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In Brief

Long-term directed differentiation of

human pluripotent stem cells (PSCs) can

yield variable outcomes. Strano et al.

assess variation in neural differentiation

among PSC lines, revealing that variation

occurs along developmental spatial and

regional axes and depends on PSC-line-

specific differences in endogenous Wnt/

b-catenin signaling, which can be

rescued exogenously.
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SUMMARY
Directed differentiation of human pluripotent stem cells varies in specificity and efficiency. Stochastic, ge-
netic, intracellular, and environmental factors affectmaintenance of pluripotency and differentiation into early
embryonic lineages. However, factors affecting variation in in vitro differentiation to defined cell types are not
well understood. To address this, we focused on a well-established differentiation process to cerebral cortex
neural progenitor cells and their neuronal progeny from human pluripotent stem cells. Analysis of 162 differ-
entiation outcomes of 61 stem cell lines derived from 37 individuals showed that most variation occurs along
gene expression axes reflecting dorsoventral and rostrocaudal spatial expression during in vivo brain devel-
opment. Line-independent and line-dependent variations occur, with the latter driven largely by differences
in endogenousWnt signaling activity. TuningWnt signaling during a specific phase early in the differentiation
process reduces variability, demonstrating that cell-line/genome-specific differentiation outcome biases can
be corrected by controlling extracellular signaling.
INTRODUCTION

The discovery of human somatic cell reprogramming to generate

pluripotent stem cells (PSCs) and the development of methods

to differentiate PSCs to a range of cell fates have provided un-

precedented access to human cell types of interest for a variety

of purposes (Clevers, 2016; Shi et al., 2017; Simunovic and Bri-

vanlou, 2017). Expansion in the scope of PSC differentiation

approaches and in the number of generated PSC lines has high-

lighted a significant degree of variation in developmental

outcomes in these experimental systems. First, spatial effects

affecting cell-cell interactions and heterogeneity in signaling

and transcription can lead to variation in developmental fate

between PSCs differentiated together (Bauwens et al., 2008;

Chambers et al., 2009; Kobayashi et al., 2009; Moya et al.,

2014). Second, PSC lines vary in their propensity to differentiate

into particular embryonic lineages (Hu et al., 2010; Kajiwara

et al., 2012; Osafune et al., 2008; Siller et al., 2016), with epige-

netic memory of cell of origin (Bar-Nur et al., 2011; Kim et al.,

2010), endogenous signaling pathway activation (Kattman

et al., 2011; Nazareth et al., 2013; Nostro et al., 2011), and ge-

netic variability (Carcamo-Orive et al., 2017; DeBoever et al.,

2017; Kilpinen et al., 2017), all implicated as contributing factors.

Finally, when PSCs are used to derive multipotent progenitor

cells, any variation in the proportions of distinct cell types

they generate can provide an additional confound in cross-differ-
This is an open access article und
entiation comparisons (Volpato et al., 2018). To date, studies

of the underlying causes of PSC variation have largely focused

on maintenance of pluripotency and differentiation into early

embryonic lineages; conversely, the causes of variation during

directed differentiation of PSCs into various somatic cell types

and tissues are generally not as well understood.

Stem cell models of the human brain and cerebral cortex

are of particular interest, given that they provide relevant and

otherwise largely inaccessible cell types to enable the investiga-

tion of a broad range of human biology, including neurodevelop-

mental and neurodegenerative disorders (Moore et al., 2015; Shi

et al., 2012a), the action of infective pathogens such as Zika

virus (Dang et al., 2016; Qian et al., 2016; Zhou et al., 2017),

and the evolution of the primate cerebral cortex (Mora-Bermú-

dez et al., 2016; Otani et al., 2016). Several methods have

been published to generate dorsal forebrain or cerebral cortex

in adherent and organoid culture, with differences in signaling

pathway manipulation, brain regions generated, and suitability

for different applications and research questions (reviewed in

Kelava and Lancaster, 2016).

To investigate the sources of variation in developmental fate

and culture composition during directed differentiation of

PSCs, we focused on one cortical differentiation method (Shi

et al., 2012b), the core of which is the widely used dual-SMAD

inhibition (Chambers et al., 2009). To understand the degree

and nature of variation in developmental outcomes during neural
Cell Reports 31, 107732, June 9, 2020 ª 2020 The Authors. 1
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Figure 1. Gene Expression Profiling in 84 Directed Differentiations Highlights Broad Transcriptional Similarity and Specific Differences in

Expression of Regional Brain Genes

(A) Protocol used to differentiate cortical cultures from PSCs. The early and late stages analyzed are highlighted.

(B) Hierarchical clustering of gene expression from 84 early-stage differentiations profiled with Codeset1. Clusters are named early cluster 1 (EC1)–EC5. Highly

expressed cortical development genes are indicated with white arrowheads. Variation was observed in expression of transcripts specific to the telencephalon

(legend continued on next page)
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directed differentiation of PSCs, we analyzed both regional iden-

tity and neural cell types generated in a large dataset of 162

cortical differentiations from61PSC lines.We find thatmost vari-

ation occurs specifically along spatial gene expression axes

known from in vivo brain development, with a clear line-depen-

dent bias. Regional drift from dorsal forebrain/cortex, the target

tissue, occurs, at least in part, due to differences in endogenous

signaling pathway activation, most notably of Wnt signaling.

Manipulation of this pathway to channel signaling within a

defined time window corrects for those biases, indicating that

such biases are not insurmountable and that applying develop-

mental biology principles to channel-directed differentiation en-

ables more precise engineering of outcomes.

RESULTS

Analysis of a Large Number of Directed Differentiations
Highlights Overall Reproducibility, with Some Variation
in Spatial Identities
To study variation between directed differentiations of PSCs into

cortical tissue, we focused on a previously characterized and

well-established method for 2D cortical differentiation based

on dual-SMAD inhibition and retinoic acid signaling, with other-

wise minimal signaling manipulation (Figure 1A) (Shi et al.,

2012b, 2012c). This directed differentiation approach generates

PAX6+ OTX1/2+ dorsal forebrain neural progenitor cells that

recapitulate in vivo cerebral cortex lineage progression, dividing

and differentiating over 2–3 months to produce deep layer neu-

rons, upper layer neurons, and astrocytes in a temporal order

akin to that observed during in vivo development (Shi et al.,

2012c).

To investigate in-depth variation in differentiation outcomes,

we measured gene expression using the Nanostring nCounter

platform, which enabled us to compare differentiations per-

formed over several months (Figures S1A and S1B). We profiled

162 directed differentiations at two time windows in the differen-

tiation process (Figure 1A, Table S3), analyzing a total of 206

RNA samples. The two stages analyzed capture an early stage

of neural progenitor proliferation and deep layer neurogenesis

(29–40 days post-differentiation; dpi), and a late stage of upper

layer neurogenesis and gliogenesis (80–85 dpi) (Figure 1A) (Shi

et al., 2012c).

We focused our analyses on the expression of a curated panel

of genes indicative of cell or spatial identity in the developing em-

bryo based on developmental and stem cell biology (Evseenko

et al., 2010; Flames et al., 2007; Maroof et al., 2013; Menendez

et al., 2013; Merkle et al., 2015; Molyneaux et al., 2007;

Mormone et al., 2014; Najm et al., 2011; Nicholas et al., 2013;

Shaltouki et al., 2013; Teo et al., 2012; Tsankov et al., 2015;Whit-

field et al., 2006; Yasunaga et al., 2005), previous gene expres-

sion studies of similar differentiations (Floruta et al., 2017; Yao

et al., 2017), and recurrent drivers of variation in our own unpub-
(FOXG1), the ventral telencephalon (LHX8, LHX6, NKX2-1, DLX1, and DLX5), the

EMX2, and EOMES), indicated with black arrowheads.

(C) Replicating the patterns observed in (B), genes associated with specific bra

dataset of 65 early-stage differentiations profiled with Codeset2.

See also Figure S1.
lished RNA sequencing (RNA-seq) datasets. This panel included

genes specifically expressed in particular cell types, germ layers,

and developing brain regions, as well as genes associated with

different cell states (e.g., cell cycle and apoptosis) or involved

in key developmental signaling pathways, including Hedgehog,

Notch, Wnt, and Fgf components, for a total of 200 (Codeset 1)

and 156 (Codeset 2) gene probes (Table S1).

