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SUMMARY
The transmembrane sodium-calcium (Na-Ca) exchanger 1 (NCX1) regulates cytoplasmic Ca levels by facili-
tating electrogenic exchange of Ca for Na. Palmitoylation, the only reversible post-translational modification
known to modulate NCX1 activity, controls NCX1 inactivation. Here, we show that palmitoylation of NCX1
modifies the structural arrangement of the NCX1 dimer and controls its affinity for lipid-ordered membrane
domains. NCX1 palmitoylation occurs dynamically at the cell surface under the control of the enzymes
zDHHC5 and APT1. We identify the position of the endogenous exchange inhibitory peptide (XIP) binding
site within the NCX1 regulatory intracellular loop and demonstrate that palmitoylation controls the ability
of XIP to bind this site. We also show that changes in NCX1 palmitoylation change cytosolic Ca. Our results
thus demonstrate the broad molecular consequences of NCX1 palmitoylation and highlight a means to
manipulate the inactivation of this ubiquitous ion transporter that could ameliorate pathologies linked to
Ca overload via NCX1.
INTRODUCTION

The sodium-calcium (Na-Ca) exchanger 1 (NCX1) regulates

intracellular Na and Ca by facilitating the bidirectional transport

of Ca under the control of the transmembrane Na gradient in

excitable and non-excitable cells. In cardiac muscle, for

example, NCX1 activity is an important determinant of ventricu-

lar filling, but it also indirectly controls systolic function by

competing with the enzyme responsible for intracellular Ca stor-

age, SERCA2a (Ottolia et al., 2013). Inappropriate NCX1 activity

contributes to numerous cardiac pathologies, including myocar-

dial infarction (Ohtsuka et al., 2004), heart failure (Flesch et al.,

1996), and arrhythmias (Dai et al., 2019; Voigt et al., 2012).

NCX1 is a functional dimer (John et al., 2011; Ren et al., 2008)

that is allosterically regulated by both ions it transports through

effects on its large regulatory intracellular loop (f-loop). Elevated

intracellular Na inactivates NCX1 (Hilgemann et al., 1992), but the

identity of the regulatory Na binding site responsible for this inac-

tivation is not known. The binding of Ca at two Ca-binding do-

mains (CBDs) counteracts this inhibition and activates NCX1 (Ot-

tolia et al., 2009). Binding of 4 Ca ions to CBD1, the high-affinity

Ca -binding site (Kd �0.2 mM), activates NCX1; binding of 2 Ca

ions to CBD2, a lower-affinity site (Kd �10 mM), opposes NCX1

inactivation (Khananshvili, 2020). Structural information to

explain how allosteric regulation via occupancy of the CBDs is
This is an open access article und
translated into functional effects on ion transport remains poorly

understood, as the only exchanger to have its structure solved

lacks allosteric regulatory sites (Liao et al., 2012, 2016).

The activities of numerous ion channels and transporters are

key to controlling the function of excitable tissues. Voltage-gated

channels, ion pumps, exchangers, and their accessory subunits

are all palmitoylated (Howie et al., 2013; Shipston, 2011), with

diverse functional consequences. Palmitoylation is the only

reversible post-translational modification reported to regulate

NCX1 (Fuller et al., 2016; Gök and Fuller, 2020; Reilly et al.,

2015). S-palmitoylation, the esterification of palmitate to

cysteine side chains, reversibly anchors intracellular regions of

proteins to membranes (Linder and Deschenes, 2007). Cata-

lyzed by zinc-finger- and DHHC-motif-containing palmitoyl

acyl transferases (zDHHC-PATs; Mitchell et al., 2006), and

reversed by thioesterases, this lipid modification regulates the

activity, stability, subcellular distribution, and lipid interactions

of peripheral and integral membrane proteins (Salaun et al.,

2010). Palmitoylation can control the affinity of proteins for mem-

branes based on their shape (Larsen et al., 2015); it directly influ-

ences membrane curvature (Chlanda et al., 2017) and promotes

the clustering and internalization of both proteins and lipids (Hil-

gemann et al., 2013). It is therefore important to understand the

control and cellular consequences of this post-translational

modification for protein structure and function.
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Figure 1. Palmitoylation Modifies FRET between NCX1 Dimers

(A) Schematic of the NCX1 FRET sensors used in this investigation, indicating the positions of transmembrane (TM) domains, exchange inhibitory peptide (XIP),

FRET sensors (CFP and YFP), Ca binding domains (CBDs), and palmitoylation site.

(B) Palmitic acid (upper structure, at 20 mM, 4 h) supplementation increases the palmitoylation of endogenous NCX1 in neonatal rat ventricularmyocytes (NRVMs).

Western blots show abundance of NCX1 (upper) and the lipid raft resident protein flotillin 2 (loading control, lower) in unfractionated cell lysates (UF) and purified

palmitoylated fraction (HA). The bar chart (right) showsNCX1 palmitoylation (HA fraction) normalized to expression (UF) in treated (blue, +) relative to untreated (�)

NRVMs (N = 5).

(legend continued on next page)
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NCX1 is palmitoylated at a single cysteine at position 739 in

its f-loop, on the carboxyl terminal side of CBD2 (Fuller et al.,

2016; Gök and Fuller, 2020; Plain et al., 2017; Reilly et al.,

2015). Palmitoylation is required for NCX1 inactivation, which

is mediated by the interaction of the endogenous exchange

inhibitory peptide (XIP) with the f-loop. XIP inactivation of

NCX1 requires residues 562–679 (Maack et al., 2005; Matsuoka

et al., 1993), although this large region of the NCX1 f-loop in-

cludes part of CBD2 and it is likely that the core XIP-binding

site is smaller. The physiological importance of NCX1

inactivation has not yet been fully established. Inactivation likely

represents a means to tune NCX1 activity in response to mobi-

lization of PIP2 (which usually sequesters the XIP domain).

Furthermore, NCX1 inactivation plays an important role in

limiting NCX1-mediated Ca influx (and hence cellular injury) un-

der circumstances of Na overload, metabolic stress, or

acidosis (Hilgemann et al., 2006; Reeves and Condrescu,

2008).

Molecular recognition of the NCX1 palmitoylation site is facil-

itated by the presence of an amphipathic a-helix, which is posi-

tioned at the carboxyl terminal end of the f-loop (Plain et al.,

2017). However, how palmitoylation regulates NCX1 behavior

is only partially understood. Furthermore, it remains unknown

whether NCX1 palmitoylation is a one-off event, linked to its

passage through the secretory pathway, or a dynamic event

that occurs at the cell surface. Here, we investigated how pal-

mitoylation regulates the dimerization, lipid interactions, and

inactivation of NCX1 in HEK cells and ventricular myocytes

and report several important advances. Our findings show

that palmitoylation modifies both NCX1-NCX1 dimerization

and the ability of XIP to bind to and inactivate NCX1. We iden-

tify a region of the NCX1 f-loop adjacent to the NCX1 palmitoy-

lation site where XIP binds, which is distinct from the region of

the f-loop required for XIP to inactivate NCX1. We find that pal-

mitoylation of NCX1 at the cell surface is dynamic and that the

structural motif in the NCX1 f-loop that is required for NCX1

palmitoylation also recruits the thioesterase APT1. From our

findings, we propose that palmitoylation creates a site within

the NCX1 f-loop where XIP binds, thereby facilitating NCX1

inactivation while also controlling the protein’s affinity for lipid

rafts in the plasma membrane. The reduced sensitivity of

non-palmitoylated NCX1 to inactivation ultimately leads to

elevated intracellular Ca. Hence, the palmitoylation status of

NCX1 regulates cytosolic Ca.
(C) NCX1-NCX1 FRETmeasurements in transiently transfected NRVMs. The imag

ratio was calculated as the ratio of background-subtracted �YFP and �CFP sig

(D) Palmitic acid supplementation (20 mM, 4 h) significantly enhances NCX1-NCX1

by unpaired t test. N = 14.

(E) Position of the NCX1 palmitoylation site. The magnified box shows the positi

(F) FT-293 cells that stably express tetracycline (Tet)-inducibleWTNCX1 treated w

In FT-293 cells that stably express Tet-inducible C739A NCX1, NCX1 is not p

expression, in 2-BP-treated (black) relative to untreated (gray) FT-293 cells. **p =

(G) An example of NCX1-NCX1 FRETmeasurements in transiently transfected HEK

4 h, middle), and C739A NCX1 (right). Scale bar, 10 mm.

