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SUMMARY
Kainate receptors (KARs) mediate postsynaptic currents with a key impact on neuronal excitability. However,
the molecular determinants controlling KAR postsynaptic localization and stabilization are poorly under-
stood. Here, we exploit optogenetic and single-particle tracking approaches to study the role of KAR confor-
mational states induced by glutamate binding on KAR lateral mobility at synapses. We report that following
glutamate binding, KARs are readily and reversibly trapped at glutamatergic synapses through increased
interaction with the b-catenin/N-cadherin complex. We demonstrate that such activation-dependent synap-
tic immobilization of KARs is crucial for the modulation of short-term plasticity of glutamatergic synapses.
Thus, the present study unveils the crosstalk between conformational states and lateral mobility of KARs,
a mechanism regulating glutamatergic signaling, particularly in conditions of sustained synaptic activity.
INTRODUCTION

Kainate receptors (KARs) are glutamate-gated ion channels

that play an important role in the modulation of both inhibitory

and excitatory synaptic transmission. They exert depolarizing

actions both pre- and postsynaptically and mediate metabo-

tropic and ionotropic signaling (Contractor et al., 2011; Lerma

and Marques, 2013). Among their many roles, KARs mediate

slow-decaying postsynaptic currents (KAR-EPSCs) that tune

the summation of excitatory inputs (Frerking and Ohliger-Frerk-

ing, 2002; Goldin et al., 2007) and modulate the induction of

spike-timing-dependent Hebbian long-term potentiation (Sa-

chidhanandam et al., 2009). Synaptic localization of KARs, in

analogy with other neurotransmitter receptors, is assumed to

rely on the receptor anchoring to synaptic scaffold proteins

that act as ‘‘diffusion traps’’ (Choquet and Triller, 2013). One

of the major subunits of postsynaptic KARs, GluK2, interacts

with specific scaffold/adhesion proteins at the excitatory post-

synaptic density (PSD) that provide the molecular basis for KAR

accumulation at the postsynaptic level (Coussen et al., 2002;

Garcia et al., 1998; Hirbec et al., 2003; Fièvre et al., 2016). Anal-

ysis of KARs’ lateral diffusion revealed that the dispersion of

KARs from the synapse is due to reduced interactions of

KARs with PSD-95, which is responsible for the expression

of long-term depression of KAR-mediated responses. Thus,

the dynamic regulation of KAR-scaffold protein interactions
This is an open access article under the CC BY-N
strongly modulates KAR-EPSC strength (Carta et al., 2013).

However, the KAR lateral diffusion in relation to the KAR activa-

tion by glutamate binding has never been investigated. To

address this issue, we exploited an engineered light-gated

GluK2 (LiGluK2) receptor that can be activated by light and

controlled in the open/desensitized or closed states by illumi-

nation with UV or visible light, respectively (Volgraf et al.,

2006). This optogenetic tool, in combination with single-particle

tracking (SPT), allows the study of LiGluK2 receptor lateral

mobility in specific receptor light-induced conformational states

at unprecedented temporal resolution. In addition, the use of

LiGluK2 allows the selective activation of GluK2 receptors

without application of exogenous glutamate, thus preventing

potential confounders due to the activation of AMPA and/or

NMDA glutamate receptors. We find that LiGluK2 activation

(followed by fast desensitization) reversibly immobilizes KARs

at glutamatergic synapses. Immobilization of wild-type (WT)

GluK2 was also observed in response to GluK2 activation by

glutamate bath applications, indicating that this is not a specific

feature of LiGluK2 activated by light. KAR activation-dependent

stabilization at postsynaptic sites was mediated by the interac-

tion between the GluK2-C terminus and the adhesion protein

N-cadherin. This mechanism is responsible for the activity-

dependent fast regulation of KARs availability at glutamatergic

synapses and the short-term regulation of excitatory synaptic

signaling.
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RESULTS

LiGluK2 Receptors Are Accumulated at Glutamatergic
Synapses
Transfection of LiGluK2 in hippocampal cultured neurons

induced the formation of functional KARs. These receptors

mediated light-evoked responses (Figure S1A, left panel) with ki-

netics comparable to those of light- and glutamate-evoked cur-

rents mediated by homomeric GluK2 receptors in heterologous

systems (Bowie and Mayer, 1995; Reiner and Isacoff, 2014).

Moreover, similarly to native GluK2 receptors activated by gluta-

mate, the lectin Concanavalin-A (Con-A) increased the size and

abolished the desensitization of LiGluK2 light-activated currents

(Bowie et al., 2003; Mayer and Vyklicky, 1989; Paternain et al.,

1998) (Figure S1A, right panel). Next, we considered the possibil-

ity that heteromerization of LiGluK2 with non-photoswitchable

endogenous GluK5 could lead to heteromeric LiGluK2/GluK5 re-

ceptors only partially activated by light. However, the K5 subunit

was unlikely to be incorporated in surface KARs upon LiGluK2

neuronal transfection, given the markedly distinct kinetics of

our light-evoked responses (Figure S1A, left panel) from light-

evoked LiGluK2/GluK5-mediated currents (Reiner and Isacoff,

2014) and the lack of response to focal application of the

GluK5 subunit selective agonist 5-iodowillardiine (5-IW; Fig-

ure S1B). This is in line with previous studies showing that

cultured hippocampal neurons do not express the GluK5 subunit

(Palacios-Filardo et al., 2016; Ruano et al., 1995). Subsequently,

we investigated the surface distribution of LiGluK2 receptors by

quantifying the immunoreactivity of hemagglutinin (HA)-tagged

LiGluK2 at glutamatergic synapses identified either by overex-

pression of the postsynaptic marker Homer1c-DsRed or by im-

munolabeling the presynaptic marker VGLUT1 (Hayashi et al.,

2009). The integrated fluorescence intensity of HA-LiGluK2 at

synapses (i.e., that co-localized with Homer1c) was significantly

higher than that at extrasynaptic sites, suggesting LiGluK2 accu-

mulates at glutamatergic synapses (121.3 ± 15.1 a.u. and 71.3 ±

9.5 a.u. for synaptic and extrasynaptic HA-LiGluK2, respectively;

n = 48, from 3 cultures; p < 0.01, Student’s t test; Figures S1C

and S1D). The percentage of synaptic HA-LiGluK2 clusters co-

localizing with Homer1c was 23.3% ± 1.4% of total HA-LiGluK2

clusters (Figure S1D), in line with previous studies addressing the

synaptic localization of both overexpressed and native GluK2 re-

ceptors (Martin et al., 2008; Salinas et al., 2006). Comparable

values (18.0% ± 1.3%) were obtained when synaptic LiGluK2 re-

ceptors were identified by their close proximity to the presynap-

tic marker VGLUT1 (Figure S1D). Taken together, these data

indicate that the transfection of the LiGluK2 subunit in hippo-

campal cultured neurons leads to the surface expression of

functional homomeric LiGluK2 receptors that accumulate at glu-

tamatergic synapses.