First, we analyzed variation in cell composition in an early-

stage dataset comprising 84 separate differentiations of 35

different cell lines generated from 25 individuals. All directed dif-

ferentiations at this stage had low to no expression of genes

associated with pluripotency or mesodermal and endodermal

fates (Figures S1C and S1D), confirming efficient neurectoderm

differentiation and demonstrating that differences in early germ

layer choice are not major contributors to variation at this stage.

Hierarchical clustering of normalized gene counts revealed a

similar gene expression profile across differentiations (Fig-

ure 1B), with typically high expression of genes expressed during

early cortical development (PAX6, EMX2, and OTX2; Figure 1B,

white arrowheads). However, genes with variable expression

among directed differentiations included genes expressed in

the cerebral cortex (EMX1/2 and EOMES), the ventral forebrain

(NKX2-1, LHX6/8, and DLX1/5), and the hindbrain (HOXA2 and

HOXB2) (Figure 1B, black arrowheads), indicating variable pro-

portions of non-cortical cells within some of the directed

differentiations.

Analysis of a second, independent dataset of another 65 early-

stage differentiations of 28 lines (8 lines present in dataset 1 plus

20 additional lines) from 22 individuals (Figure 1C) confirmed the

observation of a variable proportion of non-cortical cells in a sub-

set of differentiations. Both datasets could be divided in 5 clus-

ters with similar expression profiles, which we defined as early

clusters 1–5 (EC1–EC5) to distinguish them from clusters at later

stages of differentiation (discussed later). Immunostaining for

cell-type-specific antigens (TBR1, CTIP2, GABA, TBR2, and

SOX2) in 55-dpi differentiations, we quantified the fractional

composition of neuronal and neural progenitor types and found

it to be significantly correlated with gene expression at the

same age (Figure S1E), confirming that variation in gene expres-

sion is representative of variation in cell composition.

Variation in Gene Expression among Early-Stage
Cortical Differentiations Corresponds to In Vivo

Regional Gene Expression
Principal-component analysis (PCA) was applied to identify

genes that contributed most to the observed variation within

early-stage gene expression (Figure 2A). Most differentiations

(81/84, 96%) were part of a large group spread along principal

component 1 (PC1), while three differentiations separated on

PC2 (Figure 2A). The genes with the highest loadings for PC1

were genes that are differentially expressed along the dorsoven-

tral axis in the developing forebrain in vivo, including genes
hindbrain (HOXA2 and HOXB2), and the dorsal telencephalon (cortex) (EMX1,

in regions are highly variable across differentiations in a second independent

Cell Reports 31, 107732, June 9, 2020 3
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Figure 2. Analysis of Variation in Gene Expression at Early Stage Reveals Differences in Spatial Identity Reflecting In Vivo Dorsoventral and

Rostrocaudal Axes

(A) Principal-component analysis (PCA) of early-stage gene expression data (84 samples, 174 genes); samples are plotted along the two components explaining

most gene expression variation and colored by cluster. Caudal outliers are circled. EC, early cluster.

(B) Gene contributions to variation in the early-stage dataset plotted using the Z-scored loadings for PC1 and PC2 as coordinates. Highest contributors (absolute

Z scores >2) are labeled.

(C) The distribution of highest loading genes in (B) is correlated with the gene expression patterns along the dorsoventral and rostrocaudal axes in vivo.

(D) Expression of selected high-loading genes along PC1–PC2.

(E) Mapping to 5 regions of the E11.5 Allen Developing Mouse Brain Atlas based on correlated expression of variable genes. RSP, rostral secondary prosen-

cephalon.

(F) Expression heatmap of selected high-loading genes in individual differentiations.

See also Figure S2.
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expressed specifically in the cortex/dorsal pallium (EMX1, NEU-

ROG2, and EOMES) and medial ganglionic eminence (MGE)

(LHX8, NKX2-1, and LHX6).

In contrast, the highest loading genes for PC2 were genes

whose expression is restricted to the midbrain and/or hindbrain

(HOXA2, HOXB2, and PAX3) or the forebrain (SST, DLX5, TBR1,
4 Cell Reports 31, 107732, June 9, 2020
and FOXG1) (Figure 2B). Additionally, samples positioned to-

ward the middle of PC1 displayed notably high expression of

DLX1 and DLX5 (Figures 2B–2D), two genes expressed in the

MGE and in the lateral and caudal ganglionic eminences (LGE

and CGE, respectively) in vivo. Given the lack of correlation

with expression of MGE-defining NKX2-1 and LHX6/8, we
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interpret the DLX expression as indicating cells of LGE and

possibly CGE fate (Flames et al., 2007; Sussel et al., 1999).

The overall distribution of gene expression along PC1 and

PC2, therefore, approximately corresponds to dorsoventral

and rostrocaudal axes of gene expression in the developing

brain in vivo (Figures 2B–2D and S2A). Consistent with this, map-

ping of individual differentiations to five regions of the embryonic

day 11.5 (E11.5) mouse brain from the Allen Developing Mouse

Brain Atlas produced a gradient of mapping to ventro-rostral,

dorso-rostral, and dorso-caudal brain regions along PC1 and

PC2 (Figure 2E).

These results and differential gene expression across early-

stage clusters (Figure S2B) indicate variable contributions to

each differentiation of cell types from cortex, LGE, MGE, and

mid-hindbrain (Figure 2F). Furthermore, expression of genes en-

riched in the ventral forebrain was highly positively correlated

with expression of neuronal differentiation genes (MAPT,

DLG4, SYP, DCX, MAP2, SOX4, SOX11, and TUBB3) (Fig-

ure S2C), suggesting that differences in patterning (dorsal versus

ventral forebrain) may also be associated with differences in the

proportion of progenitors and neurons, with increased terminal

neuronal differentiation occurring in more ventralized cultures.

Late-Stage Gene Expression Varies along
Developmental Spatial Axes
To analyze variation in outcomes of directed differentiations and

the neuronal types generated after long-term culture, we studied

44 differentiations from 33 lines for which we collected RNA at

80–85 dpi. At this stage, human-directed differentiations typi-

cally contain both early-born, deep layer neuronal types and

late-born, upper layer neuronal types, as well as astrocytes

and late-stage neural progenitor cells (Otani et al., 2016; Shi

et al., 2012c; van de Leemput et al., 2014). Applying PCA and hi-

erarchical clustering to the expression data, we found dorsoven-

tral identity to also be the main source of variation among differ-

entiations at this stage (Figures 3A–3F). Among genes that had

highest loading for PC1 were two genes specific to either excit-

atory or inhibitory neurons (the glutamate transporter SLC17A7

and the GABA synthesizing enzyme GAD2; Figure 3B), which

were anti-correlated. This anti-correlation demonstrated that

variation in dorsoventral spatial identity was accompanied by

differences in the proportions of each neuronal type, consistent

with their differential origin along the forebrain dorsoventral axis

in vivo.

The majority of differentiations we assessed at this late stage

were cortical with some LGE contributions (36/44, late cluster

LC2) and best matched to the pallium when mapped to E15.5

samples in the Allen Developing Mouse Brain Atlas (Figure 3E).

Threedifferentiations includedaclear,MGE-likegeneexpression

pattern (late cluster LC1), and 5 differentiations (late cluster LC3)

that separated from the rest along PC2 (Figure 3A) were charac-

terizedby lower expression of the forebrain-specific geneFOXG1

and higher expression of PAX3, RELN, TFAP2A, LHX9, POU4F1,

GBX2, andEN2 (Figures 3FandS3A).With the exception ofRELN

and LHX9, these genes are classifiers of midbrain regions and

potentially also neural-crest-derived lineages that arise from re-

gions spanning from thediencephalon to the hindbrain (Santagati

and Rijli, 2003). Analysis of the expression pattern of these genes
through in situ hybridization data from the Allen Developing

MouseBrain Atlas (Figure S3B) and fromasingle-cell sequencing

study of humanPSC-derived forebrain differentiations (Yao et al.,

2017) (FigureS3C) confirmed this hypothesis.Consistentwith our

interpretation, most LC3-associated genes were expressed

exclusively or at higher levels in diencephalic/midbrain regions

in mouse at E15.5 and were expressed at higher levels in the

midbrain-lineage populations in the single-cell sequencing data

(Figure S3C). Based on these observations, we classified the

late-stage differentiations as dorsalized (LC2), partially caudal-

ized (LC3), and highly ventralized (LC1). Moreover, we note that

6/36 dorsalized differentiations also included expression of

OTP and SIM1 (Figure 3F), two genes highly expressed in the hy-

pothalamus, suggesting the occasional contributions of hypo-

thalamic cell types to the differentiations.