(H) NCX1-NCX1 FRET activity is significantly reduced in HEK293 cells expressing

C739A NCX1. ****p < 0.0001, calculated by unpaired t test. N = 14 (WT), 14 (WT

(I) Cross-linking of NCX1 using 0.1 mM BMH. The NCX1 monomer migrates at ~

between palmitoylatable WT NCX1 and unpalmitoylatable C739A. N = 5 for WT
RESULTS

Palmitoylation Increases NCX1-NCX1 FRET Signals in
Live Cells
Previously, NCX1 dimerization has been detected by performing

intermolecular fluorescence resonance energy transfer (FRET)

between CFP- and YFP-tagged NCX1 in plasma membrane

sheets prepared from Xenopus oocytes (John et al., 2011).

Here, we expressed full-length NCX1with the same fluorophores

inserted at position 266 (at the N-terminal end of the NCX1

f-loop; Figure 1A) in neonatal rat ventricular myocytes (NRVMs).

Palmitic acid supplementation of myocytes is known to enhance

the palmitoylation of certain cardiac proteins (Pei et al., 2016).

The treatment of NRVMs with palmitic acid increased both

endogenous NCX1 palmitoylation (Figure 1B) and NCX1-NCX1

FRET (Figures 1C and 1D). These palmitoylation-dependent

changes in NCX1 FRET behavior suggest that either (1) palmitoy-

lation regulates NCX1 dimerization or (2) palmitoylation restruc-

tures the f-loop in existing NCX1 dimers to promote intermolec-

ular FRET.

Next, we evaluated NCX1 FRET activity in HEK cells that ex-

pressed either wild-type (WT) or unpalmitoylatable (C739A)

NCX1 (Figures 1E and 1F). The FRET signal generated by unpal-

mitoylatable NCX1 was markedly reduced compared to that of

WT NCX1 (Figure 1G). Furthermore, the broad-spectrum

zDHHC-PAT inhibitor 2-bromopalmitate significantly reduced

both NCX1 palmitoylation and FRET between WT NCX1 dimers

(Figures 1G and 1H). In both cell types tested, NCX1 palmitoyla-

tion consistently caused an increase in NCX1-NCX1 FRET sig-

nals. The intensity of any FRET signal depends considerably

on the distance (1/r6) between donor and acceptor fluorophores.

The observed increase in NCX1-NCX1 FRET that occurs

following NCX1’s palmitoylation most likely reflects a reduction

in the distance between the two fluorophores. This, in turn, sug-

gests that the palmitoylation of the f-loop induces a discernible

conformational change within the cytoplasm-facing structure

of NCX1. To determine whether the change in NCX1-NCX1

FRET signal induced by palmitoylation reflected a conforma-

tional change in existing dimers or a difference in the propensity

of NCX1 to dimerize, FT-293 cells expressing eitherWT or unpal-

mitoylatable NCX1 were briefly treated with the homo-bifunc-

tional cross-linker bismaleimidohexane (BMH). The amount of

NCX1 dimer detected was essentially the same (Figure 1I). We

conclude that palmitoylation restructures existing NCX1 dimers.
es show representative cells visualized in the CFP and YFP channels. The FRET

nals (scale bar, 10 mm).

FRET in treated (+) relative to untreated (�) NRVMs. ****p < 0.0001, calculated

on of the C739A mutation, which prevents the palmitoylation of NCX1.

ith 2-bromopalmitate (2-BP; 50 mM, 4 h) showed reducedNCX1 palmitoylation.

almitoylated. The bar chart (right) shows NCX1 palmitoylation normalized to

0.003, calculated by unpaired t test. N = 5.

293 cells expressingWTNCX1 (left),WTNCX1 in the presence of 2-BP (50 mM,

WT NCX1 and treated with 2-BP (50 mM, 4 h) and in HEK293 cells expressing

+2-BP), and 19 (C739A).

120 kDa and the dimer at ~250 kDa. The monomer/dimer ratio was identical

NCX1 and C739A.
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Lipid Interactions of Palmitoylated NCX1
The affinity of single-transmembrane-domain proteins for lipid

rafts is regulated by palmitoylation (Lorent et al., 2017), and

numerous integral membrane proteins are palmitoylated and

reside in lipid rafts (Wypijewski et al., 2015). However, to date,

no multi-pass membrane domain protein has been found to

have a significant affinity for the raft phase formed in phase-

separated giant plasma membrane vesicles (GPMVs), which

are widely used to investigate membrane protein behaviors in

lipid raft and non-raft phases (Diaz-Rohrer et al., 2014; Levental

et al., 2010; Lorent et al., 2017; Sezgin et al., 2012). Here, we

investigated the effect of palmitoylation on the affinity of NCX1

for lipid rafts in intact cells and GPMVs. We treated HEK cells

with 5 mM methyl-b-cyclodextrin (MbCD) to disrupt membrane

rafts and with 25 mM SDS to enhance raft formation. MbCD re-

moves cholesterol from biological membranes, while low con-

centrations of detergents, such as SDS, enhance raft formation

in intact cells by increasing disorder in disordered microdomains

(Hilgemann et al., 2018; Zhou et al., 2013). Cells were stained

with filipin to confirm the successful depletion or clustering of

cholesterol following MbCD or SDS treatment (Figure 2A).

Enhancing raft formation with SDS significantly increased

NCX1-NCX1 FRET signals, but only when NCX1 was palmitoy-

latable (Figure 2B). The disruption of lipid rafts did not alter the

FRET signals produced by unpalmitoylatable NCX1, but it did

reduce FRET signals between WT NCX1 dimers such that they

were indistinguishable from that of unpalmitoylated NCX1 (Fig-

ure 2C). That the higher steady-state FRET between WT NCX1

dimers is sensitive to the destruction of lipid rafts suggests that

palmitoylation enhances the affinity of NCX1 for rafts. We

explored this possibility by visualizing the distribution of CFP-

tagged NCX1 in phase-separated GPMVs (Figure 2D). Unpalmi-

toylatable NCX1 partitioned entirely to the non-raft phase upon

phase separation. Interestingly, the presence of palmitoylated

WT NCX1 impaired the phase separation of GPMVs, which sug-

gests that palmitoylation of NCX1 fundamentally alters the

behavior of the membrane. WT NCX1 colocalized with both

raft and non-raft markers in GPMVs (Figure 2E), indicating that

palmitoylation does indeed control the affinity of NCX1 for lipid

rafts.

NCX1 Palmitoylation Creates an XIP Binding Site within
the f-Loop
NCX1 is inactivated when XIP (residues 219–238), located at the

N-terminal end of the NCX1 f-loop, interacts with a distal region

of the same loop (residues 562–679; Maack et al., 2005; Fig-

ure 3A). Palmitoylation enhances NCX1’s inactivation, but the

molecular basis of this process is only partially understood. We

investigated whether palmitoylationmodifies the relationship be-

tween XIP and NCX1, using a WT or mutant XIP peptide. The

point mutant XIP peptide we used cannot inactivate NCX1

(K229Q; Matsuoka et al., 1997). We also depleted PIP2 pharma-

cologically (Figure 3B), as PIP2 usually sequesters the endoge-

nous XIP domain to prevent NCX1 inactivation. We found that

biotinylated WT and K229Q XIP peptides could affinity purify

WT NCX1 from cell lysates with equal efficiency (Figure 3C),

which suggests that XIP engagement with and inactivation of

NCX1 are separate events. By fusing YFP to regions of the
4 Cell Reports 31, 107697, June 9, 2020
NCX1 f-loop (Plain et al., 2017), we probed the XIP binding site

in the f-loop (Figure 3D). Biotinylated XIP affinity purified NCX1

370–765, 501–765, 599–765, and surprisingly 690–765, which

does not include any part of the f-loop necessary for XIP to inac-

tivate NCX1 (Maack et al., 2005). Again, this emphasizes the sep-

aration of binding and efficacy in XIP inactivation of NCX1.