Desensitized LiGluK2 Receptors Are Reversibly
Immobilized at Glutamatergic Synapses
In a second set of experiments, we studied the relationship be-

tween the conformational state and the lateral mobility of

GluK2 receptors by combining the use of photoswitchable

LiGluK2 with the SPT technique. We tracked the diffusion of in-

dividual LiGluK2 receptors coupled to quantum dots (QDs) while
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simultaneously maintaining receptor conformation in a closed or

open/desensitized state by shedding light at 488 nm or 378 nm,

respectively (Figures 1A and S1A). Considering that profound

desensitization occurs within a few tens of ms after the receptor

activation, hereafter we will define the receptors as ‘‘desensi-

tized’’ when illuminated with 378 nm light, although we cannot

exclude that a small fraction of receptors might be in the open

state. The mobility of synaptic and extrasynaptic LiGluK2 was

measured at glutamatergic synapses identified by transfection

of Homer1c-DsRed. Similar to other neurotransmitter receptors

(Borgdorff and Choquet, 2002; Dahan et al., 2003; Groc et al.,

2006; Jacob et al., 2005; Petrini et al., 2014), LiGluK2 freely

diffused in the extrasynaptic area but was more confined at syn-

aptic sites (Figures 1C and 1D). Interestingly, LiGluK2 activation/

desensitization by 378 nm light reversibly immobilized receptors

at synapses (Figure 1B, Videos S1 and S2), as indicated by the

reduced receptor diffusion coefficient (closed state =

0.016 mm2s�1, interquartile range (IQR): 0.004–0.033 mm2s�1;

desensitized state = 0.008 mm2s�1, IQR: 0.002–0.016 mm2s�1;

ntrajectories = 140; p < 0.001, Mann-Whitney U test; Figure 1C,

left panel) and by the increased receptor immobile fraction

(closed state = 0.27 ± 0.03; desensitized state = 0.44 ± 0.04;

p < 0.001, Student’s t test; Figure 1C, middle panel). Moreover,

light-induced LiGluK2 desensitization increased receptor

confinement at synapses, as shown by the reduction of mean

square displacement (MSD) versus time curve plateau (p <

0.001, t test at steady state; Figure 1C, right panel), the increased

fraction of time spent at synapses (closed state = 58% ± 0.02%;

desensitized state = 0.67 ± 0.02; p < 0.01, Student’s t test; Fig-

ure S1E), and the decreased number of transitions between ex-

trasynaptic and synaptic compartments (closed state = 2.39 ±

0.09; desensitized state = 1.95 ± 0.08; p < 0.0005, respectively,

Student’s t test; Figure S1E). Notably, LiGluK2 photoactivation

did not change the lateral mobility of extrasynaptic LiGluK2, sug-

gesting that the light-evoked changes of LiGluK2 lateral diffusion

were specific for synaptic receptors (median diffusion coeffi-

cient: closed state = 0.020 mm2s�1, IQR: 0.006–0.051 mm2s�1,

desensitized state = 0.021 mm2s�1, IQR: 0.005–0.055 mm2s�1,

ntrajectories = 250; ns, Mann–Whitney U test; Figure 1D, left panel;

immobile fraction: closed state = 0.27 ± 0.01, desensitized

state = 0.29 ± 0.01; ns, Student’s t test; Figure 1D, middle panel;

MSD versus time curve plateau; ns, Student’s t test at steady

state; Figure 1D, right panel). These results indicate that LiGluK2

receptor transition into the desensitized state is sufficient for its

reversible trapping at glutamatergic synapses.

KARs’ Desensitization-Dependent Synaptic
Immobilization Is Not Calcium Dependent
The lateral mobility of excitatory and inhibitory fast ligand-gated

receptors critically depends upon intracellular calcium concen-

tration (Bannai et al., 2009; Borgdorff and Choquet, 2002).

Thus, LiGluK2 synaptic immobilization could be caused by the

increase of cytosolic calcium from several different pathways:

(1) voltage-gated calcium channels (VGCCs) activated by

LiGluK2-induced depolarization; (2) NMDA receptors (NMDARs)

activated by spontaneous glutamate release concomitant to

LiGluK2-induced depolarization; (3) calcium-permeable AMPA

receptors (AMPARs) activated by spontaneous glutamate
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B Figure 1. Desensitized LiGluK2 Receptors Are

Reversibly Trapped at Glutamatergic Synapses

(A) Schematic of SPT experiments: 488 nm and 380 nm

light illumination was used to track receptors in the

closed (blue) and desensitized (purple) states, respec-

tively. A second 488-nm pulse induced recovery in the

closed state (gray). The protocol was repeated five times

every 2 min.

(B) Example trajectories (yellow) of the same individual

LiGluK2 receptor diffusing at synapses (Homer1c, red) in

the states described in (A). Scale bar, 1 mM.

(C and D) Summary of median diffusion coefficient

(±IQR), immobile fraction, and MSD versus time curves

of synaptic LiGluK2 (C) (ntrajectories = 140, in 10 neurons

from three independent cultures) and extrasynaptic

LiGluK2 (D) (ntrajectories = 250, in 10 neurons from three

independent cultures) in the closed, desensitized, and

recovery closed states.

(E) Schematic of SPT experiments as in (A), in the

continued presence of VGCC blockers (2-APB, D-APV,

u-conotoxin MVIIC, GYKI 53655, nifedipine, and rya-

nodine; black) delivered after the initial 488-nm illumi-

nation (blue).

(F) Example trajectories (yellow) of an individual LiGluK2

receptor diffusing over a portion of dendrite (green) in

the indicated states. Homer1c indicates synapses (red).

Scale bar, 1 mM.

(G and H) Summary of median diffusion coefficient,

immobile fraction, and MSD versus time curve of syn-

aptic (G) and extrasynaptic (H) LiGluK2 in different states

as indicated in (E) (ntrajectories: synaptic = 100; extra-

syaptic = 206).