Early Differences in Regional Gene Expression Are
Predictive of Late-Stage Fates
To explore whether early gene expression is predictive of late-

stage differentiation outcomes, we merged datasets obtained

with the two versions of our codeset and calculated Pearson cor-

relation coefficients between expression of genes associated

with late-stage clusters and gene expression at the early stage

(44 pairs). Consistent with regional identity being established

early during the differentiation process, the highest correlations

for late-stage expression of cortex-associated genes were with

expression of cortex-associated genes at the early stage, and

similarly for ventral forebrain genes (Figures 4A and S4A). Stron-

ger correlations for late-stage expression of caudal brain genes

were negative correlations with forebrain-expressed genes

FOXG1 and DLX5 (Figure 4A), indicating that caudalization of dif-

ferentiations can be predicted based on low expression of fore-

brain markers. Correlation coefficients between expression of

any pairs of genes at the late and early stages in an individual dif-

ferentiation were correlated to correlation coefficients between

those genes within the early-stage dataset, indicating the pres-

ence of gene modules which are co-expressed over time (Fig-

ure S4B). Direct comparison of cortical differentiations profiled

at both the early and late stages highlighted significant gene

expression changes consistent with progressive neurogenesis

and astrogliogenesis over time (Figure S4C), as previously re-

ported (Shi et al., 2012c; van de Leemput et al., 2014).

Comparing the clustering classification between the two tem-

poral stages for 44 differentiations allowed us to assess whether

the high correlation of gene expression patterns at the two

stages was reflected in consistent cluster assignment. In this

scenario, a perfectly matching cluster assignment at the two

stages would indicate complete predictability of late-stage dif-

ferentiation outcome based on early-stage data. Performing hi-

erarchical clustering on these samples, we found that 7 of 9 dif-

ferentiations that were classified as highly ventralized at the early

stage were also classified as highly ventralized at the late stage

and that 5 of 6 of differentiations classified as partially caudalized

at the early stage were also classified as partially caudalized at

the late stage (Figure 4B, k = 3). Early-stage, partially ventralized

differentiations did not separate from dorsalized differentiations

at the late stage, indicating that this category hasminimal predic-

tive value (Figure 4B, k = 4). Early-stage clustering classification
Cell Reports 31, 107732, June 9, 2020 5
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Figure 3. Developmental Patterning Axes Are the Main Drivers of Variation in Late-Stage Differentiations
(A) PCA of late-stage gene expression data (44 samples, 171 genes) with samples colored by cluster. LC, late cluster.

(B) Gene contributions to variation in the late-stage dataset plotted using the Z-scored loadings for PC1 and PC2 as coordinates. Highest contributors (absolute

Z scores >2) are labeled.

(C) The distribution of highest loading genes in (B) is correlated with the gene expression patterns along the dorsoventral and rostrocaudal axes in vivo and

resembles the first two principal components in the early-stage data.

(D) Expression of selected high-loading genes along PC1–PC2.

(E) Mapping to 5 regions of the E15.5 Allen Developing Mouse Brain Atlas based on correlated expression of variable genes. RSP, rostral secondary prosen-

cephalon.

(F) Expression heatmap of selected high-loading genes in individual differentiations and interpretation summary showing variable contribution of different regional

identities to composition of differentiations in three late-stage clusters.

See also Figure S3.

Article
ll

OPEN ACCESS
could, therefore, predict late-stage classification into the highly

ventralized, dorsalized, and partially caudalized groups (k = 3)

for 93% (41/44) of the differentiations (Figure 4B).
6 Cell Reports 31, 107732, June 9, 2020
Although our cluster assignment was similar across different

clustering methods, distance metrics, and thresholds tested

(Figure S5), clustering approaches to classification rely on large
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Figure 4. Early-Stage Gene Expression Is Predictive of Late-Stage Expression and Differentiation Outcomes
(A) Heatmap of Pearson correlation coefficients between expression of late-stage cluster markers and early-stage gene expression in 44 time pairs. Only early-

stage genes with an absolute correlation coefficient greater than 0.75 for at least one of the late-stage markers are included.

(B) Correspondence between early-stage and late-stage cluster assignmentS mapped for 44 differentiations when two, three, or four clusters are considered.

(C) Late-stage cluster outcome was used to establish acceptable thresholds of expression of predictive genes at the early stage: low DLX5 and FOXG1

expression were used to classify differentiations as partially caudalized. For the remaining rostral differentiations, high NKX2-1 expression and low PAX6

expression were used to classify differentiations as highly ventralized, while samples with high PAX6 and high NKX2-1 expression were classified as partially

ventralized. Correspondence of empirical classification at early-stage with late-stage cluster classification is mapped on the right.

See also Figures S4 and S5.
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sample numbers and can be affected by which samples and

genes are included. Therefore, we sought to establish quality

control measures based on absolute thresholds of early-stage

expression of a limited number of genes. This approach exploits

the observed high correlation betweenmarkers of specific tissue

types (Figure 4A) and should also be more translatable to lower

throughput technologies. We focused on two pairs of genes

(NKX2-1 and PAX6; and FOXG1 and DLX5) whose early-stage

expression displayed high positive or negative correlation with

expression of late-stage cluster markers (Figure 4A).

Using the 44 pairs of early- and late-stage samples, we deter-

mined thresholds of early-stage gene expression that separated

dorsalized differentiations (LC2) from partially caudalized (LC3)

and highly ventralized (LC1) ones, obtaining early-stage classi-

fications that fully matched those of the late-stage differentia-

tions (Figure 4C). This analysis highlighted an inverse relation-
ship between NKX2-1 and PAX6 expression (Figure 4C): the

differentiations with high expression of both genes, which are

classified as partially ventralized by our thresholds, are those

that the clustering approach classifies as highly ventral at the

early stage but more cortical-like at the late stage. We specu-

late that this may result from more extensive proliferation of

cortical progenitors compared to ventral progenitors, as sug-

gested by the correlation noted earlier between genes ex-

pressed in the ventral forebrain and neuronal differentiation

genes (Figure S2C).

Cell-Line-Intrinsic Contributions to Variation in
Differentiation Outcomes
A key question is whether different lines have reproducible pro-

pensities to acquire cortical and non-cortical regional identities.

To investigate this, we used the gene expression thresholds
Cell Reports 31, 107732, June 9, 2020 7
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Figure 5. Cell-Line-Specific Variation in Spatial Identity of Neural Differentiations

(A) Classification of differentiations from early-stage data as dorsalized (green), partially ventralized (orange), highly ventralized (red), and partially caudalized

(blue) using thresholds determined in Figure 4C. Additionally, samples with extremely low DLX5 and FOXG1 expression (belonging to EC5) were classified as

highly caudalized (purple).

(B) Differentiation outcome frequency plotted by PSC line for lines with at least two differentiations. Names are formatted as individual.clone; numbers indicate

separate differentiations per line. Asterisks indicate lines for which the Wilson 95% confidence interval of the difference in dorsal differentiation frequency

compared to overall frequency does not include zero.

(C) Differentiation outcome frequency plotted by genotypes for which at least three cell lines were induced. MAPT Ex10+16, frontotemporal-dementia-causing

exon 10 splicingmutation in gene encoding tau protein; TS21, trisomy 21 (Down syndrome); AD, Alzheimer’s disease. Frequencieswere normalized to account for

the variable number of differentiations per line.

See also Figure S6.
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previously determined (Figure 4C) to classify all 149 differentia-

tions as dorsalized (86), partially ventralized (23), highly ventral-

ized (23), partially caudalized (14), or highly caudalized (3) (Fig-

ure 5A). For further analysis, we focused on differentiations

from PSC lines for which we had information on at least 2

differentiations.