Next, we investigated the role of palmitoylation in regulating

XIP interaction with the NCX1 f-loop. Biotinylated XIP peptide

showed a substantially reduced ability to pull down unpalmitoy-

latable NCX1 following affinity purification (Figure 3E). This sug-

gests that NCX1 undergoes a conformational change on being

palmitoylated, which creates a binding site within the f-loop for

XIP. We sought to identify the location of this binding site by

probing an array of overlapping 25-mer peptides representing

NCX1 619–766 (covering the C-terminal half of CBD2 and the

linker between CBD2 and TMD6) with biotinylated XIP. We

took advantage of the fact that 15 mM, but not 5 mM, XIP binds

to the f-loop (Figure 3E) and classified peptides in the array inter-

acting with 5 mMXIP as false positives. Both 5 mMand 15 mMXIP

interacted with peptides representing the C-terminal end of

CBD2 (659–713, including the final Ca-coordinating residue,

E684). 15 mM XIP uniquely interacted with 25-mer peptides

covering 699–743, suggesting that the core XIP binding site is

a region immediately on the N-terminal side of the palmitoylation

site, 709-SWREQFIEAITVSAGEDDDD-728 (Figure 3F). We

therefore deleted this region from the NCX1 f-loop and tested

the impact on XIP binding. Since NCX1 palmitoylation effects

XIP binding, we first confirmed that palmitoylation of YFP-

NCX1 266–765 was unaffected by the mutation D709–728 (Fig-

ure 3G). Affinity purification of YFP-NCX1 266–765 by bio-

tinylated XIP peptide was largely abolished by the mutation

D709–728 (Figure 3H). Hence, we conclude that XIP interacts

with NCX1 709–728.

Since XIP is rich in basic amino acids, we reasoned that it

would cross the cell membrane in the same manner as reported

for other cell-penetrant polybasic peptides (Milletti, 2012). We

therefore investigated the impact on NCX1 FRET activity of

applying XIP to intact cells. WT, but not K229Q, XIP reduced

theWTNCX1 FRET signal; the FRET activity of unpalmitoylatable

NCX1 was modestly increased by XIP (Figure 3I). We depleted

PIP2 by activating phospholipase C with 3M3FBS in the pres-

ence of the phosphatidylinositol 3-kinase (PI3K) inhibitor wort-

mannin to prevent PIP2 resynthesis and then measured NCX

FRET. This pharmacological release of XIP from PIP2 also

reduced the FRET activity of WT NCX1 (Figure 3I). We concluded

from these results that the binding of XIP to NCX1 and NCX1

inactivation are independent events. XIP can bind to NCX1

regardless of whether or not it is capable of inactivating it

(XIP K229Q), but NCX1 needs to be palmitoylated to interact

with XIP with a high affinity.

NCX1 Depalmitoylation Pathways
Palmitoylation of NCX1 at C739 requires an amphipathic a-helix

(residues 740–756) located adjacent to this cysteine (Plain et al.,

2017). We reasoned that the zDHHC-PAT responsible for palmi-

toylating NCX1might interact with this helix. We therefore used a

peptide that represents NCX1 amino acids 740–756 and carries

an N-terminal biotin tag to affinity purify interacting proteins from
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Figure 2. NCX1 Localization to Lipid Microdomains

(A) Visualization of cellular cholesterol with filipin in control (left), SDS-treated (center), and MbCD-treated (right) HEK293 cells (scale bar, 20 mm).

(B) Representative FRET images in HEK293 cells expressing WT (upper) and unpalmitoylatable (C739A, lower) NCX1 FRET sensors following treatment to

enhance (SDS) or reduce (MbCD) raft formation (scale bar, 10 mm).

(C) Mean FRET data. Enhancing raft formation increases NCX1-NCX1 FRET and reducing raft formation decreases NCX1-NCX1 FRET, but only when NCX1 is

palmitoylatable. ****p < 0.0001, calculated by unpaired t test. N = 14 (WT), 35 (WT+SDS), 16 (WT+MbCD), 19 (C739A), 26 (C739A+SDS), and 14 (C739A+MbCD).

(D) Schematic representation of giant plasma membrane vesicle (GPMV) phase separation and representative images displaying phase-separation behavior in

the presence of WT NCX1 (upper) and C739A NCX1 (lower). Scale bar, 2 mm.

(E) Colocalization analysis in phase-separated GPMVs. Left: increased colocalization of raft (CTxB-Alexa Fluor 647) and non-raft (FAST-DIL) markers in the

presence of WT versus C739A NCX1. Center: raft colocalization of WT and unpalmitoylatable NCX1. Right: non-raft colocalizaton of WT and unpalmitoylatable

NCX1. ****p < 0.0001, calculated by unpaired t test. N = 27 (WT) and 28 (C739A).
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rat cardiac and brain lysates (Figure 4A). The interacting proteins

were then identified by liquid chromatography-tandem mass

spectrometry (LC-MS/MS) (Table S1). No zDHHC-PATs were

found to interact with this peptide. However, we did identify

the depalmitoylating enzyme APT1 (LYPLA1) from heart lysates.

We therefore investigated whether APT1 depalmitoylates NCX1.

The broad-spectrum thioesterase inhibitor palmostatin B

(PalmB; which inhibits ABHD isoforms as well as APT1; Lin and

Conibear, 2015) significantly enhanced both NCX1 palmitoyla-

tion and FRET between WT NCX1 dimers in HEK cells (Figures
4B and 4C). The specific APT1 inhibitor ML348 (Adibekian

et al., 2012) also enhanced NCX1 palmitoylation and FRET, but

the APT2 inhibitor ML349 did not. PalmB and ML348, but not

ML349, also increased NCX1 palmitoylation in adult rabbit ven-

tricular myocytes (Figure 4B). None of these drugs significantly

influenced FRET between unpalmitoylatable NCX1 dimers (not

shown). These experiments show that the palmitoylation of

NCX1 is dynamic, with depalmitoylation depending on the activ-

ity of APT1, but not APT2. Our results therefore suggest

that APT1 is likely to be the enzyme that mediates NCX1
Cell Reports 31, 107697, June 9, 2020 5
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Figure 3. Palmitoylation Enhances NCX1 XIP Affinity

(A) Schematic of the NCX1 intracellular f-loop, highlighting the position of XIP, CBDs, and the region of the f-loop required for XIP inactivation of NCX1 (562–679)

near the palmitoylation site.

(legend continued on next page)
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depalmitoylation. Moreover, the region of NCX1 required for its

palmitoylation may also be responsible for recruiting the NCX1

thioesterase.

NCX1 Palmitoylation Status and Cellular Environment
We investigated whether allosteric regulation by Na or Ca influ-

enced NCX1-NCX1 FRET by removing these ions from the extra-

cellular solution (Figure 5A). In Na-free solutions, NCX1-NCX1

FRET was substantially reduced, and in Ca-free solutions,

NCX1-NCX1 FRET was significantly increased (Figures 5B and

5C). Remarkably, these changes in FRET were not observed

when NCX1 was unpalmitoylatable, which suggests that they

are mediated by changes in NCX1 palmitoylation (Figures 5B

and 5C). Indeed, we found that Na-free solutions reduced and

Ca-free solutions enhanced NCX1 palmitoylation (Figure 5D).

These experiments provide additional support for NCX1 being

dynamically palmitoylated following its delivery to the cell sur-

face. They furthermore suggest that the NCX1 Ca-free (Na-

bound) structure is preferentially palmitoylated and the Na-free

(Ca-bound) structure is preferentially depalmitoylated.

zDHHC5 Palmitoylates NCX1 at the Cell Surface
The cell-surface zDHHC5-PAT recruits substrates via its

extended intracellular C tail (Howie et al., 2014). We used a li-

brary of overlapping biotinylated peptides, which represent the

first section of this C tail, to identify zDHHC5-binding proteins

in rat cardiac lysates and found that NCX1 interacts with

zDHHC5 (Figure 6A). To investigate a role for zDHHC5 in the pal-

mitoylation of NCX1, we generated zDHHC5 knockout (KO) cells

by transfecting FT-293 cells that express tetracycline-inducible

cas9 with a guide RNA targeting zDHHC5 (Munoz et al., 2014).

Successful gene targeting was confirmed by sequencing a re-

gion of PCR-amplified zDHHC5 exon 2 (bases 57,672,929 to

57,673,619 of Homo sapiens chromosome 11; the zDHHC5 initi-

ator methionine is the ATG in position 57,673,091). zDHHC5 pro-

tein was undetectable in lysates from KO cells (data not shown).