Unless otherwise stated, data are presented as mean ±

SEM, *p < 0.05; **p < 0.01; ***p < 0.005; ns, non-signif-

icant. See also Figures S1 and S2.
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release; and (4) activated LiGluK2 receptor. To assess each

pathway, we sequentially applied nifedipine/u-conotoxin MVIIC,

D-APV, and GYKI 53655 to block L-/P-Q-/N-type VGCCs,

NMDARs, and AMPARs, respectively (Figures 1E and S1F). In

addition, we administered 2-APB and ryanodine to block

intracellular IP3Rs andRyRs calcium channels, respectively (Fig-

ure S1F). Notably, neither of these blockers reduced light-

induced LiGluK2 immobilization at synapses (Figure 1F) (median

diffusion coefficient: closed state = 0.014 mm2s1, IQR: 0.004–

0.026 mm2s–1; desensitized state = 0.003 mm2s–1, IQR: 0.001–

0.018 mm2s–1; ntrajectories = 100; p < 0.001, Mann-Whitney U

test; Figures 1G, left panel, and S1F; immobile fraction: closed

state = 0.33 ± 0.02; desensitized state = 0.62 ± 0.04; p <

0.001, Student’s t test; Figure 1G, middle panel). Consistently,

the inhibition of any of the four pathways did not affect light-

induced LiGluK2 synaptic confinement (MSD versus time curve

plateau; p < 0.01, Student’s t test at steady state; Figure 1G, right

panel; fraction of time spent at synapses: closed state, 68% ±

0.02%; desensitized state, 85% ± 0.02%; p < 0.01, Student’s

t test; number of transitions between extrasynaptic and synaptic

compartments: closed state = 2.39 ± 0.09; desensitized state =

1.95 ± 0.08; p < 0.001, Student’s t test; Figure S1G). Moreover,

such VGCC blockers failed to change the diffusion properties

of extrasynaptic LiGluK2 in the different conformational states

(median diffusion coefficient: closed state = 0.021 mm2s1, IQR:

0.006–0.056 mm2s�1; desensitized state = 0.022 mm2s�1, IQR:

0.003–0.06 mm2s�1; ntrajectories = 320; ns, Mann-Whitney U test;

Figure 1H, left panel; immobile fraction: closed state = 0.27 ±

0.01; desensitized state = 0.33 ± 0.01; ns, Student’s t test; Fig-

ure 1H, middle panel; MSD versus time curve plateau; ns, Stu-

dent’s t test at steady state; Figure 1H, right panel).

To exclude direct calcium entry through LiGluK2 receptors

(and/or through T- and R-type VGCCs), we removed calcium

from the extracellular solution. In extracellular nominal zero cal-

cium, UV light illumination caused similar synaptic LiGluK2

immobilization (Figure S1F). In contrast, in neurons expressing

LiGluK2 not tethered with the photoswitch maleimide-azoben-

zene-glutamate (MAG; see STAR Methods), hence unable to

be activated by light, the same illumination protocol previously

used to photoactivate LiGluK2 receptors failed to change the

diffusion of synaptic and extrasynaptic LiGluK2, indicating that

the reduction of LiGluK2 synaptic receptor lateral mobility was

not caused by UV-induced oxidative stress, which can alter cal-

cium homeostasis (Csordás and Hajnóczky, 2009) (diffusion co-

efficient synaptic LiGluK2: closed state = 0.015 mm2s�1, IQR:

0.005–0.036 mm2s�1; desensitized state = 0.016 mm2s�1, IQR:

0.005–0.034 mm2s�1; extrasynaptic LiGluK2: closed state =

0.021 mm2s�1, IQR: 0.005–0.059 mm2s�1; desensitized state =

0.020 mm2s�1, IQR: 0.005–0.050 mm2s�1, ntrajectories = 100; ns,

Mann-Whitney U test; Figure S1H).

Although the use of LiGluK2 receptors allows rapid and revers-

ible control of the KAR’s conformational state, it cannot be

excluded that receptor activation following UV illumination may

differ from that induced by the conventional binding of free gluta-

mate molecules. To address this point, we studied the diffusion

properties of LiGluK2 receptors during bath application of gluta-

mate (100 mM). Similarly to UV light exposure, bath application of

glutamate was able to reversibly immobilize LiGluK2 receptors at
4 Cell Reports 31, 107735, June 9, 2020
synapses and increase their confinement in the synaptic

compartment (median diffusion coefficient synaptic LiGluK2:

closed state = 0.011 mm2s�1, IQR: 0.004–0.032 mm2s�1; desen-

sitized state = 0.006 mm2s�1, IQR: 0.002–0.013 mm2s�1;

ntrajectories = 60; p < 0.01, Mann-Whitney U test; Figure S2A,

left; MSD versus time curve plateau; p < 0.01, Student’s t test

at steady state; Figure S2A, right) without affecting the mobility

of extrasynaptic receptors (median diffusion coefficient extrasy-

naptic LiGluK2: closed state = 0.018 mm2s�1, IQR: 0.007–

0.037 mm2s�1; desensitized state = 0.016 mm2s�1, IQR: 0.006–

0.039 mm2s�1; ntrajectories = 270; ns, Mann-Whitney U test; Fig-

ure S2B, left; MSD versus time curve plateau; ns, Student’s

t test at steady state; Figure S2B, right). Since LiGluK2 is a

mutated channel harboring the L439C amino acid (aa) substitu-

tion for the tethering of the photoswitch MAG, the functional

properties of LiGluK2 may potentially differ from that of WT

GluK2 receptors. To exclude this possibility, we studied the sur-

face mobility of overexpressed WT GluK2 receptors in response

to activation by glutamate. We found that the effects of bath ap-

plications of glutamate on GluK2 synaptic lateral diffusion were

indistinguishable from those observed in LiGluK2 (median diffu-

sion coefficient synaptic GluK2: closed state = 0.012 mm2s�1,

IQR: 0.003–0.028 mm2s�1; desensitized state = 0.006 mm2s�1,

IQR: 0.001–0.015 mm2s�1; ntrajectories = 64; p < 0.01, Mann-Whit-

ney U test; Figure S2C, left; MSD versus time curve plateau;

p < 0.01, Student’s t test at steady state; Figure S2C, right). In

line with the previous results obtained with LiGluK2, glutamate

activation did not change the mobility of extrasynaptic GluK2 re-

ceptors (median diffusion coefficient extrasynaptic GluK2:

closed state = 0.018 mm2s�1, IQR: 0.005–0.045 mm2s�1;

desensitized state = 0.019 mm2s�1, IQR: 0.005–0.046 mm2s�1,

ntrajectories = 360; ns, Mann-Whitney U test; Figure S2D, left;

MSD versus time curve plateau; ns, Student’s t test at steady

state; Figure S2D, right). These data demonstrate that LiGluK2

and GluK2 are similarly trapped at glutamatergic synapses after

activation and that their immobilization at synapses does not

depend on intracellular calcium.