The majority (16/27; 59%) of PSC lines we studied generated

dorsalized differentiations most of the time, with occasional par-

tial ventralization or caudalization (Figure 5B). Of the lines for

which one or more differentiations were not dorsalized, 18/20

lines produced differentiations with either ventralized or caudal-

ized gene expression, but not both. Thus, we observed line-spe-

cific differentiation tendencies affecting the acquisition of

regional identity and the range of differentiation outcomes that

are produced. Furthermore, although we did not investigate
8 Cell Reports 31, 107732, June 9, 2020
any operator-dependent effects, we note that none of the 26 dif-

ferentiations of line iPSC22.1, performed by 7 different opera-

tors, were caudalized or highly ventralized, suggesting that dif-

ferences between experienced operators are less important

than differences between PSC lines (Figure 5B). Based on the

type of non-dorsalized differentiations we observed, we classi-

fied PSC lines as either ventral or caudal prone (Table S2). Dor-

sal-, ventral-, or caudal-prone PSC lines had similar expressions

of pluripotency genes, indicating that observed differences in

outcomes could not be explained by differences in their expres-

sion levels (Figure S6A).

Line iPSC17.2, derived from the fibroblasts of an individual

with an Ex10+16 mutation in the MAPT gene, was the only line

to consistently produce highly caudalized differentiations (Fig-

ure 5B). This outcome was not shared by line iPSC17.1, which



Article
ll

OPEN ACCESS
was derived from separate reprogramming of the fibroblasts

from the same individual. We, therefore, performed a karyotype

analysis to confirm the genomic integrity of this line and found

that it had become trisomic for chromosome 12 (Figure S6B), a

common event in iPSC lines (Mayshar et al., 2010), which may

contribute to this outcome. All differentiations from three other

lines (GMESC01.1, iPSC14.1, and iPSC12.2) also failed to

generate highly cortical differentiations, though the outcomes

for these lines were within the observed range for other lines

(Figure 5B).

Finally, differentiation outcomes were not associated with

particular disease-causing mutations or genotypes, with partly

cortical differentiations (dorsalized plus partially ventralized) be-

ing generated from lines derived from control individuals (76%)

and individuals affected by sporadic Alzheimer’s disease

(67%), Down syndrome (trisomy 21; TS21) (61%) or frontotem-

poral dementia due to MAPT Ex10+16 mutations (58%), though

in the latter category, more of the differentiations had a partially

ventralized phenotype (Figure 5C).

Patterning Variation Is Associated with Differences in
Signaling Pathway Dynamics
Several signaling pathways contribute to regional patterning of

the brain; most prominently, retinoic acid and the Wnt, Fgf,

Hedgehog, and BMP families (Hébert and Fishell, 2008). Hedge-

hog signaling from the floorplate provides the main ventralizing

cue of the developing forebrain (Chiang et al., 1996; Gaiano

et al., 1999; Gunhaga et al., 2000). In contrast, Wnt signaling

has multiple functions in the patterning of different brain regions,

contingent on regionalized expression of different Wnt ligands

and receptors (Montiel and Aboitiz, 2015), including promoting

dorsal forebrain identities (Backman et al., 2005) and caudal

identities (Nordström et al., 2002). In vitro patterning of human

neural differentiations is also regulated by these signaling path-

ways, with a clear role of Hedgehog signaling in ventralization

(Germain et al., 2013; Li et al., 2009; Liu et al., 2013; Maroof

et al., 2013; Nicholas et al., 2013) andWnt signaling in both dors-

alization and caudalization (Elkabetz et al., 2008; Kirkeby et al.,

2012; Li et al., 2009).

To investigate spontaneous variation in Wnt and Hedgehog

signaling during directed differentiation, we analyzed expression

of components and transcriptional readouts of both pathways in

the early-stage data, grouped by differentiation outcome (dorsal-

ized, ventralized, and caudalized). Ventralized differentiations

expressed significantly higher levels of SHH and of Hedgehog

signaling readouts indicative of higher pathway activation (higher

PTCH1 and GLI1; lower GAS1) (Ribes and Briscoe, 2009) (Fig-

ure 5A). In contrast, Wnt signaling readouts AXIN2 and

TNFRSF19 (Ha et al., 2012; Jho et al., 2002) were higher in dor-

salized compared to caudalized differentiations, and in dorsal-

ized and caudalized compared to ventralized differentiations

(Figure 5A), indicating higher Wnt pathway activation in dorsal-

ized and caudalized differentiations. Matching the cell-line-

dependent frequencies of differentiation outcomes (Figure 4B),

we observed variation in Hedgehog and Wnt signaling among

differentiations derived from distinct PSC lines, as indicated by

significant differences in SHH, GAS1, and TNFRSF19 expression

(Figure 5B).
These differences in signaling cannot explain whether differ-

ential pathway activation is a cause or consequence of differ-

ences in regional identity or part of a positive-feedback loop

pushing differentiations along different developmental trajec-

tories. To determine the time when differences in signaling

pathway activity begin to emerge, we collected RNA samples

at 6 time points (0, 4, 7, 12, 17, and�35 dpi) for 13 additional dif-

ferentiations of 6 PSC lines chosen based on whether they were

prone to generate dorsalized (iPSC21.1), partially ventralized

(iPSC22.1), or highly ventralized (GMESC01.1, iPSC01.1,

iPSC06.1, and iPSC14.1) differentiations (Figure 5B).

Genes accounting for the main variation along the dorsoven-

tral axis (EMX1, EMX2, PAX6, DLX5, LHX8, and NKX2-1) had

similar profiles in dorsalized and ventralized differentiations up

to 12 dpi and began to diverge at 17 dpi (Figures 6C and S7A).

The 17-dpi time point was also when differences in Hedgehog

and Wnt signaling were first detected, with dorsalized differenti-

ations having lower levels of Hedgehog signaling (lower PTCH1

and higher GAS1 expression) and higher levels of Wnt signaling

(higher AXIN2 and TNFRSF19 expression) (Figures 6C and S7A).

These results suggest that variation in culture identity and

composition may arise from variation in Hedgehog and/or Wnt

signaling occurring during the amplification phase (12–17 dpi).

Ventralization Is Largely Rescued by a Brief, Specific
Phase of Wnt Signaling Activation
To investigate the role of Hedgehog and Wnt signaling in early

patterning of differentiations, we manipulated these pathways

with small-molecule inhibitors and activators during differentia-

tion and profiled gene expression changes at �35 dpi (Table

S4). Consistent with previous reports, we found that stimulation

of Hedgehog signaling using purmorphamine, a Smoothened

agonist (Figure 7A), between 7 and 17 dpi caused ventralization

of gene expression (Figure 7B). However, treatment with the

Hedgehog signaling inhibitor cyclopamine, a Smoothened

antagonist, between 7 and 17 dpi did not prevent ventralization

in a spontaneously ventralizing line (Figure 7C), suggesting that

endogenous Hedgehog signaling at this stage does not signifi-

cantly contribute to spontaneous ventralization.

We then assessed the role of endogenous Wnt signaling in

patterning by inhibiting pathway activity using the Porcupine in-

hibitor IWP2 (Figure 7D) between 0 and 12 dpi. The resulting dif-

ferentiations had amore ventralized gene expression profile (Fig-

ure 7E), confirming that endogenous Wnt signaling is important

for normal dorsalization (Li et al., 2009). Furthermore, this finding

indicated that low levels of endogenous Wnt signaling may be

responsible for the ventralized identity in the differentiations of

our spontaneously ventralizing PSC lines. To test this hypothe-

sis, we treated 7 differentiations from 4 ventralization-prone lines

with the GSK3b inhibitor CHIR99021 (Figure 7D) between 13 and

17 dpi. When profiled at�35 dpi, these differentiations displayed

a drastic reduction in the expression of MGE-associated genes

and an increase in the expression of cortical markers (Figures

7F and S7B). Furthermore, clustering of treated and untreated

differentiations highlighted a shift from highly ventral clusters to

more dorsalized clusters (Figure 7G). Notably, the reduction in

MGE-associated genes was consistent across all 4 lines we

tested (Figure 7F, bottom panels).
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Figure 6. Hedgehog and Wnt Signaling Display Different Temporal Dynamics in PSC Lines with Inherent Tendencies to More Cortical or

Ventral Differentiation Outcomes

(A) Early-stage differentiations classified as highly or partially ventralized express higher levels of SHH compared to dorsalized and caudalized differentiations, as

well as levels of Hedgehog signaling readouts PTCH1, GLI1, and GAS1 consistent with increased pathway activity. Dorsalized differentiations express higher

levels of Wnt signaling readouts AXIN2 and TNFRSF19 compared to ventralized differentiations but lower AXIN2 compared to partially caudalized differentiations

(pairwise Welch’s t test, false discovery rate [FDR]-corrected p values: *p < 0.05; **p < 0.01; ***p < 0.001; ns, not significant). Only comparisons to the dorsalized

class are shown. Differentiations per group: dorsalized, 86; highly ventralized, 23; partially ventralized, 23; and partially caudalized, 14.