We first confirmed that zDHHC5 palmitoylates NCX1 by co-

expressing WT zDHHC5 or catalytically inactive zDHHS5 with

NCX1 in zDHHC5 KO cells (Figure 6B). FRET between WT

NCX1 dimers was substantially reduced in zDHHC5 KO

compared to WT HEK cells (Figures 6C and 6D). When zDHHC5
(B) Schematic of the relationship between XIP and PIP2, highlighting the drugs (

(C) Biotinylated WT and inactive (K229Q) XIP peptides affinity purify YFP-tagged

(D) Biotinylated WT XIP peptides affinity purify YFP-tagged NCX1 f-loop region

fractionated cell lysate; XIP, proteins affinity purified by biotinylated XIP.

(E) Affinity purification of NCX1 from FT-293 cells expressing full-length NCX1 by a

reduced (2-BP) or abolished (C739A). Bar charts (right) show the amount of NCX

unfractionated cell lysate (UF). Statistical comparisons are between the relative

concentration of XIP (p values range from 0.04 [*] to 0.008 [**], N = 3). Inset: compar

BP-treated WT, or C739A NCX1-expressing cells. ****p < 0.0001, ***p = 0.0005 c

(F) Peptide array to map the XIP binding site in the NCX1 f-loop. Arrays of 25-m

centration of biotinylated XIP. The alignment alongside the arrays highlights the fin

(709-SWREQFIEAITVSAGEDDDD-728) in orange.

(G) Deletion of the putative XIP binding site (D709–728) has no impact on NCX1

(H) Deletion of residues 709–728 abolishes the interaction between the NCX1 f-l

(I) FRET activity of WT NCX1 is reduced by application of WT, but not K229Q XIP

unpalmitoylatable NCX1. ****p < 0.0001, ***p = 0.0006, *p = 0.034, calculated b

(WT+WMN+3-M3FBS 19 (C739A), and 16 (C739A+XIP).
KO cells were exposed to Ca-free extracellular solutions, there

was no change in FRET between WT NCX1 dimers (Figures 6C

and 6D). This is therefore consistent with the notion that zDHHC5

is the ‘‘sensor’’ that mediates dynamic changes in NCX1 palmi-

toylation and FRET in different cellular environments.

NCX1 Palmitoylation and the Control of Intracellular Ca
To date, the impact of palmitoylation on NCX1 activity has been

defined using whole-cell voltage clamp following the dialysis of

intracellular contents. Given our finding that palmitoylation

changes XIP affinity of NCX1 and occurs dynamically at the

cell surface, we evaluated the impact of NCX1 palmitoylation

on intracellular Ca in intact FT-293 cells loaded with the Ca-sen-

sitive dye Fluo 4. Under physiological conditions (150 mM Na,

1.8 mM extracellular Ca, 10 mM Na, 100 nM intracellular Ca),

the reversal potential of NCX1 is 42 mV. In excitable tissues

(restingmembrane potential,�80mV), NCX1-mediated Na influx

and Ca efflux occur at rest, but in HEK cells (resting membrane

potential, �24 mV; Kirkton and Bursac, 2011), NCX1 acts as a

Ca-influx pathway. Intracellular Ca was higher in the presence

of unpalmitoylatable NCX1 compared to WT NCX1 (Figure 7A).

This implies greater NCX-mediated Ca influx occurs when

NCX1 is not palmitoylated as a result of its reduced XIP sensi-

tivity. In separate experiments, increasing NCX1 palmitoylation

with PalmB reduced intracellular Ca in FT-293 cells expressing

WT NCX1 (Figure 7B), again suggesting that the palmitoylation

status of NCX1 controls intracellular Ca.

DISCUSSION

In this paper, we set out to investigate the cellular mechanisms

controlling NCX1 palmitoylation and the consequences of palmi-

toylation for NCX1 dimerization and lipid interactions, as well as

to understand the molecular basis of the requirement for palmi-

toylation for NCX1 to inactivate. Our findings show that the rela-

tionship between NCX1 and the lipid bilayer in which it resides is

fundamentally altered by palmitoylation. Our results show, for

the first time, that the palmitoylation of NCX1 at the cell surface

occurs dynamically under the control of APT1 and zDHHC5, with

the rates of palmitoylation and depalmitoylation influenced by

the NCX1 conformational poise. Palmitoylation increases FRET
WMN and m-3M3FBS) used to manipulate PIP2 concentrations.

WT NCX1 f-loop equally efficiently from HEK cell lysates.

s 370–765, 501–765, 599–765, and 690–765 from HEK cell lysates. UF, un-

biotinylated XIP peptide is substantially reduced when NCX1 palmitoylation is

1 that co-purified with 5–100 mM XIP, relative to the abundance of NCX1 in the

amounts of WT, 2-BP-treated, and C739A NCX1 co-purified by a particular

ison of the amount of NCX1 binding to 25 mMXIP fromWT (defined as 100%), 2-

alculated by unpaired t test.

er peptides synthesized on membranes were probed with the indicated con-

al Ca coordinating residue of CBD2 (E684) in green and the core XIP binding site

palmitoylation (N = 4).

oop and XIP.

, or following depletion of PIP2. XIP modestly increases the FRET behavior of

y unpaired t test. N = 14 (WT), 8 (WT+K229Q), 12 (WT+XIP), 18 (DMSO), 18
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Figure 4. Identification of the NCX1 Depalmi-

toylating Enzyme

(A) Schematic of the affinity-purification reactions

that identified APT1 as a possible NCX1-interacting

protein.

(B) Impact of palmostatin B (PalmB; 20 mM), ML348

(APT1 inhibitor, 10 mM), and ML349 (APT2 inhibitor,

10 mM) on NCX1 palmitoylation in FT-293 cells sta-

bly expressing NCX1 (upper) and adult rabbit ven-

tricular myocytes (lower). All drugs were applied for

3 h before measurements. The bar charts show

NCX1 palmitoylation (HA fraction) normalized to

expression (UF) following the indicated treatments.

***p = 0.0003, **p = 0.0015 (FT-293) and 0.0036

(rabbit myocytes), *p = 0.0261, calculated by un-

paired t test. N = 7 (FT-293 cells), N = 7 (rabbit

myocytes).

(C) Impact of the same thioesterase inhibitors on

NCX1-NCX1 FRET. ****p < 0.0001, calculated by

unpaired t test. N = 14 (untreated), 18 (DMSO) 17

(PalmB), 15 (ML348), and 14 (ML349).
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between protomers within an NCX1 dimer, enhances the affinity

of NCX1 for lipid-ordered domains at the cell surface, and is

required for XIP to bind to and inactivate NCX1. Ultimately, by

controlling the ability of NCX1 to inactivate, NCX1 palmitoylation

regulates cytosolic Ca.

XIP, Inactivation, and Control of Intracellular Ca by
NCX1 Palmitoylation
The functional effect of NCX1 palmitoylation is to modify NCX1

inactivation (Reilly et al., 2015). We have identified a region of

the f-loop adjacent to the palmitoylation site (residues 709–

728, enriched in negatively charged amino acids) that is required

for XIP binding to the f-loop. This is consistent with an electro-

static interaction between the polybasic XIP sequence and this

region of the f-loop being promoted by palmitoylation. We sug-

gest that by recruiting residues 709–728 close to the membrane,
8 Cell Reports 31, 107697, June 9, 2020
palmitoylation of C739 facilitates engage-

ment of this region with the XIP domain,

which is structurally constrained because

it is immediately adjacent to TM5 at the

N-terminal end of the f-loop. However,

since a soluble biotinylated XIP peptide af-

finity purifies unpalmitoylated NCX1 less

efficiently thanWT, the impact of palmitoy-

lation must also be to restructure the f-loop

to create a binding site for XIP in addition to

bringing this part of the protein closer to

the membrane.

The XIP docking site we have identified

lies only 15 amino acids on the C-terminal

side of CBD2. As the functional conse-

quence of Ca binding to CBD2 is the relief

of NCX1 inactivation, our investigation

suggests a scenario in which engagement

of XIP with its docking domain destabilizes

the Ca binding sites in CBD2 to promote

NCX1 inactivation. Considering the transi-
tion from inactivated to activated state, Ca binding to CBD2

may reverse XIP binding and/or efficacy. As well as being impor-

tant for binding to 709–728, the polybasic nature of XIP may also

be important to disturb the co-ordination of Ca ions by acidic

residues in CBD2. Althoughwe have previously reported Ca acti-

vation of NCX1 is not changed by palmitoylation, we used Ca

concentrations that likely influence only the high-affinity binding

site CBD1 (Reilly et al., 2015). An important prediction arising

from this study that will be addressed in future experiments is

that bymodifying the ability of XIP to engage its docking site, pal-

mitoylation indirectly regulates the Ca affinity of CBD2 in full-

length NCX1.