Desensitization-Dependent LiGluK2 Synaptic
Immobilization Is Mediated by Interactions between
GluK2 C Terminus and N-Cadherins
GluK2 subunits bind the scaffold protein PSD-95 through a PDZ

binding motif at the GluK2 C-terminal domain (CTD) (Garcia

et al., 1998). Since scaffold proteins tune the lateral diffusion of

neurotransmitter receptors (Choquet and Triller, 2013), we hy-

pothesized that conformational changes induced by glutamate

binding may strengthen the interaction between LiGluK2 and

PSD-95, thus promoting LiGluK2 clustering at synapses. To

test this, we generated a mutated LiGluK2 (LiGluK2D4) lacking

the last four C-terminal residues (aa 905–908, ETMA), corre-

sponding to the PDZ binding site domain. Immunocytochemistry

experiments showed comparable intensity of HA-tagged

LiGluK2D4 and LiGluK2 synaptic clusters, indicating compara-

ble expression for these two receptors at excitatory synapses

(LiGluK2 = 134.2 ± 10.5 a.u., n = 20 cells, LiGluK2D4 = 138.2 ±

7.8 a.u., n = 24 cells; ns, Mann-Whitney U test) and similar den-

dritic cluster density (LiGluK2 = 0.072 ± 0.005 cluster/mm2,

LiGluK2D4 = 0.066 ± 0.008 cluster/mm2; ns, Mann-Whitney
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Figure 2. The LiGluK2 C-Terminal Domain Mediates the Desensitization-Induced Synaptic Immobilization of LiGluK2 Receptors

(A) Representative trajectories (yellow) of LiGluK2D4 in the closed, desensitized, and recovery closed states diffusing at glutamatergic synapses (red). Scale bar,

1 mM.

(B) Desensitization-induced LiGluK2D4 immobilization, similar to that of LiGluK2. Summary of median diffusion coefficient (±IQR) (left), immobile fraction (middle),

and the MSD versus time curve (right) of synaptic LiGluK2D4 in different activation states, similar to LiGluK2 (ntrajectories = 94, from 7 neurons; cf. Figure 1C).

(C) Representative trajectories (yellow) of surface LiGluK2D16 dynamics at synapses (red) as in (A). Scale bar, 1 mM.

(D) The deletion of the last 16 residues of LiGluK2 C-terminal domain prevents desensitization-induced receptor immobilization at synapses (cf. A and B)

(ntrajectories = 102, from 7 neurons).

(E) Trajectories (yellow) of an individual synaptic LiGluK2 in the indicated activation states upon overexpression of N-cadDE. Scale bar, 1 mM.

(F) Quantification of LiGluK2 surface dynamics as in (B), in the presence of N-cadDE (ntrajectories = 72, from 5 neurons).

Unless otherwise stated, data are presented as mean ± SEM, *p < 0.05; ***p < 0.005; ns, non-significant. See also Figure S3.
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U test; Figures S3A and S3B). The ETMA deletion did not affect

the expression of the postsynaptic scaffold Homer1c (LiGluK2 =

0.23 ± 0.04 cluster/mm2, LiGluK2D4 = 0.20 ± 0.04 cluster/mm2;

ns,Mann-Whitney U test; Figure S3B). In line with these observa-

tions, LiGluK2D4 and LiGluK2 receptors showed similar co-

localization with Homer1c (Figures S3A and S3B). In addition,

LiGluK2D4 receptor-mediated light-evoked currents were also

comparable to those of LiGluK2, indicating that the ETMA dele-

tion does not interfere with receptor gating properties (Fig-

ure S3C; cf. Figure S1A). SPT experiments revealed that the

lateral diffusion of closed LiGluK2D4 at synapsesmatched those

of LiGluK2 (compare Figures 1B and 2A) (median diffusion

coefficients in the close state: LiGluK2 = 0.016 mm2s�1, IQR:

0.004–0.033 mm2s�1; LiGluK2D4 = 0.014 mm2s�1, IQR: 0.006–

0.030 mm2s�1; immobile fraction: LiGluK2 = 0.27 ± 0.03,

LiGluK2D4 = 0.30 ± 0.02; see Figures 1C and 2B). Consistent

with the ETMA deletion not affecting the diffusion properties of

LiGluK2, the receptor immobilization produced by light-induced

desensitization of the LiGluK2D4 receptor was indistinguishable

with respect to that of WT LiGluK2 receptors (closed state =

0.014 mm2s�1, IQR: 0.006–0.030 mm2s�1, desensitized state =
0.009 mm2s�1, IQR: 0.002–0.017 mm2s�1; ntrajectories = 94 from

7 neurons; p < 0.0001, Mann-Whitney U test; MSD versus time

curve plateau; p < 0.01, Student’s t test at steady state; Figures

2A and 2B). The ETMA deletion also left unchanged the mobility

of extrasynaptic LiGluK2D4 receptors (median diffusion coeffi-

cient extrasynaptic LiGluK2D4: closed state = 0.02 mm2s�1,

IQR: 0.009–0.046 mm2s�1; desensitized state = 0.02 mm2s�1,

IQR: 0.009–0.048 mm2s�1; ntrajectories = 200; ns, Mann-Whitney

U test; Figure S3D;MSD versus time curve plateau; ns, Student’s

t test at steady state; Figure S3D).

To further investigate the role of the LiGluK2 C-terminal inter-

actions with the glutamatergic PSD in the light-induced LiGluK2

synaptic immobilization, we generated a secondmutant LiGluK2

receptor lacking aa 893–908 (LiGluK2D16; previously reported to

be unable to interact with N-cadherin), an adhesion protein that,

together with b-catenin, forms stable complexes at synapses

(Coussen et al., 2002; Fièvre et al., 2016). HA-tagged

LiGluK2D16 receptors showed reduced synaptic accumulation

compared to LiGluK2 (LiGluK2 = 101.5 ± 6.4 a.u., n = 48 cells,

LiGluK2D16 = 75.1 ± 7.1 a.u., n = 39 cells; p < 0.001, Mann-Whit-

ney U test; Figures S3E and S3F), thoughwith similar (1) dendritic
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density of the synaptic clusters (LiGluK2 = 0.045 ± 0.003 cluster/

mm2, LiGluK2D16 = 0.048 ± 0.004 cluster/mm2; ns, Mann-Whit-

ney U test; Figure S3F), (2) kinetics of light-evoked currents (Fig-

ure S3G), and (3) intensity and density of Homer1c puncta

(integrated intensity: LiGluK2 = 102.3 ± 38.1 a.u., LiGluK2D16 =

109.1 ± 42.2 a.u.; cluster density: LiGluK2 = 0.11 ± 0.006 cluster/

mm2, LiGluK2D16 = 0.12 ± 0.007 cluster/mm2; ns, Mann-Whitney

U test; Figure S3F). Importantly, the aa 893–908 (D16) deletion

abolished the desensitization-induced LiGluK2 immobilization

at synapses (LiGluK2D16: closed state = 0.020 mm2s�1, IQR:

0.012–0.034 mm2s�1; desensitized state = 0.020 mm2s�1, IQR:

0.010–0.039 mm2s�1; ntrajectories = 102 from 7 neurons; ns,

Mann-Whitney U test; Figures 2C and 2D). The mobility of extra-

synaptic LiGluK2D16 receptors was not affected by the D16

deletion (median diffusion coefficient extrasynaptic LiGluK2D16:

closed state = 0.02 mm2s�1, IQR: 0.008–0.043 mm2s�1; desensi-

tized state = 0.022 mm2s�1, IQR: 0.006–0.051 mm2s�1;

ntrajectories = 250; ns, Mann-Whitney U test; Figure S3H; MSD

versus time curve plateau; ns, Student’s t test at steady state;