(B) Early-stage differentiations from separate PSC lines vary in average expression of Hedgehog and Wnt signaling pathway activation, consistent with different

tendencies in regional patterning (one-way ANOVA: *p < 0.05; **p < 0.01). Error bars represent standard error; n = 2–6 differentiations per line.

(C) Gene expression time course during differentiation for selected genes associated with forebrain regions and Hedgehog orWnt signaling. Differentiations from

ventral-prone lines (partially ventral iPSC22.1 and highly ventral GMESC01.1, iPSC01.1, iPSC06.1, and iPSC14.1, n = 8–11) were compared to differentiations of a

dorsal-prone line (iPSC21.1, n = 1–2). Profiles represent average gene expression, and error bars represent standard deviation. Significance shown for dorsal

versus ventral comparison at 17 and �35 dpi (Welch’s t test, FDR-corrected p values: *p < 0.05; **p < 0.01; ***p < 0.001).
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Overall, these findings indicate that variability in endogenous

Wnt signaling is a key contributor to variation in the regional iden-

tity acquired during directed differentiation of PSCs into cortical

tissue. Stage-specific exogenous activation of Wnt signaling can

promote dorsal forebrain identity when endogenous Wnt

signaling is insufficient. Our results suggest that cell-line-depen-

dent heterogeneity in Wnt pathway activation may, in part, be

responsible for variation in differentiation outcomes between

PSC lines (Figure 7H).
10 Cell Reports 31, 107732, June 9, 2020
DISCUSSION

We report here that PSC-line-specific variation in endogenous

Wnt signaling results in variation in composition of long-term

PSC neural differentiations, with variation primarily occurring

along developmental spatial axes. Our results derive from a

large-scale study of 162 cortical differentiations from 61 PSC

lines, which we profiled using a custom gene expression panel

to investigate variation in developmental fate and cell
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Figure 7. Inherent Tendency to Ventralization Is Largely Rescued by a Brief, Specific Phase of Wnt Signaling Activation

(A) Diagram of Hedgehog pathway components targeted by small molecules in (B) and (C).

(B) Treatment with purmorphamine (1 mM) between 7 and 17 dpi results in a more ventralized gene expression profile at 33 dpi (line iPSC22.1, n = 2).

(C) Treatment with Hedgehog inhibitor cyclopamine (1 mM) between 7 and 17 dpi has no observable effect on dorso-ventral gene expression in a highly ventralized

line at �35 dpi (iPSC14.1, n = 3).

(D) Summary diagram of Wnt pathway components targeted by small molecules in (E)–(G).

(E) Treatment with Wnt inhibitor IWP2 (2 mM) between 0 and 12 dpi results in a more ventralized gene expression profile at 33 dpi (line iPSC22.1, n = 2).

(F) Treatment with Wnt activator CHIR99021 (1 mM) between 13 and 17 dpi significantly increases cortex-associated gene expression and decreases MGE-

associated expression at �35 dpi in differentiations of 4 ventral-prone lines compared to vehicle treatment (GMESC01.1, iPSC01.1, iPSC06.1, and iPSC22.1)

(one-sample Student’s t test, mu = 0, n = 7, FDR-corrected p values: *p < 0.05; **p < 0.01; ***p < 0.001). Top panels show combined trend; bottom panels show

breakdown by PSC line.

(legend continued on next page)
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composition. This approach enabled us to map the variation of

gene expression of in vitro cortical differentiations to variation

along gene expression axes reflecting the dorsoventral and ros-

trocaudal expression axes observed during in vivo brain devel-

opment. By assessing gene expression at two developmental

stages, we confirmed the progression from neural progenitor

proliferation to neurogenesis and astrogenesis; furthermore,

we determined that early differences in patterning are main-

tained over time, indicating that early-stage assessment is pre-

dictive of late-stage fate and can be used as a quality control

measure.

Variation correlating with developmental axes is strongly sug-

gestive of a mechanism similar to the patterning mechanism of

the embryonic brain, which is heavily dependent on cues from

patterning centers. The Hedgehog and Wnt/b-catenin pathways

have well-described roles in, respectively, providing ventralizing

(Chiang et al., 1996; Gaiano et al., 1999; Gunhaga et al., 2000)

and dorsalizing/caudalizing (Backman et al., 2005; Kuschel

et al., 2003; McMahon and Bradley, 1990; Nordström et al.,

2002; Thomas andCapecchi, 1990; Tole et al., 2000) signals dur-

ing early brain development while also affecting differentiation

and maturation dynamics at later times. We show here that

early-stage ventralized differentiations have higher levels of

Hedgehog pathway activation, that more caudalized differentia-

tions have higher levels of Wnt signaling, and that differences in

endogenous Wnt signaling are, at least in part, responsible for

differences in patterning. These effects are consistent with pre-

vious studies and the signaling manipulations used in differenti-

ation protocols for ventral forebrain and midbrain tissue (Chung

et al., 2009; Elkabetz et al., 2008; Germain et al., 2013; Kirkeby

et al., 2012; Li et al., 2009; Liu et al., 2013; Maroof et al., 2013).

Furthermore, given the observed correlation between neuronal

and ventral forebrain gene expression and the known role of

the Wnt/b-catenin pathway in promoting progenitor proliferation

during early cortical development (Chenn and Walsh, 2002; Hir-

abayashi et al., 2004; Machon et al., 2007; Woodhead et al.,

2006; Wrobel et al., 2007), differences inWnt/b-catenin signaling

levels may concurrently be linked to differences in patterning and

differences in the proportion of progenitors and neurons in

culture.

Stochastically different activation of the Wnt/b-catenin

signaling pathway among PSCs in the same neural differentia-

tion can lead them to acquire different neural fates correspond-

ing to neighboring brain regions (Moya et al., 2014; Yao et al.,

2017). In addition, the efficiency of differentiation of a PSC line

into a particular fate is influenced by variable activation of endog-

enous signaling pathways (Kattman et al., 2011; Nazareth et al.,

2013; Nostro et al., 2011; Paige et al., 2010). We therefore hy-

pothesize that stochastic and intrinsic differences in signaling

pathway activation contribute to variation between differentia-

tions of the same cell line and of different cell lines, respectively,

so that each cell line undergoing differentiation has a range of dif-

ferentiation outcomes, although usually a tight one (Figure 7H).
(G) Clustering of �35-dpi differentiations from ventral-prone lines treated betwee

Wnt/b-catenin signaling results in shift in classificationof ventralized differentiatio

(H) Model for outcome of differentiation of distinct cell lines.

All error bars represent standard error. See also Figure S7.
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How this might be determined by genetic and/or epigenetic fac-

tors as well as cell-culture history remains to be investigated.