How does NCX1 palmitoylation ultimately control intracellular

Ca? Our data indicate that NCX1-mediated transmembrane Ca

fluxes are reduced when NCX1 is palmitoylated and enhanced

when NCX1 is depalmitoylated, which implies that XIP tunes
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Figure 5. NCX1 Palmitoylation and the Extra-

cellular Environment

(A) Schematic of the experimental intervention.

HEK293-expressing NCX1 FRET sensors were

incubated in Tyrode’s buffer (containing physio-

logical concentrations of Na and Ca) or modified

Tyrode’s buffer that was free of either Na (replaced

with NMDG) or Ca (chelated with 1 mM EGTA).

(B) An example of NCX1-NCX1 FRET measure-

ments in transiently transfected HEK293 cells ex-

pressing WT NCX1 (left, open circles) or un-

palmitoylatable NCX1 (right, closed circles) in

physiological (black), sodium-free (blue) and cal-

cium-free (red) conditions.

(C) Sodium-free (NaF) solutions reduce, and cal-

cium-free (CaF) solutions enhance, NCX1-NCX1

FRET, but only when NCX1 is palmitoylatable.

****p < 0.0001, *p = 0.01, calculated by unpaired t

test. Statistical comparisons in C739A groups are to

corresponding conditions forWTNCX1. N = 14 (WT,

Tyrode’s), 23 (WT, Na-free), 18 (WT, Ca-free), 19

(C739A Tyrode’s), 24 (C739A Na-free), 9 (C739A,

Ca-free).

(D) The same Na-free solutions reduce, and Ca-free

solutions enhance, NCX1 palmitoylation. UF, un-

fractionated lysate; HA, purified palmitoylated

fraction. The bar chart (right) shows NCX1 palmi-

toylation (HA fraction) normalized to expression (UF)

following the indicated treatments.
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NCX1 activity at rest and not simply following PIP2 mobilization.

NCX1 inactivation is demonstrated to have a physiological role in

the control of intracellular Ca by our experiments. Clearly NCX1

palmitoylation modifies XIP binding, but destabilization of Ca

binding to CBD2 by XIP does not fully explain the NCX1 inactiva-

tion process. Although allosteric regulation by Na, Ca, and XIP

are lost, the proteolytic removal of the entire NCX1 f-loop does

not abolish exchanger activity, so CBD1, CBD2, and XIP are

not required for ion transport (Hilgemann, 1990; Philipson

et al., 1988). What is required for transporter activity, however,

is the entry of ions into their transmembrane binding sites along

extracellular and cytosolic vestibules. The complete cessation of

transporter activity that occurs when XIP binds to its docking site

could be explained if XIP binding prevented these ions from ac-

cessing the mouth of a cytosolic vestibule. This will be the sub-

ject of future experiments.

Previous experiments that identified residues 562–679 as

essential for the functional effect of XIP (Maack et al., 2005) are

not inconsistent with our finding that XIP binds elsewhere in

the f-loop. Indeed, the fact that a functionally inactive XIP pep-

tide affinity purifiedWTNCX1 equally as well asWT XIP suggests
that XIP binding to and inactivation of

NCX1 occur independently. The important

implications of this observation are that

experimental and therapeutic strategies

to inhibit XIP activity must target a different

region of the f-loop than those aiming to

mimic XIP activity. The region of the

f-loop required for XIP efficacy is likely

smaller than has been defined to date,
but it was beyond the scope of the current investigation to

fine-map its location.

The fact that we were able to achieve modest co-purification

of unpalmitoylatable NCX1 with XIP suggests that a low-affinity

interaction with XIP is maintained when NCX1 is not palmitoy-

lated. In keeping with this, exogenous XIP slightly increases

the FRET activity of unpalmitoylatable NCX1, implying that it re-

tains some ability to regulate unpalmitoylated NCX1. This is

consistent with our earlier finding that NCX1 shows reduced

(but not entirely absent) inactivation when unpalmitoylated (Reilly

et al., 2015) and implies that even when binding of XIP to its

docking site is reduced (whenNCX1 is not palmitoylated), a func-

tional effect on NCX1 can be achieved.

NCX1-NCX1 FRET
It has previously been shown in Xenopus plasma membrane

sheets that NCX1-NCX1 FRET increases dynamically as Ca oc-

cupies the CBDs (John et al., 2011). Multiple structural rear-

rangements leading to altered NCX1-NCX1 FRET are evidently

possible, some of which are independent of palmitoylation. Pal-

mitoylation-induced changes in NCX1-NCX1 FRET only occur
Cell Reports 31, 107697, June 9, 2020 9
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Figure 6. NCX1 Relationship with zDHHC5

(A) An array of biotinylated zDHHC5 peptides rep-

resenting the zDHHC5 C tail affinity purifies NCX1

from rat ventricular lysates.

(B) NCX1 palmitoylation is increased by co-

expression of WT, but not catalytically inactive

zDHHC5, in zDHHC5 KO cells. ***p = 0.0002

(knockout [KO] versus +zDHHC5), 0.0009 (+DHHC5

versus zDHHS5), calculated by unpaired t test,

N = 4.

(C) NCX1-NCX1 FRET recordings in HEK and

zDHHC5 KO cells.

(D) NCX1-NCX1 FRET is reduced in zDHHC5 KO

cells and is no longer sensitive to changes in

extracellular ion concentrations. ****p < 0.0001, *p =

0.01, calculated by unpaired t test. N = 14 (WT,

Tyrode’s), 18 (WT, Ca-free), 16 (DHHC5 KO

Tyrode’s), and 20 (DHHC5 KO, Ca-free),
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when lipid rafts can form (discussed below), which suggests that

there is a requirement for particular phospholipid(s) and/or the

membrane’s physical properties to support palmitoylation-

induced restructuring of the NCX1 dimer. We propose that the

‘‘palmitoylated-high FRET form’’ of NCX1 identified in this inves-

tigation represents a species that can inactivate, while the ‘‘un-

palmitoylated-low FRET form’’ is less capable of inactivating,

because it has a lower affinity for XIP. Our finding that Ca-free

conditions enhance both NCX1 palmitoylation and FRET are

important, because this suggests that Na binding to its allosteric

regulatory site, already established to promote NCX1 inactiva-

tion, may trigger a positive feedback loop to inactivate NCX1

by enhancing its palmitoylation, sensitizing NCX1 XIP. Although

the location of the allosteric regulatory site for Na is as-yet un-

known, it does not lie within the CBDs (Boyman et al., 2009,

2011). The possibility that this site is close to the palmitoylation

site in NCX1 should now be considered.

Dynamic NCX1 Palmitoylation at the Cell Surface
We have previously identified the Golgi as the principal site of

NCX1 palmitoylation, because a YFP fusion protein that includes

theNCX1palmitoylationsite (but not the transmembranedomains)

becomes trapped in the Golgi apparatus (Plain et al., 2017; Reilly

et al., 2015). Here, we extend these findings and report that

following itsdelivery to thecell surface,NCX1 isdynamicallydepal-

mitoylated and repalmitoylated by APT1 and zDHHC5, respec-

tively. The localization of a palmitoylated NCX1 f-loop to the Golgi

suggests that the Golgi-localized NCX1 zDHHC-PAT is a higher-

capacity palmitoylation system than zDHHC5, which is consistent

with theGolgi beingamajor cellular ‘‘hub’’ of protein palmitoylation

(Ernst et al., 2018; Salaun et al., 2010). Alternatively, palmitoylation
10 Cell Reports 31, 107697, June 9, 2020
of NCX1 by zDHHC5may require the NCX1

transmembrane domains to be present.

Regardless of this, however, our observa-

tions suggest that following its delivery to

the cell surface, cellular mechanisms exist

to dynamically modify the sensitivity of

NCX1 to inactivation via changes to its pal-

mitoylation status, as brought about by
APT1 and zDHHC5. Substrate ‘‘recognition rules’’ for thioesterase

enzymes remain largely uninvestigated. Our experiments here

show that the amphipathic a-helix that is required for NCX1 palmi-

toylation isalso recognizedbyAPT1.Recruitment of zDHHC-PATs

and thioesterases to NCX1 may not, therefore, be independent

events.