Figure S3H). These data indicate that the interaction of aa 893–

908 of the GluK2 subunit CTD with the glutamatergic PSD is

crucial the for the desensitization-induced immobilization of

LiGluK2 receptors at glutamatergic synapses. Next, we consid-

ered the possibility that the functional interaction between

LiGluK2 and the postsynaptic glutamatergic scaffold could be

mediated by N-cadherins. To test this hypothesis, we took

advantage of N-cadDE, a dominant-negativemutant that impairs

endogenous N-cadherin function (Garcia et al., 2015; Togashi

et al., 2002) by preventing the binding between GluK2 and

N-cadherins. Immunocytochemical experiments in neurons

overexpressing N-cadDE revealed a decreased N-cadherin

immunoreactivity at glutamatergic synapses, as compared to

control neurons in which only endogenous N-cadherin was pre-

sent (integrated fluorescence intensity: control = 522.6 ± 5.1

a.u.; N-cadDE = 380 ± 6.1.2 a.u.; p < 0.05, Mann-Whitney U

test; percentage of co-localization with Homer1c: WT = 19.5 ±

1.2, n = 50 cells; N-cadDE = 13.8 ± 1.1, n = 40 cells; p < 0.005,

Mann-Whitney U test; Figures S3I and S3J), thus confirming

that in our experimental conditions, N-cadDE was indeed acting

as a dominant negative. Next, we probed the effect of N-cad-

herin dominant negative on LiGluK2 surface expression by

immunocytochemistry. As shown in Figure S3K, N-cadDE over-

expression decreased the accumulation of LiGluK2 receptors at

synapses as compared to control conditions (synaptic LiGluK2

integrated intensity: control = 82.5 ± 5.3 a.u., n = 46 cells; N-Cad-

DE = 52.8 ± 5.3 a.u., n = 31; p < 0.001, Mann-Whitney U test; Fig-

ure S3L) without affecting the dendritic density of LiGluK2 clus-

ters and the intensity and dendritic density of Homer1c

clusters (Homer integrated fluorescence intensity: control =

98.7 ± 2.8 a.u.; N-cadDE = 99.8 ± 4.4 a.u.; ns, Mann-Whitney

U test; density of Homer clusters: control = 0.22 ± 0.01 clus-

ters/mm2; N-cadDE = 0.24 ± 0.01 clusters/mm2; ns, Mann-Whit-

ney U test; Figure S3L) and the kinetics of the light-activated

current (Figure S3M).

In a following set of experiments, we aimed at assessing

LiGluK2 surfacemobility upon impairment of N-cadherin activity.

SPT experiments showed that the N-cadDE overexpression pre-

vented the synaptic immobilization of LiGluK2 induced by
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receptor desensitization (closed state = 0.019 mm2s�1, IQR:

0.009–0.042 mm2s�1; desensitized state = 0.020 mm2s�1, IQR:

0.010–0.031 mm2s�1; ns, Mann-Whitney U test; ntrajectories = 70

from 5 neurons; Figures 2E and 2F). In line with previous results,

the N-cadDE mutant did not alter the diffusion of extrasynaptic

LiGluK2 receptors (median diffusion coefficient extrasynaptic

LiGluK2: closed state = 0.023 mm2s�1, IQR: 0.008–

0.054 mm2s�1; desensitized state = 0.022 mm2s�1, IQR: 0.008–

0.058 mm2s�1; ntrajectories = 195; ns, Mann-Whitney U test; MSD

versus time curve plateau; ns, Student’s t test at steady state;

Figure S3N). Thus, the LiGluK2 C terminus (aa 893–908) and

N-cadherins play an important role in the activation-dependent

trapping of LiGluK2 receptors at postsynaptic sites.

In subsequent coimmunoprecipitation experiments, we inves-

tigated the molecular interaction between LiGluK2 and the

N-cadherin/b-catenin complex. Cadherins are a large family of

adhesion proteins showing highly variable synapse-specific

expression, typically directly binding b-catenin (Jou et al.,

1995). In order to benefit from high antibody specificity, we

focused on tagged proteins (i.e., HA-tagged LiGluK2 and HA-

GluK2, along with N-cadDE-myc). We found that HA-LiGluK2

receptors coimmunoprecipitated with b-catenin, whereas no

interaction was observed between HA-LiGluK2 and b-catenin

in conditions of N-cadDE-myc overexpression or between HA-

LiGluK2D16 and b-catenin (Figure 3A). In line with the results ob-

tained with HA-LiGluK2, the WT HA-tagged GluK2 receptor also

coimmunoprecipitated with b-catenin (as already demonstrated

by Coussen et al., 2002) and failed to interact with b-catenin

upon N-cadDE-myc overexpression (Figure 3A). Next, we as-

sessed whether the interaction of GluK2 with the N-cadherin/

b-catenin complex could be modulated by the induction of re-

ceptor activation/desensitization by glutamate binding. In the

presence of glutamate 100 mM, the amount of HA-GluK2 coim-

munoprecipitated with b-catenin was significantly increased

with respect to control conditions, both in the presence and

the absence of calcium (Figures 3B and 3C). These biochemical

data nicely corroborate the results obtained with the SPT exper-

iment and reinforce the hypothesis that the LiGluK2 synaptic

immobilization upon activation/desensitization is mediated by

receptor state-dependent molecular interactions with the

N-cadherin/b-catenin complex expressed at glutamatergic syn-

aptic sites. Furthermore, we demonstrate that LiGluK2 and

GluK2 similarly interact with the key proteins of the glutamatergic

PSD, N-cadherin/b-catenin.