Methods for directed differentiation of PSCs based on human

development face similar challenges as developmental pro-

cesses in vivo; namely, the precise canalization of cell-fate po-

tential in spite of noisy intra- and inter-cellular signaling, genomic

and epigenomic variation, and potentially variable environmental

conditions. Additionally, they are only partial models of develop-

ment and, thus, probably lack some of the self-regulatory mech-

anisms present in vivo. These features are likely to contribute to

variation in the proportions of different cell types generated by

methods aiming to produce multipotent progenitors that differ-

entiate over a long time frame. Differences in proportion of cell

types may be less problematic for studies exploiting single-cell

technologies, but bulk and large-scale assays still require good

quality-control measures to ensure high comparability of differ-

entiations across cell lines and across study conditions (as well

as between operators and laboratories). Implementation of

such quality-control measures is likely to improve the robustness

of comparisons across differentiations and thereby unlock the

full potential of PSC-derived cortical differentiations, an insight

that is also applicable to other differentiation protocols.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-TBR1 Abcam Cat# ab31940; RRID:AB_2200219

Anti-CTIP2 Abcam Cat# ab18465; RRID:AB_2064130

Anti-TBR2 Abcam Cat# ab23345; RRID:AB_778267

Anti-GABA Sigma-Aldrich Cat# A2052; RRID:AB_477652

Anti-SOX2 Abcam Cat# ab79351; RRID:AB_10710406

Biological Samples

Foetal Lung RNA Laboratory of Emma Rawlins N/A

Chemicals, Peptides, and Recombinant Proteins

ROCK inhibitor (Y-27632) Tocris Bioscience Cat# 1254

SB431542 Tocris Bioscience Cat# 1614

Dorsomorphin Tocris Bioscience Cat# 3093

LDN193189 Cell Guidance Systems Cat# SM23

FGF2 Cambridge Stem Cell Institute N/A

Purmorphamine Tocris Bioscience Cat# 4551

Cyclopamine StemCell Technologies Cat# 72072

CHIR99021 Sigma-Aldrich Cat# SML1046

IWP2 StemCell Technologies Cat# 72122

Critical Commercial Assays

nCounter Gene Expression assays This paper; NanoString Technologies Table S1

Qubit RNA BR assay kit ThermoFisher Scientific Cat# Q10210

Qubit RNA HS assay kit ThermoFisher Scientific Cat# Q32855

CytoTune�-iPS 2.0 Sendai

Reprogramming Kit

ThermoFisher Scientific Cat# A16517

RNeasy mini kit QIAGEN Cat# 74106

DNeasy Blood & Tissue kit QIAGEN Cat# 69506

Infinium HumanCytoSNP-12 Illumina Cat# WG-320-2101

CytoSNP850K Illumina Cat# 20025643

Deposited Data

Normalized gene expression data This paper Tables S3 & S4

Mouse brain in vivo expression energy data Allen Developing Mouse Brain Atlas,

Allen Institute for Brain Science

https://developingmouse.brain-map.org/

ScRNA-seq of cortical iPSC differentiations Yao et al., 2017; GEO repository GSE86977

Experimental Models: Cell Lines

See Table S2 for full info on 61 PSC lines

Software and Algorithms

R v 3.6.2 R Core Team, 2019 https://www.R-project.org/

R package - dplyr dplyr: A Grammar of Data Manipulation.

R package version 0.8.5.

https://cran.r-project.org/web/packages/

dplyr/index.html

R package - ggplot2 Wickham (2016). ggplot2: Elegant

Graphics for Data Analysis. Springer-

Verlag New York.

https://ggplot2.tidyverse.org

R package - ggsignif Ahlmann-Eltze, 2019 https://cran.r-project.org/web/packages/

ggsignif/index.html

R package - pheatmap Kolde, 2019 https://cran.r-project.org/web/packages/

pheatmap/index.html

(Continued on next page)
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R package - RColorBrewer Neuwirth, 2014 https://cran.r-project.org/web/packages/

RColorBrewer/index.html

R package - reshape2 Wickham (2007). Reshaping Data with

the reshape Package. Journal of

Statistical Software, 21(12), 1-20.

https://www.jstatsoft.org/v21/i12/

R package - plyr Wickham (2011). The Split-Apply-Combine

Strategy for Data Analysis. Journal of

Statistical Software, 40(1), 1-29.

https://www.jstatsoft.org/v40/i01/

R package – tidyr Wickham and Henry, 2020 https://cran.r-project.org/web/packages/

tidyr/index.html

nSolver software –v 3.0 NanoString Technologies https://www.nanostring.com/products/

analysis-software/nsolver

Harmony High-Content Imaging and

Analysis Software

Perkin Elmer https://www.perkinelmer.com/product/

harmony-4-9-office-license-hh17000010
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to Prof. Rick Livesey (r.livesey@ucl.ac.uk).

Materials Availability
In this study 31 iPSC lines were generated in house from fibroblasts (see Table S2). There are restrictions to the distribution of the cell

lines due to resources involved in line expansion, maintenance and storage.Wewill share cell lines with reasonable compensation by

the requestor for its processing and shipping but we may require a completed Materials Transfer Agreement.

Data and Code Availability
The published article includes the datasets generated and analyzed in this study (Tables S3 and S4).

In situ hybridization images used in Figures S2A and S3B and gene expression data used for mapping of in vitro differentiations to

in vivo developmental regions in Figures 2E and 3E were obtained from the Allen Developing Mouse Brain Atlasª 2008 Allen Institute

for Brain Science. Available from: https://developingmouse.brain-map.org/. Expression energy data for probes in the gene expres-

sion panels were downloaded using the Allen Brain Atlas API (http://help.brain-map.org/display/devmouse/API).

Single-cell RNA-sequencing data used in Figure S3Cwas generated by Yao et al., 2017 and accessed through the GEO repository

(GSE86977).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Details on genotype, sex, and cell type of origin for all cell lines used are provided in Table S2.

All PSC lines were cultured in E8 medium (Thermo Fisher Scientific, A1517001) on Geltrex (Thermo Fisher Scientific, A1413301) as

previously described (Beers et al., 2012).

Selected cell lines were authenticated using SNP data to validate line identity, genomic integrity (or expected trisomy 21 for cell

lines derived from individuals with Down syndrome), and sex.

METHOD DETAILS

Reprogramming, stem cell culture and cell lines
All PSC line information is provided in Table S2. Of the 61 lines used in this study, 13 were previously published, 10 were reprog-

rammed and characterized by the STEMBANCC consortium, and 36 were reprogrammed in-house from fibroblasts using the inte-

gration-free CytoTune�-iPS 2.0 Sendai Reprogramming Kit (Life Technologies) as per manufacturer’s instructions. Twenty-one days

after viral infection individual iPSC-like colonies were manually picked for expansion into individual iPSC lines and transferred onto

feeder-free Geltrex-coated plates and cultured with Essential 8 medium (Life Technologies). Elimination of Sendai vectors was

confirmed by RT-PCR at passage > 10. All PSC lines were cultured in E8 medium on Geltrex as described (Beers et al., 2012).

Briefly, when confluence reached �80%, PSCs colonies were washed rapidly with 0.5 mM EDTA, dissociated with 0.5 mM EDTA

for 2-4 minutes, resuspended in E8 medium and re-plated at a variable split ratio (�1:6) on Geltrex-coated plates. Pluripotency

gene expression was measured using custom nCounter gene expression codesets (Codeset1, Codeset3 – Table S1). Data analysis
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was performed as described in the nCounter gene expression assay and data analysis section after merging the datasets using the

MultiRLF Merge function of the nSolver software.

Neural induction and culture
Neural induction was performed based on a published protocol (Shi et al., 2012b) with a few modifications. Briefly, human ESCs or

iPSCs were dissociated to single cells with Accutase (Sigma) and plated at �260,000 cells/cm2 in E8 with 10 mM ROCK inhibitor

(Y-27632, Tocris Bioscience) on tissue culture plates coated with Geltrex (Thermo Fisher A1413302). They were allowed to attach

for at least six hours to overnight, washed once with PBS, and then the medium was replaced with neural induction medium

(NIM) consisting of a 1:1mix of N2 (N2 supplement in DMEM/F12, Thermo Fisher 17502048 and 31331093) and B27 (B27 supplement

in Neurobasal, Thermo Fisher 17504044 and 12348017) supplemented with 10 mMSB431542 and 1 mMDorsomorphin (Tocris Biosci-

ence) (Day 0). For some inductions Dorsomorphin was substituted with 100 nM LDN193189 (Cell Guidance Systems). NIM was re-

placed daily for 12 days; on day 12, the neuroepithelial sheet was detached from the plate using Dispase II (Thermo Fisher 17105) and

replated on plates coated with laminin (Sigma L2020). From the following day until day 17 cultures were grown in N2B27 supple-

mented with 10-20 ng/ul FGF2, replaced daily or on alternate days, and from day 17 onward in N2B27 medium only. Between

day 17 and 25 any non-neural differentiation present was removed by passaging with Dispase as required, and the neural cultures

were then dissociated to single cells using Accutase.When cultures reached�80%–90%confluence they were passaged again until

a final passage between day 33-38, when they were plated for long-term culture, after which N2B27 medium was replaced every

second day. For experiments manipulating signaling pathways, the induction or maintenance medium were supplemented with

1 mM purmorphamine (Tocris Bioscience), 1 mM cyclopamine (StemCell technologies), 1 mM CHIR99021 (Sigma), or 2 mM IWP2

(StemCell Technologies) during the indicated time window (Figures 6 & S7) and replaced daily.