Little information exists about the regulatory events that control

substrate palmitoylation and depalmitoylation, although palmitoy-

lation cascades (Abrami et al., 2017) and phosphorylation-depen-

dent substrate palmitoylation (Brigidi et al., 2015) have both been

reported in recent years. In this study, we have identified one

cellular event that regulates NCX1 palmitoylation by zDHHC5,

ion binding site occupancy, which restructures the NCX1 f-loop

to alter the ability of zDHHC5 to palmitoylate NCX1. It is likely

that other mechanisms that remain to be identified regulate

NCX1 palmitoylation at the cell surface. Indeed, our finding that

NCX1 palmitoylation is not entirely abolished in zDHHC5 KO cells

implies that other zDHHC-PATs, possibly both in the secretory

pathway and at the cell surface, also regulate NCX1.

Palmitoylation and the Microdomain Localization
of NCX1
This investigation is the first report that demonstrates that a

multi-pass membrane domain protein can have significant affin-

ity for the ordered phase of phase-separated GPMVs. The

concept that lipid-lipid interactions lead to the dynamic forma-

tion of lipid rafts in live cells (Simons and Ikonen, 1997) is not uni-

versally accepted (Douglass and Vale, 2005; Munro, 2003). This

investigation provides direct support for the concept that such

rafts exist in intact cells. This is because palmitoylation modifies

the FRET behavior of NCX1 dimers only when rafts are able to
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Figure 7. Impact of NCX1 Palmitoylation on Intracellular Ca

(A) Steady-state intracellular Ca was evaluated using the fluorescent indicator

Fluo 4 based on measured fluorescence intensity in the cells. Fluorescence

intensity in FT-293 cells expressing WT NCX1 is lower than in FT-293 cells

expressing unpalmitoylatable NCX1 (C739A) (WT: 158.69 ± 1.44, C739A:

169.64 ± 1.10). Data in each panel are presented as scattered individual

data points with standard error, boxplot with median and half violin plot.

****p < 0.0001, calculated by unpaired t test. N = 855 (WT NCX1) and 915

(C739A). Scale bar, 20 mm.

(B) Elevating NCX1 palmitoylation with the thioesterase inhibitor PalmB

reduced intracellular Ca signals in cells expressing WT NCX1, whereas the

APT2 inhibitor ML349 is without effect (DMSO, 143.51 ± 1.49; PalmB, 124.98 ±

1.11; ML349, 140.12 ± 1.79). ****p < 0.0001, calculated by unpaired t test.

N = 991 (DMSO), 901 (PalmB), and 642 (ML349).
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form. Interventions that prevented rafts from forming reduced

the FRET activity of WT NCX1 to match that of unpalmitoylatable

NCX1, whereas the FRET activity of unpalmitoylatable NCX1

was insensitive to the manipulation of the membrane. The

cholesterol-dependent and independent clustering of peripheral

(Zhou and Hancock, 2015) and single-pass integral (Lorent et al.,

2017) membrane proteins into microdomains of unique lipid
composition is well established. The palmitoylation of H-Ras,

for example, controls its affinity for lipid ordered domains and en-

hances H-Ras clustering in these domains (Janosi et al., 2012).

We propose that a similar relationship exists for NCX1; palmitoy-

lation changes the affinity of NCX1 for a microdomain in the sur-

face membrane and promotes NCX1-NCX1 FRET in this

microdomain.

Our results show that the presence of WT, but not unpalmitoy-

latable, NCX1 impaired the phase separation of GPMVs. The

simplest explanation for this phenomenon is that the tempera-

ture at which phase separation occurs is decreased by the pres-

ence of WT (but not unpalmitoylatable) NCX1. This impact of WT

NCX1 on GPMV phase separation suggests that the presence of

a palmitoylated protein can significantly alter the behavior of the

lipids with which it interacts and is another example of the dy-

namic palmitoylation of an integral membrane protein profoundly

changing the behavior of its phospholipid environment (Fuller

et al., 2016; Hilgemann et al., 2013, 2019; Reilly et al., 2015).

We suggest that the ability of NCX1 to bind PIP2 via its XIP

domain establishes a scenario in which the attraction of palmi-

toylated NCX1 to lipid-ordered domains ‘‘conflicts’’ with the

binding of PIP2 elsewhere in the protein. This is strikingly similar

to the behavior of palmitoylated and farnesylated H-Ras in mo-

lecular dynamics simulations. The presence of saturated palmi-

tate attracts H-Ras to the lipid ordered phase, and the presence

of unsaturated farnesyl attracts it to the disordered phase, result-

ing in the clustering of such dually lipidated proteins at order/dis-

order boundaries (Janosi et al., 2012).

Concluding Remarks
We identify a small region of the NCX1 f-loop that is required for

XIP binding that is distinct from the region of the f-loop required

for XIP function. We report that the dynamic regulation of NCX1

palmitoylation at the cell surface controls its ability to inactivate

(by modifying the interaction between XIP and its binding site)

and affinity for lipid microdomains. The modified XIP sensitivity

ultimately facilitates palmitoylation-dependent control of

NCX1-mediated transmembrane Ca flux and hence cytosolic

Ca levels. Given the importance of inactivation in controlling

NCX1-mediated Ca influx, future research to identify the path-

ways that control NCX1 palmitoylation could enable the inactiva-

tion of this ubiquitous ion transporter to be manipulated.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

NCX1 SWANT Cat#R3F1; RRID:AB_2716744

FLOT2 BD Biosciences Cat#610384; RRID:AB_397767

DHHC5 Sigma Cat#HPA014670; RRID:AB_2257442

GFP Abcam Cat#ab32146; RRID:AB_732717

Chemicals, Peptides, and Recombinant Proteins

NCX1 peptide (NCX1740-756) with N-terminal biotin Alta Biosciences N/A

DHHC5 peptides (C-tail: DHHC5213-237,223-247,233-257,243-267,253-

277,263-287,273-297,283-307,293-317,303-327,313-337,323-347,333-357)

all with N-terminal biotin

Alta Biosciences N/A

XIP (WT and K229Q XIP; NCX1219-238) with N-terminal biotin Alta Biosciences N/A

PalmB Calbiochem Cat#178501

ML348 Dr. Brent Martin, University of MichiganN/A

ML349 Dr. Brent Martin, University of MichiganN/A

Filipin Sigma Cat#F9765

Ctx Alexa Fluor 647 Invitrogen Cat#C34778

FAST-Dil Invitrogen Cat#D7756

Palmitic Acid Sigma Cat#0500

2-Bromopalmitate Sigma Cat#238422

Methyl-b-cyclodextrin Sigma Cat#332615

Critical Commercial Assays

Fluo-4 Direct Calcium Imaging Invitrogen Cat#F10472

Experimental Models: Cell Lines

FT-293 Invitrogen Cat#R70007

HEK293T ATCC CRL-1573

Experimental Models: Organisms/Strains

New Zealand White Rabbit Envigo 444

Sprague Dawley Rat Envigo 002

Oligonucleotides

NCX1 D709-728 cloning, forward: 50-GGACAAACGATGAA

TGTGGAGAGGAGAAGC-30
Eurofins Genomics N/A

NCX1 D709-728 cloning, reverse: 50-ATTCATCGTTTGTCC

CAACCACAAGGGC-30
Eurofins Genomics N/A

C739A NCX1 mutagenesis, forward: 50-TGCATCAC

ATAATCGAAAGCGGAGGGCAGCTTCTCCTC-30
Eurofins Genomics N/A

C739A NCX1 mutagenesis, reverse: 50-GAGGAGAAG

CTGCCCTCCGCTTTCGATTATGTGATGCA-3

Eurofins Genomics N/A

Recombinant DNA

Canine NCX1.1 cDNA Kenneth Philipson, UCLA N/A

Canine NCX1.1 with CFP or YFP inserted at amino acid 266 Michela Ottolia, UCLA N/A

YFP fusion proteins to the N terminus the NCX1.1 intracellular loopReilly et al., 2015;

Plain et al., 2017

N/A

Software and Algorithms

GraphPad Graphpad Prism v6 https://graphpad.com

ImageJ / Fiji Schindelin et al., 2012 https://imagej.nih.gov/ij/

The Discovery Series Quantity One 1-D Analysis Software

Version 4.6.6, PC

Bio-Rad LIT-70-9600-Q1-466PC

e1 Cell Reports 31, 107697, June 9, 2020

https://graphpad.com
https://imagej.nih.gov/ij/


Article
ll

OPEN ACCESS
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, William

Fuller (will.fuller@glasgow.ac.uk).