Desensitization-Dependent LiGluK2 Synaptic
Immobilization Affects KAR-Mediated Responses
Previous works have demonstrated that the mobility of synaptic

glutamate receptors significantly impacts the amplitude of gluta-

matergic synaptic currents (Constals et al., 2015; Heine et al.,

2008). Indeed, the fast exchange of desensitized AMPARs with

a pool of naive extrasynaptic/perisynaptic receptors significantly

reduces the accumulation of desensitization during repetitive

activation of synaptic receptors. We reasoned that while the

immobilization of KARs at synapses by glutamate binding would

determine a higher susceptibility to desensitization of KAR-

mediated components of EPSCs, conversely, the lack of

LiGluK2 immobilization after receptor activation/desensitization
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Figure 3. N-Cadherin/b-Catenin Complex Associates with the C-Terminal Domain of LiGluK2

(A) Left: coimmunoprecipitation experiment showing the interaction between HA-LiGluK2 and the b-catenin/N-cadherin complex. Cell lysates from HEK293 cells

transfected with Li-GluK2 alone, LiGluK2 along with N-cadDE-myc, or HA-LiGluK2D16 were immunoprecipitated with the anti-HA antibody and immunoblotted

with anti-HA, anti-b-catenin, and anti-myc antibodies. b-catenin co-precipitates with HA-LiGluK2 transfected alone, but not with HA-LiGluK2 cotransfected along

with the dominant-negative N-cadDE-myc. b-catenin fails to interact with the mutant receptor HA-LiGluK2D16. Right: coimmunoprecipitation experiment

showing the interaction between HA-GluK2 and the b-catenin/N-cadherin complex. Cell lysates from HEK293 cells transfected with GluK2 alone or GluK2 along

with N-cadDE-myc were immunoprecipitated and immunoblotted. b-catenin co-precipitates with HA-GluK2, similarly to full-length HA-LiGluK2. The dominant-

negative N-cadDE-myc prevents the interaction of b-catenin with HA-GluK2. Note that the presence of N-cadDE-myc in the supernatants (S) indicates that it does

not interact with full-length LiGluK2 and GluK2 receptors.

(B) Glutamate enhances the coprecipitation of HA-LiGluK2 with b-catenin. Anti-HA immunoprecipitation (IP) in the control condition (ctrl) and upon receptor

desensitization with glutamate 100 mM (glu) in the presence or absence of calcium. The ‘‘input’’ represents 10% of the total extract before the IP.

(C) Quantification of the co-precipitation experiments described in (B). Effect of glutamate on b-catenin co-IP with LiGluK2 in the presence (top) or absence

(bottom) of calcium. Bar plots represent IP b-catenin signal normalized to HA-LiGluK2 signal (left) or to b-catenin input (right). n = 6.

Data are presented as mean ± SEM, *p < 0.05.
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in LiGluK2D16 and N-cadDE conditions could reduce the synap-

tic KARs’ desensitization. To investigate this, we performed laser

photolysis of caged glutamate (MNI-Glu) in diffraction-limited

spots to elicit uncaging currents (uEPSCs) at individual glutama-

tergic synapses identified by Homer1c-DsRed overexpression.

With this approach, we elicited six consecutive uEPSCs (at

20 Hz) in hippocampal neurons expressing LiGluK2D16 or

N-cadDE/LiGluK2 and compared the current amplitudes with

those obtained from LiGluK2-expressing neurons with the

same stimulation protocol (Figures 4A–4C). We found that

uEPSCs in both LiGluK2D16- and N-cadDE/LiGluK2-expressing

neurons exhibited less desensitization with respect to control

neurons expressing LiGluK2 (at pulse 2: LiGluK2: 62.9% ±

1.7%, n = 21 cells; LiGluK2D16: 40.9% ± 4.0%, n = 12 cells;

N-cadDE/LiGluK2: 40.3% ± 4.0%, n = 16 cells; p < 0.0001,

Mann-Whitney U test; Figure 4D, left panel). These results are

in agreement with the hypothesis that in LiGluK2D16- and

N-cadDE-expressing neurons, the higher mobility of synaptic

LiGluK2 favors the dispersal of desensitized receptors and the

insertion of ready-to-be-activated receptors at the synapse. To

confirm this hypothesis, we repeated the same experiments

upon the LiGluK2 receptor cross-link (X-link) procedure, where

receptors are immobilized by binding a molecular mesh of pri-

mary and secondary antibodies (Ashby et al., 2006; Bats et al.,

2007; Heine et al., 2008). In LiGluK2D16- and N-cadDE-express-

ing neurons, the X-link protocol reverted the extent of uEPSCs’

desensitization to values observed in LiGluK2-expressing neu-

rons (Figures 4A–4C, red traces; at pulse 2: 60.0% ± 1.9%, n =

14; 60.6% ± 2.9%, n = 13; 63.3% ± 2.8%, n = 16, for LiGluK2,

LiGluK2D16, and N-cadDE, respectively; ns, Mann-Whitney U

test; Figure 4D, right panel). Of note, in control LiGluK2-trans-

fected neurons, the X-link protocol did not affect the extent of

desensitization of uEPSCs (Figures 4A and 4D, black bars).
Activity-Dependent LiGluK2 Synaptic Immobilization
Affects the Kinetics of Mixed AMPAR/KAR-Mediated
Synaptic Responses
In a previous study, glutamate binding has been shown to in-

crease AMPAR lateral mobility (Constals et al., 2015), an oppo-

site paradigm with respect to that reported here for KARs. Since

the presence of both AMPARs and KARs at glutamatergic syn-

apses leads to the generation of mixed AMPAR-KAR EPSCs

(Castillo et al., 1997; Vignes and Collingridge, 1997; Bureau

et al., 2000; Cossart et al., 2002; Frerking et al., 1998; Kidd

and Isaac, 1999), we hypothesized that during repetitive stimula-

tions, the fraction of KAR-mediated components would be more

susceptible to desensitization with respect to the AMPAR-medi-

ated one due to the KARs’ immobilization at synapses after

glutamate binding. In particular, taking into account that

AMPARs and KARs mediate fast and slow EPSCs, respectively

(Frerking and Ohliger-Frerking, 2002), such an increase of the

AMPAR-KAR ratio should lead to faster kinetics of mixed

AMPA-KA EPSCs. To address this issue, in order to avoid

possible distortions of uEPSC kinetics due to slow glutamate

clearance, we studied synaptic AMPAR-KAR currents evoked

by extracellular stimulation of hippocampal principal cells in

the presence of 50 mM D-APV and 10 mM bicuculline. As ex-

pected, in untransfected neurons, evoked EPSCs (eEPSCs)

were purely AMPAR-mediated currents with fast decay kinetics

(t = 1.3 ± 0.1ms; Figures 5A, black, and S4A, black). On the other

hand, in LiGluK2-expressing neurons, mixed AMPAR-KAR

eEPSCs exhibiting fast and slow decay kinetics were best fitted

with a double exponential function (tfast = 1.1 ± 0.1 ms, tslow =

24.5 ± 3.8 ms; n = 33; Figure 5A, blue), while the rise time was

similar to that of pure AMPAR-mediated eEPSCs (Figure S4A).

The application of the AMPAR blocker GYKI 53655 revealed

the presence of a KAR-mediated eEPSC component with decay
Cell Reports 31, 107735, June 9, 2020 7
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Figure 4. Increased Synaptic LiGluK2 Receptor Mobility Affects

Glutamatergic Synaptic Currents

(A) Top: stimulating protocol: train of 6 brief (0.8 ms) consecutive UV light

pulses at 20 Hz to uncage MNI-glutamate. Bottom: representative traces of

LiGluK2-mediated uEPSCs in control (left) and X-link conditions (right).