RNA collection
All RNA samples from cortical differentiations and PSCs were collected by adding RLT lysis buffer directly to the rinsed culture plate

or to a collected pellet of dissociated cultures, and RNA was then extracted using the QIAGEN RNeasy spin columns. RNA from 20

pcw human fetal lung was a kind gift from Dawei Sun and Emma Rawlins (Gurdon Institute, Cambridge).

Genome-wide copy number assay
Genomic DNA from the indicated PSC lines was extracted using the QIAGENDNeasy Blood & Tissue kit and analyzed on the Illumina

Infinium HumanCytoSNP-12 (iPSC17.1-2) or CytoSNP850K (iPSC22.1) platforms.

Immunostaining and quantification of cell-type proportions
The same 34-dpi differentiations were plated contemporarily on Geltrex-coated CellCarrier Ultra 96-well plates at�75,000 cells/cm2

andonGeltrex-coated 24-well plates at�65,000 cells/cm2.Weplated 36cultures from29separate differentiations of 12different PSC

lines (1-3 differentiations per line; 6 differentiations plated in duplicate). Each culture was assigned a code and operator was blind to

differentiation identitywhencollectingRNAexpression and imagingdata. After 21daysRNAwascollected from the24-well plates and

cultures in the 96-well plates were fixed using 4% PFA in PBS for 10 min. To calculate correlation between gene expression and dif-

ferentiation composition, we chose optimized antibodies against antigens with quantifiable nuclear expression. Immunostaining was

performed using primary antibodies against TBR1 (Abcam ab31940, 1:250), CTIP2 (Abcam ab18465, 1:500), TBR2/EOMES (Abcam

ab23345, 1:250), GABA (Sigma-Aldrich A2052, 1:1,000), and SOX2 (Abcam ab79351, 1:200) and using Alexa-conjugated secondary

antibodies. Normal donkey serum (5%) in TBS with 0.3% Triton-X was used as blocking solution. Automatic confocal imaging was

performed on an Opera Phoenix High Content Screening System (Perkin Elmer, HH14000000) and 85 fields of view were acquired

per culture. Nuclei segmentation was performed on the DAPI channel using Method C within the Opera Harmony software (Common

Threshold: 0.1; Volume>60mm3;SplittingCoefficient:7; Individual Threshold:0.45;Contrast >0.1). Antigen-positive nucleiweredeter-

mined based on intensity comparison to control unstained with primary antibodies. The percentage of antigen-positive nuclei was

calculated over the total number of counted nuclei in each differentiation (average: 69,437, range: 18,229-89,160). Samples in which

fewer than 10,000 nuclei were detected, indicative of widespread detachment, were discarded. The final dataset included data on 16

cultures from 15 differentiations of 8 PSC lines (1-3 differentiations per line, 1 differentiation in duplicate); detachment preferentially

affected highly ventral differentiations. The numbers of cultures, differentiations, and lines used to calculate each correlation in Fig-

ure S1E are as follows: TBR1 (15/14/7), CTIP2 (15/14/7), TBR2 (16/15/8), GABA (15/14/8) and SOX2 (16/15/8).

nCounter gene expression assay and data analysis
Gene expression was profiled using custom-designed nCounter gene expression codesets on the nCounter� SPRINT Profiler plat-

form. Samples in the study were run with one of two codesets containing respectively 200 and 156 gene probes (Codeset1 and 2,

Table S1). RNA concentration was measured using Qubit RNA Assay kits (ThermoFisher) or by spectrophotometric analysis using a

Hidex Sense instrument, and 50 ng total RNA were loaded for each nCounter assay. Each differentiation was assigned a unique in-

duction number (UIN). Transcript counts were normalized on the nSolver analysis software or in R by subtracting the geometric mean

of 8 negative control probes, and bymultiplying by two sample-specific normalization factors obtained using the geometricmean of 6

positive control probes, and the geometric mean of 7 housekeeping genes (CLTC, GAPDH, GUSB, PPIA, RPLP1, RPS15A, RPS9).
e3 Cell Reports 31, 107732, June 9, 2020
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Samples with a positive control or housekeeping normalization factor larger than 4 or smaller than 0.25 were removed and the re-

maining samples were re-normalized without outliers.

Gene expression data used to study variation between differentiation are reported in Table S3. The number of samples in the final

datasets was 84 for early-stage Codeset1, 44 for late-stage Codeset1, 65 for early-stage Codeset2, and 13 for late-stage Codeset2.

To prevent any codeset effects on variation, analyses in Figures 1–3 and S1, S2, S3, and S4 were performed on the two codesets

separately (excluding late-stage Codeset2, which included fewer than 15 samples). Figure 6A and 6B only contain samples from

the early-stage, Codeset2 dataset due to lack of the probes of interest in Codeset1. For classification purposes (Figure 4) we com-

bined the two datasets from the same time window using the MultiRLF Merge function of the nSolver software (Table S3), using 5

samples that were profiled with both codesets as cross-codeset normalizers, resulting in a combined dataset of 149 early-stage

and 57 late-stage samples (Table S3), including 44 differentiations with paired data at both temporal stages. Gene expression

data used to study temporal dynamics (Figures 6C and S7A) and the effect of signaling pathway manipulations (Figures 7 and

S7B) are reported in Table S4.

For all datasets, the probe list was filtered to include only genes whose expression was above 30 normalized counts in at least one

of the samples.We chose this threshold based on our assessment of technical noise and to be above the average level of the negative

control probe with the highest counts (Figures S1A and S1B). All analyses were performed in R v3.6.2 (R Core Team, 2019) on log-2

transformed data to decrease skewness and normalize variance. Pearson correlation was used to calculate gene expression corre-

lations and sample clustering distances using the cor function and pheatmap package, while principal component analysis was per-

formed using the prcomp function. Additionally, the dplyr, plyr, tidyr, and reshape2 packages were used for data manipulation and

the ggplot2, ggsignif, and RColorBrewer packages were used for data visualization.

Mapping to Allen Developing Mouse Brain Atlas
Expression energy data at E11.5 for genes present in our Nanostring panels were downloaded using the Allen Institute API. To cover

most of the brain, regions from the ventral telencephalon to the hindbrain were considered: the rostral secondary prosencephalon

(RSP), pallium, subpallium, diencephalon, peduncular hypothalamus, midbrain, and hindbrain. Since expression of most genes

was correlated across regions, variable genes expressed selectively in particular regions were identified as those with large (> 2)

regression residuals in each pairwise comparison with other regions. No genes in the panel could be identified as selective for dien-

cephalon and peduncular hypothalamus therefore these regions were removed from the set. Repeating the analysis identified 3-10

genes selectively expressed in each region compared to others for a total of 27 genes (RSP: GPC3, FOXP2, PTCH1, SATB2, RAX;

subpallium: LHX6, OLIG2, DLX1, LHX8, GSC; pallium: MAP2, FOXG1, TBR1, SLC17A7, GLI3, EOMES, GAS1, EMX1, NEUROG2,

EMX2; midbrain: DDC, NR4A2, OTX2, EN2; hindbrain: HOXB2, NKX6-1, HOXA2). Using expression of this subset of genes,

Spearman correlation was used to calculate a mapping score of each differentiation to each region of the E11.5 mouse brain and

scores for each differentiation were then z-normalized. Mapping of late-stage differentiations was similarly performed using E15.5

expression data, where 19 selectively expressed genes were identified (RSP: RAX, GPC3, PTGDS, OTP; subpallium: GAD2,

LHX8, LHX6; pallium: NEUROG2, NEUROD2, NEUROD1, NFIX, FEZF2, SATB2, SOX5; midbrain: OTX2, POU4F2; hindbrain:

NKX6-1, TFAP2A, HOXA2).