Materials Availability
Plasmids and cell lines generated in this study are available from the Lead Contact.

Data and Code Availability
The published article includes all datasets generated or analyzed during this study.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethics
This study utilized primary cells from rats and rabbits. All protocols involving animals were approved by the University of Glasgow

Animal Welfare and Ethics Review Board. Rat cardiac and brain tissues were collected post-mortem after sacrificing animals using

amethod designated Schedule 1 by the Animals (Scientific Procedures) Act 1986. Rabbit hearts were excised from terminally anaes-

thetized, heparin-treated animals under the authority of a Project License granted by the UK Home Office.

Immortalized Cell Lines and Plasmids
HEK293 cells, HEK293 derived FT293 cell expressing tet-inducible wild-type (WT)-NCX1 and C739A-NCX1 and DHHC5 KO cells

were used in this investigation. HEK293 derived FT293 cell expressing tet-inducible wild-type (WT)-NCX1 and C739A-NCX1 were

generated using the Invitrogen Flip-In T-Rex System (Reilly et al., 2015).

NCX1 FRET sensors with either CFP or YFP inserted at position 266 (John et al., 2011) were a kind gift from Prof Michela Ottolia

(UCLA, USA). Position 739 in the NCX1 f-loop of both YFP and CFP sensors was mutated from Cysteine to Alanine using the

Quikchange Lightning Site-Directed Mutagenesis kit (Agilent). YFP fusions to the NCX1 f-loop are described elsewhere (Plain

et al., 2017). YFP-NCX1 D709-728 was generated using InFusion (Takara) cloning. Plasmid constructs were transfected using

Lipofectamine2000 (Invitrogen) for HEK293 cell and Lipofectamine LTX (Invitrogen) for neonatal myocytes, according to the manu-

facturer’s instructions. Full details of all plasmids and the oligonucleotides used to generate them are provided in the Key Resources

Table.

Generation of zDHHC5 knockout cells
We evaluated guide RNAs (gRNA) targeted against zDHHC5 provided by Horizon Discovery (Cambridge, UK). The selected gRNA

targets 57,673,152 to 57,673,171 of Homo sapiens chromosome 11, and demonstrated a 46% targeting efficiency in a genome

cleavage detection assay (ThermoFisher Scientific). gRNA was inserted into vector pEsgRNA into which a puromycin resistance

cassette had been added (Munoz et al., 2014), which was transfected into FT-293 cells expressing tet-inducible cas9. After the in-

duction of cas9 and following selection with puromycin (3mg/ml), cells were sorted to one cell per well in 96 well plates. Genomic DNA

was isolated after clone expansion, amplified with primers directed against DHHC5 exon 2 (CCCATGTGCTTTCCTTCATT forward

and CAGCCTGAGTGACAGAGCAA reverse), and sequenced. Seven out of 25 clones sequenced had no detectable wild-type

DHHC5 alleles; the clone selected had an additional 388 bases inserted at position 57,673,154 of chromosome 11. Cas9 was

removed from this clone by transfection with pOG44 Flp-Recombinase, and cells were selected and maintained in the presence

of zeocin.

Ventricular Myocytes and Cardiac Tissue
Neonatal ventricular myocytes (NRVMs) were isolated fromWistar rat pups of mixed sex between postnatal day 1-4 using 0.45mg/ml

Collagenase (Roche) and 1.25mg/ml Pancreatin (Sigma) in ADS buffer (106mM NaCl, 20mM HEPES, 800mM NaH2PO4, 5mM KCl,

400mM MgSO4, 5mM Glucose; pH: 7.4) as digestion solution. The ventricles were cut into pieces and digested in a shaking water

bath at 37�C. Cell suspension was collected every 20min and each time fresh digestion solution was added to the undigested tissue.

Collected cells were plated in 10cm cell culture dishes for 2h to allow fibroblasts to attach to the bottom (pre-plating), then transferred

to either EHS-Laminin coated glass coverslips to be used for FRET imaging or gelatin coated wellplates. Cells were incubated under

standard cell culture conditions at 37�C and 5% CO2 in Day-1 Medium (Dulbecco’s Modified Eagle Medium (DMEM6171, GIBCO),

Medium199 (M-199, GIBCO), 10% Horse Serum, 5% NCS, 1%Glutamine and 1% Pen-Strep). After 24h incubation, the culture me-

dium was replaced with Day-2 Medium containing low serum (5% Horse Serum and 0.5% NCS).

Calcium-tolerant adult rabbit ventricular myocytes were isolated from the left ventricular free wall of male New Zealand White rab-

bits (2.8-3.2kg, 14-19wks) following perfusion with collagenase in the Langendorff mode, as described previously (Kettlewell et al.,

2009).
Cell Reports 31, 107697, June 9, 2020 e2
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Cardiac tissues were collected from rats at gestational day 18 and adult male rats (250-300 g, 7-9wks). Tissues were snap frozen

with dry ice after harvesting.

METHOD DETAILS

Drugs and Reagents
APT inhibitors Palmostatin B (PalmB), ML348 and ML349, Palmitic Acid (PA) and 2-Bromopalmitate (2BP) were investigated in this

study. PalmB, PA and 2BP were purchased from Sigma. ML348 andML349 were generously provided by Dr Brent Martin, University

of Michigan, USA. All compounds were dissolved in DMSO and comparisons made to an appropriate vehicle control.

Purification of palmitoylated proteins
Palmitoylated proteins were purified by resin-assisted capture of acylated proteins (acyl-RAC) following blockade of free cysteines

with MMTS and cleavage of thioester bonds with neutral hydroxylamine, as described in detail elsewhere (Plain et al., 2017). Palmi-

toylation of NCX1 is expressed as the amount purified by the acyl-RAC reaction relative to its abundance in the corresponding un-

fractionated cell lysate.

Protein Cross-linking
NCX1 cross-linking was carried out using the cysteine-reactive homobifunctional crosslinker bismaleimidohexane (BMH). Cross-

linking buffer (with final concentration 0.1mM BMH) was 10mM Tris-HCl at pH: 7.2 and 150mM NaCl. FT-293 cells expressing tetra-

cycline-inducible NCX1 were plated on poly-l-lysine (PLL, Sigma) coated 6 well plates. Following 3 washes with cross-linking buffer

without BMH, cells were treated with 0.1mM BMH for 5min at 37�C. After cross-linking, cells were washed 3 times and proteins sol-

ubilized for 30min at 4�C in lysis buffer with 1% Triton X-100 and protease inhibitors. Solubilized cell lysate were centrifuged at

17500 g for 5min to eliminate insoluble material before analyzing by SDS-PAGE.

FRET Imaging
FRET experiments were performed on NRVMs and HEK293 cells 24-48h after transfection with NCX1 FRET sensors. Cells were

maintained in Tyrode’s buffer (120mM NaCl, 5mM KCl, 1mMMgCl2, 1.8mM CaCl2 and 10mM HEPES; pH:7.4) at room temperature

while FRET signals were recorded, unless an experiment is indicated as being either Calcium-free (CaF: 120mM NaCl, 5mM KCl,

1mM MgCl2, 1mM EGTA and 10mM HEPES; pH:7.4) or Sodium-free (NaF: 120mM NMDG+, 5mM KCl, 1mM MgCl2, 1.8mM CaCl2
and 10mM HEPES; pH:7.4). FRET activity was imaged by an inverted camera; Olympus 1X71, with PlanApon, 60X, NA 1.42 oil im-

mersion objective, 0.17/FN 26.5 (Olympus, UK). The microscope was equipped with a CCD camera (cool SNAP HQ Monochrome,

Photometrics) and a beam splitter optical device (Dual-channel simultaneous imaging system, DV2 mag biosystem (ET-04-EM).

MetaFluor 7.1 (Meta imaging system) was used for image acquisition and analysis. FRET ratio was measured as the changes in

the background subtracted 480/545nm fluorescent emission intensity on excitation at 430nm.