(B) Representative traces of uEPSCs mediated by LiGluK2D16 in control (left)

and X-link conditions (right).

(C) Representative traces of uEPSCs evoked in N-cadDE/LiGluK2-expressing

neurons in control (left) and X-link conditions (right).

(D) Left: the percentage of desensitization of uEPSCs is larger in LiGluK2-

(black) expressing neurons than in LiGluK2D16- (gray) and N-cadDE/LiGluK2-

(cyan) expressing neurons. Right: percentage of desensitization of synaptic

uEPSCs as on the left, upon receptor X-link. Receptor immobilization by X-link

did not change the control (LiGluK2) currents but reverted the desensitization

of currents evoked in LiGluK2D16- and N-cadDE/LiGluK2-expressing neurons

to control values.

Data are presented as mean ± SEM, *p < 0.05; ns, non-significant.
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kinetics similar to the tslow quantified in the mixed AMPAR-KAR

eEPSCs (t = 36.3 ± 4.4 ms; n = 11; Figure 5B, blue) that was fully

blocked by CNQX (25 mM). The overexpression of LiGluK2D16
8 Cell Reports 31, 107735, June 9, 2020
instead of LiGluK2 did not affect the properties of KAR-mediated

currents. Indeed, mixed AMPAR-KAR-mediated eEPSCs

involving the activation of LiGluK2D16 exhibited kinetics compa-

rable to that observed in the presence of LiGluK2WT (Figure 5A).

Moreover, in the presence of GYKI, eEPCS in LiGluK2-

and LiGluK2D16-expressing neurons had similar decay kinetics

(t = 36.3 ± 4.4, t = 33.9 ± 4.1 ms, for LiGluK2 and LiGluK2D16,

respectively; ns, Mann-Whitney U test; Figure 5B), rise time

(2.8 ± 0.4 ms, 3 ± 0.3 ms; n = 11 and n = 8, respectively; ns,

Mann-Whitney U test; Figure S4B), and amplitude (22 ± 2 pA,

20.5 ± 3 pA, for LiGluK2 and LiGluK2D16, respectively; ns,

Mann-Whitney U test; Figure S4B).

It has been shown that the protein Neto-2 (neuropilin tolloid-

like 2) confers slow decay kinetics to KAR currents (Straub

et al., 2011), including those mediated by recombinant homo-

meric GluK2 receptors (Zhang et al., 2009). Since Neto2 has

been reported to be expressed at negligible levels in cultured

neurons (Mahadevan et al., 2015; Palacios-Filardo et al.,

2016; Vernon and Swanson, 2017), we co-transfected with

LiGluK2 along with Neto2. However, the presence of Neto2

failed to further slow the decay kinetics of evoked synaptic cur-

rents mediated by LiGluK2 receptors (Figure S5A). Thus, we

decided to study the expression of Neto2 in our hippocampal

cultures by using a biochemistry approach. Interestingly, we

found that the expression of Neto2 is developmentally regu-

lated: high at early stages (day in vitro [DIV] 7) and progressively

downregulated (from DIV 14 to DIV 28; Figure S5B). Such a

temporal profile of Neto2 expression in cultured neurons can

account for the slow kinetics of KAR-mediated synaptic cur-

rents observed in our experiments at DIV 14 and 15 and can

provide an explanation for the lack of effect of Neto2 overex-

pression on the GluK2-mediated currents’ decay kinetics. We

then studied the kinetics of mixed AMPAR-KAR eEPSCs before

and 50 ms after the application of a depolarization train (1 s at

the frequency of 100 or 50 Hz; see STAR Methods) aimed at

inducing massive desensitization of both synaptic AMPARs

and KARs (Figure 5C). Interestingly, in neurons transfected

with LiGuK2, the desensitizing train induced a significant accel-

eration of the mixed AMPA-KAR EPSCs’ decay kinetics

(tweighted before train: 2.4 ± 0.3 ms; tweighted after train: 1.7 ±

0.2 ms; n = 21, p < 0.001, paired Wilcoxon test; Figure 5D,

left), indicating that the KAR-mediated component preferen-

tially desensitized with respect to that mediated by AMPAR.

Moreover, we computed that after the train, the relative contri-

bution of the KAR component was decreased in favor of the

AMPAR component (KAR before = 7.3% ± 1.1%, after =

3.7% ± 0.7%; n = 21, p < 0.001, paired Wilcoxon test; Fig-

ure 5D, right). Interestingly, LiGluK2D16 transfection prevented

the acceleration of EPSCs’ decay induced by the desensitizing

train, as quantified by comparable time constants before and

after the protocol (tweighted before train = 2.2 ± 0.3 ms; tweighted

after train: 2.6 ± 0.4 ms; n = 21, paired Wilcoxon test, p > 0.05;

Figure 5E), as well as the unaffected relative contribution of the

KAR component (KAR before = 5.4% ± 1.0%, after = 7.2% ±

1.4%; paired Wilcoxon test, p > 0.05; Figure 5F). In a control

experiment, we applied the same protocol to pure AMPA-medi-

ated eEPSCs (in untransfected neurons), and we observed no

differences in the decay kinetics before and after the train
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B Figure 5. The Mobility of Desensitized

KARs Affects the Kinetics of Mixed AM-

PAR/KAR-Mediated Currents

(A) Left: scatter dot plot of decay time constants (t)

of eEPSCs mediated by AMPA and mixed AMPA/

LiGluK2 receptors in neurons expressing only

endogenous AMPARs (untransfected, black) or

expressing LiGluK2 (blue) or LiGluK2D16 (green).

Right: representative averaged traces of eEPSCs

mediated by AMPARs, AMPA/LiGluK2 receptors,

and AMPA/LiGluK2D16 receptors. Note that for

visualization purposes, the stimulation artifacts of

black and green traces have been omitted.

(B) Scatter dot plot of decay time constants (t) of

eEPSC mediated by LiGluK2 (blue) or LiGluK2D16

receptors (green) recorded in the presence of

GYKI 53655 (left) and corresponding normalized

representative traces (right).

(C) Top: representative AMPA/LiGluK2 receptors-

mediated mixed eEPSCs recorded before and

after the delivery of the desensitizing train. Bot-

tom: magnification of the framed areas showing

AMPA/LiGluK2 receptors-mediated mixed eEPSC

before, during, and after the train. Inset: super-

imposed normalized slow component of mixed

eEPSC decay before (black) and after (blue) the

train, showing acceleration in the ‘‘after’’ current.

(D) Left: weighted time constant (tweighted) of mixed

eEPSC before and after the train. Right: relative

weight of the AMPAR and LiGluK2 components

in AMPA/LiGluK2 receptors-mediated mixed

eEPSCs before and after the train. Please note that

after the desensitizing train, current decay kinetics

was accelerated, the AMPAR-mediated compo-

nent increased, and the KAR-mediated compo-

nent decreased.

