asymmetric chambers. Most of the clusters
positioned near the center even if the chamber was non-circular shape. Scale bar,
300 µm.
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Supplementary Notes

Supplementary Note 1: Active gel model for the contraction
velocity of an actomyosin wave

In this section, we describe the dynamics of actomyosin wave propagation by an active
gel theory [1]. The basis of the idea here is as follows: (i) gelation-and-contraction
mechanism is assumed for the initiation of the wave [2], and (ii) after the actomyosin
network shrinks and its density becomes higher, the network relaxation time becomes
larger exponentially, which leads to the huge drop of contraction speed. While this
idea can be applicable to both cases that the contractile actomyosin network is
homogeneously spread within the droplet (i.e. bulk gelation contraction [2]) and
that it shapes the ring near the droplet boundary, we quantify the latter case by
reflecting our experimental observation.

Given that an actomyosin ring (a hollow cylinder) of constant radial thickness
d is confined in a cylindrical chamber of height h. We derive the ring radius r-
dependence of contraction velocity v as follows. The volume V of the thin hollow
cylinder of radius r (assuming r ≫ d) is written as V ∼ 2πrdh; hence, the actomyosin
density ρ is given by

ρ =
M0

2πdh

1

r
∝ 1

r
(1)

with the constant mass M0 of the actomyosin. The density of the actomyosin ρ
increases with time t because the ring radius r decreases by myosin-induced con-
tractile stress, and it is assumed that actin filaments are not depolymerized during
contraction.

Simultaneously with ring shrinkage, motor-induced contractile stress σ increases
with an increase in myosin density. The sign of σ is defined such that it is positive
for contractile active stress. We here specifically assume that the strength of active
stress is proportional to the density of myosin. Furthermore, we assume in this
section (Supp. Note 2), that both actin and myosin densities are proportional to the
total actomyosin density ρ. Thus, we have σ = Eρρ, and hence

σ =
Er

r
(2)

with proportionality factors Eρ and Er = EρM0/(2πdh).
In addition, actin-crosslinking proteins are contained in the cytosol. Given that

new crosslinkers bind to the filament with the average rate kon and each crosslink is
disconnected with the average lifetime τc, the characteristic relaxation time of the
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actomyosin network is given by

τ =
1

kon
(ekonτc − 1). (3)

Supplementary Equation (3) is derived as follows (see ref. [3] for the detailed deriva-
tion): Given that an actin filament has n-crosslinked points, we will derive the aver-
age time Tn that all crosslinkers are stochastically detached from the actin filament
(i.e., the mean first passage time from the n-crosslinked state to 0-crosslinked state).
The recurrence formula is written as

Tn =
kon

kon + n/τc
Tn+1 +

n/τc
kon + n/τc

Tn−1 +
1

kon + n/τc
. (4)

Here, we take the following boundary conditions: (i) T0 = 0 and (ii) Tn − Tn−1 → 0
for n → ∞. Thus, Supplementary Equation (4) is rewritten as

kon(Tn − Tn+1) +
n

τc
(Tn − Tn−1) = 1. (5)

From Supplementary Equation (5), after a few manipulations [3], we obtain

Tn =
n−1∑
k=0

k!

(konτc)k

∞∑
m=k+1

(konτc)
m

konm!
. (6)

Substituting n = 1 into Supplementary Equation (6),

T1 =
1

kon
(ekonτc − 1). (7)

Since the characteristic relaxation time of the actomyosin network τ is defined by
the time during which an actin filament having single crosslinked point is detached
from another filament, we obtain Supplementary Equation (3).

Assuming that the binding rate of an actin filament to another filament kon is
proportional to the density of actin, Supplementary Equation (3) can be rewritten
as

τ =
τc
Bρ

(eBρ − 1) (8)

with a proportionality coefficientB of konτc for ρ. Note that the coefficient of viscosity
µ is proportional to the relaxation time τ , therefore

µ = G
1

Bρ
(eBρ − 1), (9)
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where G is a proportionality coefficient having dimensions of viscosity.
Given that circumference of the cylindrical actomyosin ring is C = 2πr, the force

balance σ = −µϵ̇ with the strain rate ϵ̇ ≡ (1/C)(dC/dt) is given by

σ = −µ
1

r

dr

dt
. (10)