Giant Plasma Membrane Vesicles (GPMV)
GPMVs were formed and analyzed as described previously (Sezgin et al., 2012). Briefly, HEK293 cells were plated onto poly-L-lysine

(PLL, Sigma) coated 35mm dishes and transfected with CFP-tagged NCX1. After 24h, cells were washed twice with GPMV buffer

(150mM NaCl, 2mM CaCl2 and 10mM HEPES, pH: 7.4). GPMVs were formed using vesiculation buffer (25mM PFA, 2mM DTT,

0.001% Deoxycholate in GPMV buffer) for 1h at 37�C. The presence of DTT in the vesiculation buffer did not alter the palmitoylation

status of NCX1 or flotillin 2 (Figure S1). The vesiculation buffer was supplemented with deoxycholate to improve phase separation

(Zhou et al., 2013). Vesicles were visualized as free-floating dark spheres at the plane of the cells at 20X magnification. GPMV-rich

cellular supernatant was harvested and transferred to centrifuge tubes and left to settle. GPMVs were labeled using FAST-DIL (5mg/

ml, Invitrogen-D7756) for non-raft phaseandCTxB-AlexaFluor647 (5mg/ml, Invitrogen-C34778) for raft phase,and imagedonacustom-

ised imaging chamber. GPMVs were imaged using a Zeiss LSM880 with Airyscan confocal microscopy. Diode (405-430nm), Argon

(458nm,488nm, 514nm) andHeNe633 (633nm) laserswere used for the excitation of blue (NCX1-CFP), green (FAST-DIL) and red (Alex-

aFluor647). The colocalization of NCX1 with lipid phases was analyzed using Coloc2 macro in Fiji (Schindelin et al., 2012).

Manipulating Cholesterol in Intact Cells
The manipulation of cholesterol in cells was achieved by using either MbCD (Sigma) to deplete cholesterol or SDS (Sigma) to force

microdomain formation. Cholesterol was depleted as described previously (Eshcol et al., 2008; Qi et al., 2015): HEK293 cells were

washed three times with PBS, then incubated with 5mMMbCD for 30min at 37�C. HEK293 cells were treated with 25mMSDS at 37�C
for 15min to facilitate/increase microdomain formation. Following either MbCD or SDS incubation, cholesterol was detected with

Filipin (50mg/ml in PBS, Sigma) as described (Qi et al., 2015) after fixation with 4% PFA for 10min at room temperature.

Peptide Affinity Purification and LC-MS/MS
Peptides with N-terminal biotin tags were synthesized by Alta Bioscience (Birmingham, UK). For affinity purification reactions, 20-

50mg frozen powdered rat brain or heart tissue was lysed in 500ml lysis buffer (2mg/ml C12E10 in PBS supplemented with protease
e3 Cell Reports 31, 107697, June 9, 2020
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inhibitors). Following solubilisation at 4�C for 30 min, insoluble material was removed by centrifuging at 17500 g for 5 min. Superna-

tants were applied to pre-equilibrated Streptavidin-Sepharose beads to preclear for 1h at 4�C, then incubated with 3mM biotinylated

peptides overnight at 4�C. The next day, pre-equilibrated Streptavidin-Sepharose beads were added to the lysate-peptide mix and

incubated for 3h at 4�C. The beads were washed 5 times with lysis buffer and interacting proteins were eluted in one of two ways. For

the LC-MS/MS identification of NCX1-interacting proteins, beads were incubated with lysis buffer supplemented with 10mM

NCX1740-756 peptide and 1mM biotin for 1h at 4�C. After elution, the beads were washed once more with lysis buffer and the remain-

ing proteins eluted with 2X LDS PAGE buffer supplemented with 100mM DTT. NCX1 interacting proteins were visualized by SDS-

PAGE, stained with Coomassie, and identified using LC-MS/MS with a LTQ Orbitrap Velos Pro (Thermo) at the FingerPrints prote-

omics facility, University of Dundee.

Proteins interacting with biotinylated zDHHC5 and XIP peptides were eluted using 2x SDS-PAGE loading buffer and analyzed by

western blot. Sequences of the custom-made peptides are provided in the Key Resources Table.

Intracellular Calcium Imaging
Intracellular calcium levels were monitored using the fluorescent calcium indicator Fluo4-Direct (Invitrogen) according to manufac-

turer’s instructions. Tet-inducible stable cell lines (wild-type; WT NCX1 and unpalmitoylatable; C739A) were cultured on poly-l-lysine

(PLL, Sigma) coated 35mm glass bottom dishes (MatTek Life Sciences). 16-24h after inducing NCX1 expression with tetracycline

(1mg/ml), cells were loaded with Fluo4 for 1h at 37�C. Calcium indicator loaded cells were imaged using a Zeiss LSM8800 with

Airyscan confocal microscopy (lexcitation = 494 nm, lemission = 520 nm).

QUANTIFICATION AND STATISTICAL ANALYSIS

All data are presented as mean ± standard error of the mean. Quantitative differences between groups were assessed using One-

way ANOVA analysis followed by appropriate post hoc t tests using GraphPad Prism. Intracellular calcium imaging data was eval-

uated and presented using Raincloud plots (Allen et al., 2019). The values of p and N are provided in individual figure legends
Cell Reports 31, 107697, June 9, 2020 e4
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Supplementary Figure 1, Related to STAR Methods. The presence of DTT during GPMV 
preparation does not influence palmitoylation of NCX1 or flotillin 2. Palmitoylated 
proteins were prepared by resin-assisted capture of acylated proteins with or without 
pretreatment of lysates with 2mM DTT. The presence of DTT does not alter the quantity of 
NCX1 captured by the assay, but it does reduce intramolecular aggregation of NCX1 (the 
upper band on the western blot) during sample preparation. UF: unfractionated cell lysate, 
Beads: palmitoylated proteins. 
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Sequence of Peptides  
DHHC5 213-237 biotin-RGRTTNEQVTGKFRGGVNPFTNGCC 
DHHC5 223-247 biotin-GKFRGGVNPFTNGCCNNVSRVLCSS 
DHHC5 233-257 biotin-TNGCCNNVSRVLCSSPAPRYLGRPK 
DHHC5 243-267 biotin-VLCSSPAPRYLGRPKKEKTIVIRPP 
DHHC5 253-277 biotin-LGRPKKEKTIVIRPPFLRPEVSDGQ 
DHHC5 263-287 biotin-VIRPPFLRPEVSDGQITVKIMDNGI 
DHHC5 273-297 biotin-VSDGQITVKIMDNGIQGELRRTKSK 
DHHC5 283-307 biotin-MDNGIQGELRRTKSKGSLEITESQS 
DHHC5 293-317 biotin-RTKSKGSLEITESQSADAEPPPPPK 
DHHC5 303-327 biotin-TESQSADAEPPPPPKPDLSRYTGLR 
DHHC5 313-337 biotin-PPPPKPDLSRYTGLRTHLGLATNED 
DHHC5 323-347 biotin-YTGLRTHLGLATNEDSSLLAKDSPP 
DHHC5 333-357 biotin-ATNEDSSLLAKDSPPTPTMYKYRPG 
NCX1 XIP with biotin biotin-RRLLFYKYVYKRYRAGKQRG 
NCX1 XIP without biotin RRLLFYKYVYKRYRAGKQRG 
NCX1 K229Q XIP biotin-RRLLFYKYVYQRYRAGKQRG 
NCX1 619-643 KYLFGQPVFRKVHAREHPILSTVIT 
NCX1 629-653 KVHAREHPILSTVITIADEYDDKQP 
NCX1 639-663 STVITIADEYDDKQPLTSKEEEERR 
NCX1 649-673 DDKQPLTSKEEEERRIAEMGRPILG 
NCX1 659-683 EEERRIAEMGRPILGEHTKLEVIIE 
NCX1 669-693 RPILGEHTKLEVIIEESYEFKSTVD 
NCX1 679-703 EVIIEESYEFKSTVDKLIKKTNLAL 
NCX1 689-713 KSTVDKLIKKTNLALVVGTNSWREQ 
NCX1 699-723 TNLALVVGTNSWREQFIEAITVSAG 
NCX1 709-733 SWREQFIEAITVSAGEDDDDDECGE 
NCX1 719-743 TVSAGEDDDDDECGEEKLPSCFDYV 
NCX1 729-753 DECGEEKLPSCFDYVMHFLTVFWKV 
NCX1 739-763 CFDYVMHFLTVFWKVLFAFVPPTEY 
NCX1 742-766 YVMHFLTVFWKVLFAFVPPTEYWNG 
  
NCX1 740-756 biotin-FDYVMHFLTVFWKVLFA 

 
Supplemental Table 2, Related to STAR Methods. Sequences of peptides used in this 
investigation 
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