QUANTIFICATION AND STATISTICAL ANALYSIS

The statistical tests used, the definitions of center, dispersion, and precision, and the number of samples (n) and their identity is indi-

cated in each figure legend. To compare temporal dynamics (Figure 6C), we first averaged multiple samples from the same unique

untreated or vehicle-treated differentiations and then compared the values for all unique differentiations from ventral-prone lines to

those from the dorsal-prone line. Means of multiple differentiations per line are shown in Figure S7A. To assess the effect of the phar-

macological interventions (Figure 7), we compared gene expression values from samples of drug-treated differentiations to those

from the same differentiations when untreated (purmorphamine, IWP2) or vehicle-treated (cyclopamine [ethanol], CHIR99021

[DMSO]) over the same time-window, including where vehicle treatment length exceeded drug treatment length. For both analyses,

samples were pooled into time points: �17.5 (range 17-18) and �35 (range 30-39).

All statistical analyses were performed in R v3.6.2 (R Core Team, 2019). Welch’s t tests were performed as unpaired, two-sided

tests with function t.test without assuming equal variance (var.equal = FALSE). One-way ANOVA was performed using the function

aov. One-sample Student t tests were performed as two-sided tests with function t.test, setting mu = 0. No tests were performed to

assess normality assumption. P value correction for multiple testing was performed using the p.adjust function using the FDR (Ben-

jamini and Hochberg, 1995) correction.
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Figure S1. Gene expression panel technical and biological validation. Related to Figure 1. 

(A-B) Relationship between mean gene expression and coefficient of variation in 3 technical replicates (3 samples each) 

run on the same cartridge (A) and 2 technical replicates run on different cartridges and 9 months apart (B). Dots represent 

individual gene probes; red and green vertical lines represent respectively the average for the negative and positive 

control probes included in the codeset. The blue vertical line represents the minimum threshold of expression we 

required in at least one sample to include a gene probe in any analysis.  



(C) Heatmap of expression of PSC genes showing highly reduced or absent expression in 84 early-stage cortical 

differentiations compared to 4 PSC samples.  

(D) Heatmap of expression of genes expressed in mesodermal and endodermal tissue showing no expression in 84 early-

stage cortical differentiations compared to a 20pcw human foetal lung sample. (E) Correlations between expression of 

selected genes and the fraction of cells immunopositive for the corresponding protein (TBR1, CTIP2, TBR2, SOX2) or 

enzymatic product (GABA).  



  



Figure S2. Largest contributors to early-stage variation are enriched in specific brain regions during embryonic 

development. Related to Figure 2. 

(A) Expression of selected high-loading genes measured by in-situ hybridisation in E11.5 mouse embryos (from the 

Allen Developing Mouse Brain Atlas © 2008 Allen Institute for Brain Science). A black arrowhead marks the 

developing cortex.  

(B) Differences in expression of selected high-loading genes among the groups determined in Figure 2A (pairwise 

Welch’s t-test, FDR corrected p-values: <0.05 (*), <0.01 (**), <0.001 (***), ns (not significant); only comparisons to 

EC3 are shown). Differentiations per group: EC1 (10), EC2 (28), EC3 (38), EC4 (5), EC5 (3).  

(C) Heatmap of Pearson correlation coefficients for early-stage gene expression (n =84). Only genes with an absolute 

correlation coefficient greater than 0.85 for at least one other gene are included.  

 

  



 

 

Figure S3. Largest contributors to late-stage variation along PC2 are enriched in cell types with caudal identity. 

Related to Figure 3. 

(A) Differences in expression of selected high-loading genes among the groups determined in Figure 3A (pairwise 

Welch’s t-test, FDR corrected p-values: <0.05 (*), <0.01 (**), <0.001 (***), ns (not significant)). Differentiations per 

group: LC1 (3), LC2 (36), LC3 (5).  

(B) Expression of selected high-loading genes measured by in-situ hybridisation in E15.5 mouse embryos (from the 

Allen Developing Mouse Brain Atlas © 2008 Allen Institute for Brain Science).  

(C) Expression of selected high-loading genes in scRNA-seq data from 54-dpi forebrain differentiations from Yao et al., 

2016. For each gene, the percentage of single cells with at least one transcript count is plotted for cell populations of 

different lineages. Genes associated with LC1 are more highly expressed in progenitors and neurons of cortical lineage, 



while most genes associated with LC2 are highly expressed in caudal progenitors and undetermined cell type (PAX3, 

GBX2, EN2), and in caudal neuronal types (TFAP2A, POU4F1).   



 

 

Figure S4. Late-stage expression reflects developmental temporal progression. Related to Figure 4. 

(A) Pearson correlation between gene expression in late-stage differentiations (y-axis) and gene expression in early-stage 

differentiations (x-axis) for 44 time pairs. Late-stage cluster markers are reported in bold on the y-axis and colour coded 



in green (dorsalised - LC2), red (ventralised - LC1), and blue (partially caudalised – LC3). Early-stage genes with an 

absolute correlation coefficient greater than 0.75 with any of these are indicated in bold on the x-axis, and selectively 

shown in Figure 4A.  

(B) Relationship between expression correlation of any gene pair in the early-stage dataset and between the early-stage 

and late-stage dataset. The significant correlation between these two datasets indicates that expression of gene modules 

present at the early-stage is maintained at the late-stage, and therefore early-stage expression of these modules can 

predict late-stage expression.  

(C) Average difference in expression between late-stage (~ 82 days post induction, dpi) and early-stage (~35 dpi) 

dorsalised differentiations. The expression of most astrocytic and neuronal genes increases, while most NPC and 

proliferation genes decrease over time (one-sample t-test on difference in paired late vs early samples, n = 30 pairs, mu = 

0; FDR corrected p-values: <0.05 (*), <0.01 (**), <0.001 (***)). Error bars represent standard error.  

  



 

 

Figure S5. Cluster similarity with different clustering approaches. Related to Figure 4. 

Separate rows represent cluster assignments for the combined early-stage dataset (A, 149 samples) or late-stage dataset 

(B, 57 samples) using indicated clustering method (k-means or HC: hierarchical clustering), clustering distance (Pearson 

correlation or Euclidean distance), and minimum threshold in at least one sample (30 or 300 normalised counts). 

Arrowheads indicate clustering used in the main text.  
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Figure S6. Cell line contributions to differentiation outcome. Related to Figure 5. 

(A) Expression levels of key pluripotency genes grouped by patterning-proneness of the corresponding PSC line (one-

way ANOVA, not significant). PSC lines per group: dorsal (7), dorsocaudal (5), dorsoventral (4), mixed (2), ventral (8). 

(B) Allelic SNP ratio (theta) for single nucleotide polymorphism loci on chromosome 12 for a control line (iPSC22.1) 

and two clones derived from the same individual carrying a MAPT Ex10+16 mutation (iPSC17.1-2). The horizontal axis 

represents normalised chromosomal distance. The presence of 4 bands in iPSC17.2 indicates trisomy of chromosome 12.  

 
 
  



 

 

Figure S7. CHIR99021 treatment dorsalises gene expression in spontaneously-ventralising differentiations. 

Related to Figures 6 and 7. 

(A) Gene expression timecourse during differentiation for selected genes associated with forebrain regions and 

Hedgehog or Wnt signalling pathways. Profiles from six PSC lines are shown, each profile represents the average of 1-3 

differentiations. Notice the graded differences between a dorsal-prone line (iPSC21.1), a dorsoventral-prone line 



(iPSC22.1), and four ventral-prone lines (GMESC01.1, iPSC01.1, iPSC06.1, iPSC14.1). Profiles represent average gene 

expression per line and error bars represent standard deviation.  

(B) Log2 normalised count data corresponding to Figure 7F. Expression of key markers at ~17 and ~35 dpi is shown for 

four dorsoventral/ventral-prone lines treated with either vehicle or Wnt signalling activator CHIR99021 (1 μM) between 

13-17 dpi. Number of differentiations (n = 2) except for iPSC01.1 at 17dpi and vehicle treated iPSC06.1, for which a 

single data point is shown. Error bars represent standard error.  

 

  



SUPPLEMENTARY TABLES (see separate files) 
 
 
Table S1. Nanostring Codesets Probe Sequences, Related to Figure 1 
 
Table S2. Details of PSC Lines Used and their Differentiation Trends, Related to Figure 5 
 
Table S3. Normalised Gene Expression Matrices for Assessment of Variation, Related to Figures 1-6 
 
Table S4. Normalised Gene Expression Matrices for Temporal Dynamics and Effects of Signalling Manipulation, 
Related to Figures 6-7 
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