Substituting Supplementary Equations (1), (2) and (9) into Supplementary Equation
(10), the ring radius r-dependence of contraction velocity v ≡ −dr/dt is given by

v = v0

(
r0
r

)[
exp

(
r0
r

)
− 1

]−1

, (11)

where v0 = Er/G and r0 = BM0/(2πdh). In the main text, we set v0 and r0 as
the fitting parameters. Note that the velocity of a small actomyosin ring decays
with time in accordance with v ∼ exp(−r0κ), where κ = 1/r is the ring curvature.
It is difficult for condensed actomyosin networks to reorganize their configuration,
thus increasing the relaxation time and viscosity at the actomyosin ring, causing
exponential decay of the contraction velocity.

As long as the pure gelation-contraction mechanism is assumed, the initial con-
traction velocity vc0 ≡ −dr/dt|r=R is proportional to the droplet radius R,

vc0 ∝ R , (12)

reflecting that the contractile strain rate at the initial time ϵ̇0 ≡ (1/C(t = 0))(dC/dt(t =
0)) with C(t = 0) = 2πR and C(t) = 2πr(t) is constant (Supplementary Equation
(12) is applicable even when the active gel is not the cylinder associated with the
droplet boundary but homogeneously spread around the droplet bulk). However, in
our experimental setup, an interaction between the droplet boundary and active gel
is not negligible. This may also affect quantitatively the gelation-and-contraction
mechanism. We will further discuss this correction in the size-dependency of the
initial contraction velocity at the latter half of Supplementary Note 2.

Supplementary Note 2: Weak correction for the wave con-
traction period and velocity due to interaction between the
droplet boundary and active gel

In this section, we derive the contribution of interaction between the droplet bound-
ary and active gel to the wave contraction period and velocity. We find the weak
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correction in the wave contraction period and velocity compared to the pure gelation-
and-contraction case, as seen in the experimental results (Figs. 1 i and j in the main
text).

Wave contraction period. We firstly consider active gel dynamics in a cylindrical
chamber of height h. Given that actin network of thickness d is polymerized on
the periphery of the cylindrical chamber. Note that the filamentous actin network
can be well-connected after time t0, at which actin filaments are long enough to
transmit forces over a long distance. Running over the time t0, polymerized long
actin filaments gets contact points with each other. Subsequently, myosin and other
crosslinkers associate on the actin filaments with time, forming inter-connected acto-
myosin networks, thereby increasing the contractile stress in proportion to the density
of myosin bound on the network. Together, time dependence of the contractile stress
σ is written as

σ =

{
0 (t < t0) (13a)

α(t− t0) (t > t0), (13b)

where α is the rate of association of myosin onto the network.
We then consider the contraction period T of the actomyosin network. Given

that the radius of the cylindrical chamber is R, stress applied on the chamber fwall
is calculated using the following force balance equation:

fwallRA(R) = σV (R), (14)

where A(R) = 2πRh is the lateral area of the cylindrical actomyosin, and V (R) =
2πRhd is the volume of the actomyosin (see Supplementary Reference [4] for details).
Thus, stress applied on the chamber is written as

fwall =
σd

R
=

αd

R
(t− t0), (15)

and the network shrinks when stress exceeds a threshold fth to disrupt anchoring
between the chamber and the network, followed by polymerization on the periphery
of the chamber. Therefore, the contraction period of the actomyosin network is given
by

T = t0 +
fth
αd

R. (16)

Wave contraction speed. We here derive the initial contraction velocity of the
actomyosin wave upon initiation of its shrinkage. Contractile stress at the beginning
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of shrinkage is given by Supplementary Equation (15) as σc0 = fthR/d. We can thus
calculate the initial contraction velocity vc0 ≡ −dr/dt|r=R by using Supplementary
Equations (9) and (10) and obtain, instead of Supplementary Equation (12),

vc0 =
σc0

µ
R =

fthBρc0
Gd

R2[eBρc0 − 1]−1, (17)

where ρc0 is the density at the beginning of shrinkage and can be expressed as
ρc0 = (R/d)(fth/Eρ) from Supplementary Equation (15) with σ = Eρρ. (Remember
that this proportionality of σ upon ρ has been introduced previously in this sec-
tion.) Therefore, we obtain the following chamber radius R-dependence of the initial
contraction velocity vc0:

vc0 =
Hfth
Gd

R3

exp(HR)− 1
, (18)

where we introduced the coefficient H = (Bfth)/(Eρd), yielding Bρc0 = HR. Thus,
the interaction between droplet boundary and active gel can modulate the initial
contraction velocity from the simple proportionality vc0 ∝ R.

Supplementary Note 3: Tug-of-war model of cluster position-
ing

In this section, we derive the probability that a cluster is at the edge, based on the
percolation theory [5]. For simplicity, we assume that (i) the cluster is transported
to the droplet center by actomyosin waves generated within a time period of T , and
that (ii) the cluster is started to be contracted to the edge if actomyosin in bulk space
forms a network bridge between the cluster and the droplet boundary (wall of the
cylindrical chamber), and movement is stopped when the cluster collides with the
subsequent actomyosin wave. We suppose the cluster is finally in the edge in the case
of high percolation probability during the period T ; otherwise, it is in the center. We
then calculate the probability that the actin filaments of length L aligned between
the cluster and droplet boundary are connected with crosslinkers during period T .
Given that the distance between the cluster and droplet boundary is R (For a droplet
of diameter D, R ≃ D/2), the actin filaments percolates and connects the cluster
and droplet boundary when all the N ≡ R/L actin-crosslinking sites are occupied
by crosslinkers.

For analytical expression of the model, we assume here that the cluster immedi-
ately moves to the edge if percolation occurs during the period T ; otherwise, it is
positioned at the center (two-state model). Suppose that each crosslinker binds and
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unbinds at a crosslinking site with binding and unbinding rates kon and koff , respec-
tively. The characteristic time within which all crosslinkers on one actin filament
undergo turnover is given by τ = 1/(koff + C0kon), where C0 denotes the crosslinker
concentration in solution. In the simplest case, assuming the equilibrium between
the association and dissociation of crosslinkers, each crosslinking sites take “on” or
“off” states independently for every time interval τ with a probability of 1/2. Then
the probability that all N sites are occupied is given by (1/2)N at a specified time-
point. Thus, we obtain the probability that all N crosslinking sites are occupied by
crosslinkers at least one time during the time period T as

p = 1− [1− (1/2)N ]T/τ . (19)

This is the probability that the cluster is entrapped in the edge region. Here we may
use N = R/L with the typical maximum length L of the actin filaments because of
the following facts: (i) Firstly, short filaments can hardly line up across the center to
the periphery of the droplet over the radius R by chance. Given that there are one
filament of length L = R with the probability distribution of 0.01, and five filaments
of length L = R/5 with the probability distribution of 0.1. The probability that the
five shorter filaments of R/5 are aligned in a line from center to the boundary over
the distance of R is (0.1)5, and this probability is significantly smaller than the prob-
ability that the long filament of R exists in the same direction, which is equal to 0.01.
(ii) In addition, the typical percolation probability via crosslinker binding decreases
exponentially for decreased actin length L. Given that the filament of length L = R
and L = R/5, we can estimate the percolation probability as (1/2)R/L = (1/2)1 and
(1/2)5, respectively. Altogether, for the percolation probability, only the maximally
long filaments may play the dominant role.

Substituting N = R/L = D/(2L) into Supplementary Equation (19) reads
droplet diameter D-dependence of the percolation probability:

p(D) = 1− [1− (1/2)D/(2L)]T (D)/τ (20)

Note that Supplementary Equation (20) can be written as p ≃ 1−exp[−(T (D)/τ)(1/2)D/(2L)]
for sufficiently large N . Thus, the percolation probability decreases from 1 to 0 with
an increase in droplet size, reproducing the experimentally observed size-dependent
cluster positioning.

Here we expect that only very long filaments, which is a small fraction in the
distribution, predominantly contribute to the percolation. In the proposed model,
the probability that a bridge is formed by the length L of F-actin in a droplet with
radius R is written as P = (1/2)R/L. If we compare the probability with different
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actin length, L = 10 µm and L = 5 µm, in a droplet with radius R = 50 µm, we
can estimate P = (1/2)5 and P = (1/2)10 respectively. Thus, only 2 times change
in F-actin length decreases the bridge formation probability ∼30 times. To compare
with the experimentally obtained actin length, we took only top 5% of the length
distribution of F-actin, because the probability of the bridge formation mediated
by short F-actin is expected to be much smaller than the longer filaments. Indeed,
the F-actin length L = 5.7 µm, calculated from averaging top 5% of the length
distribution of F-actin, is close to the value L = 6.7 µm obtained from the model
fitting to the cluster positioning.

Supplementary Note 4: Stochastic simulation of cluster posi-
tioning

In this section, we describe the scheme of stochastic simulation of cluster positioning.
The basic setup and the meaning of parameters are the same as those in Supplemen-
tary Note 3, the only difference being that here we consider cluster movement in
space, which was not described above to obtain an analytical solution Supplemen-
tary Equation (20). For simplicity, a cluster is assumed to be contracted at the edge
region when the actomyosin network bridge is formed between the cluster and the
droplet boundary. We implement this in our numerical simulation as follows: In
every time steps of τ , each crosslinking site takes an “on” or “off” state with equal
probabilities, 1/2. On repeating this trial, the formed actomyosin bridge starts con-
tracting the cluster toward the edge when all N sites are occupied until the cluster
meets the actomyosin wave. The contraction rate is assumed to be equal to the veloc-
ity of the actomyosin waves, v. Simultaneously, actomyosin waves are generated on
the boundary every time period of T , and they propagate toward the droplet center
with a velocity of v. Network bridge contraction is stopped and the network con-
nection is disrupted if the migrating cluster collides with the wave, subsequently the
cluster is transported toward droplet center by the wave. If the percolation occurs
during transportation by the wave, the formed actomyosin bridge again contracts
the cluster toward the edge.

We performed simulations for each 20-µm diameter of droplet from D = 20 to
300 µm. The length of actin filaments was set as L = 4, 8 and 12 µm, and the
turnover rate was set as C0 = 0.1, 1 and 10 µM (with turnover rate of crosslinkers:
τ = (1/(koff+C0kon), where koff = 0.66 s−1 and kon = 1.2×106 M−1 s−1). The velocity
of the actomyosin wave and network bridge contraction was set as v = 1.25× 10−2D
µm s−1, and the size-dependent wave period was set as T = 2.5 × 10−2D + 40 s
to have the same order and dependency on droplet size as the control experiment
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(Supplementary Fig. 14). We repeated the simulation run 100 times, using different
random seeds for every droplet diameter, in which each simulation corresponded
to one sample set of the cluster and droplet. The simulation run for each droplet
was finished after time T0 = 1800 s, corresponding to the typical time to reach the
steady-state in the experiment. Thereafter, we calculated the time-averaged DC-
ratio as ⟨DC-ratio⟩t = (1/T0)

∫ T0

0
[d(t)/R]dt, where d(t) is the distance between the

cluster and the droplet center, and R is the droplet radius R = D/2. We used time-
averaged DC-ratio to evaluate the statistical property of the percolation process. The
position is classified in accordance with the value of ⟨DC-ratio⟩t as the center (⟨DC-
ratio⟩t < 0.2), edge (⟨DC-ratio⟩t ≤ 0.8), and middle (0.2 < ⟨DC-ratio⟩t < 0.8). We
considered 0.8, not 0.5, as the DC-ratio threshold of the edge region in the numerical
simulation (Fig. 7). This value was justified by the following calculation: A cluster
was assumed as a point particle in numerical simulation, whereas the clusters in
experiments had finite size of Dcluster = 0.26Ddroplet (Fig. 1h). We took into account
this steric effect by assuming the excluded volume layer from the boundary. We thus
included the excluded size Dcluster/Ddroplet ∼ 0.3 to the threshold used in experiments
(0.8 − 0.3 = 0.5). In contrast, since a cluster in numerical simulation was assumed
as a point particle, we used 0.8 instead of 0.5 as the DC-ratio. The DC-ratio for
each droplet is summarized as a histogram, and the fraction of clusters in the edge
(edge-probability) is displayed with the analytical solution [Supplementary Equation
(19)] using the same parameter sets as the numerical simulation (Fig. 7).
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