(E) Top: representative traces of AMPA/LiGluK2-

D16 receptors-mediatedmixed eEPSC before and

after the desensitizing train. Bottom:magnification

as in (C). Inset: superimposed normalized slow

component of mixed AMPA/LiGluK2D16 eEPSC

before (black) and after (green) the train.

(F) Left: weighted time constant (tweighted) of

AMPA/LiGluK2D16 mixed eEPSC before and after

the train, indicating unchanged current decay ki-

netics. Right: unaffected relative weight of AMPAR

and KAR components in AMPA/LiGluK2D16

mixed eEPSCs before and after the train.

Data are presented as mean ± SEM, ***p < 0.001;

ns, non-significant. See also Figure S4.
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(t before: 1.3 ± 0.1 ms; t after: 1.3 ± 0.1 ms; n = 9, ns, paired

Wilcoxon test; Figures S4C and S4D). Along the same line, we

found that the amplitude of KAR-EPSCs pharmacologically iso-

lated by using GYKI 10 mM was dramatically reduced 50 ms af-

ter the desensitizing train (before: 26.5 ± 2.5 pA; after: 6.2 ±

0.8 pA; n = 6, p < 0.005, paired Wilcoxon test; Figures S4E

and S4F), thus confirming the LiGluK2-mediated currents un-

dergo profound desensitization after such stimulation. In

contrast in the same conditions, the amplitude of KAR-EPSCs

upon transfection with LiGluK2D16 was slightly (but not

significantly) reduced (before: 27.8 ± 5.0 pA; after: 20.4 ±

5.6 pA; n = 6, ns, paired Wilcoxon test; Figures S4G and

S4H). These data indicate that during repetitive synaptic activa-
tion, the regulation of KARs’ lateral mobility by glutamate bind-

ing can shape the extent of the KAR-mediated component,

thus modulating the kinetics of mixed AMPA-KAR EPSCs.

To provide a quantitative analysis of the relation between the

desensitization of KAR-mediated currents and KARs’ lateral

mobility, we performed computer modeling. This approach

was used to estimate (1) the probability of KARs to exchange

between the synaptic and the extrasynaptic compartments, de-

pending on their diffusion coefficient in a realistic synaptic envi-

ronment, and (2) the impact of such receptor exchange rate in

the accumulation of desensitization of KAR-mediated EPSCs

(see STAR Methods). Receptor diffusion coefficients imposed

in the simulations were those quantified in SPT experiments
Cell Reports 31, 107735, June 9, 2020 9
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when LiGluK2 receptors were either in the closed (D =

0.016 mm2s�1, ‘‘highmobility’’) or in the open/desensitized states

(D = 0.003 mm2s�1, ‘‘low mobility’’) (Figure S6A; STAR Methods).

Interestingly, ‘‘synaptic’’ receptors exchanged with the ‘‘extra-

synaptic’’ naive receptors with probability p = 0.41 or p = 0.09,

when considering the ‘‘high mobility’’ (closed receptor) or the

‘‘low mobility’’ (open/desensitized receptor) conditions, respec-

tively (Figure S6A; STAR Methods). When the KAR gating was

simulated according to a kinetic model (Figure S6B), the reduced

‘‘exchange probability’’ observed for ‘‘low mobility’’ receptors

resulted in a significantly higher desensitization of simulated

KAR-EPSCs 50 ms after a 100-Hz train (Figures S6C and S6D).

These results indicate that the differences of KAR synaptic diffu-

sion coefficients in the different KAR conformational states with

SPT technique play an important role in the EPSCs’ short-term

plasticity.

DISCUSSION

In the present study, we provide a causal link between the gating

and diffusion properties of synaptic KARs. In particular, we show

that the entry of the LiGluK2 receptor in the open/desensitized

state caused the rapid immobilization of LiGluK2 receptors at

synapses. While the use of light allows the specific and fast con-

trol of LiGluK2 receptors, it is possible that the conformational

change induced by light would differ from that induced by con-

ventional glutamate binding. However, in addition to a previous

study showing that LiGluK2 recapitulates the main features of

GluK2 receptor gating (Reiner and Isacoff, 2014), we showed

that a similar receptor immobilization at synapses was observed

either with LiGluK2 activated by light or GluK2 activated by gluta-

mate. Moreover, we observed comparable effects when both

LiGluK2 and GluK2 were activated by glutamate. Thus, the po-

tential differences between LiGluK2 (light activated) and GluK2

(glutamate activated) or between LiGluK2 and GluK2 activated

by glutamate do not seem to interfere in their open/desensi-

tized-induced trapping at glutamatergic synapses.

Our data show that the desensitization-dependent immobili-

zation of LiGluK2 at synapses is unaffected by the deletion of

the GluK2 C-terminal PDZ-interacting domain (ETMA), indicating

that this phenomenon is unlikely to occur through GluK2 interac-

tionswith PSD-95, GRIP, and PICK1 proteins (Garcia et al., 1998;

Hirbec et al., 2003). In contrast, such immobilization was abol-

ished by the deletion of theGluK2C terminus last 16 aa, a protein

portion previously shown to interact with the N-cadherin/b-cate-

nin complex (Coussen et al., 2002; Fièvre et al., 2016) that local-

izes at glutamatergic synapses (Uchida et al., 1996; Bamji, 2005;

Mendez et al., 2010; Okuda et al., 2007). In line with this, the

overexpression of N-cadherin dominant-negative mutants also

abolishes the glutamate-dependent GluK2 synaptic trapping.

These data, together with the observation that the interaction be-

tween GluK2 and b-catenin is increased in the presence of gluta-

mate, allowed us to propose amodel whereby glutamate binding

to GluK2 induces the rearrangement of the GluK2 CTD, thus

increasing its affinity for the N-cadherin/b-catenin complex and

consequently promoting the immobilization of LiGluK2 receptors

at synapses. While agonist-induced changes of the CTD confor-

mation has been previously demonstrated at NMDARs and
10 Cell Reports 31, 107735, June 9, 2020
AMPARs (Dore et al., 2015; Zachariassen et al., 2016; Ferreira

et al., 2017), at KARs, several studies have only focused on the

interaction of the GluK2 CTD with intracellular proteins without

considering the role of possible agonist-induced alterations of

the CTD structure and interactions (Coussen et al., 2002; Mara-

schi et al., 2014). Other X-ray crystallography and cryo-EM

studies have shown major GluK2 structural rearrangements

following desensitization at the level of the ligand binding domain

(LBD), leaving the potential changes of the GluK2 CTD during re-

ceptor opening/desensitization unaddressed (Meyerson et al.,

2016; Møllerud et al., 2017). Therefore, at this stage, it cannot

be excluded that in addition to the CTD, the functional interaction

between the activatedGluK2 andN-cadherin/b-catenin complex

may be mediated by the interaction of the GluK2 LBD (known to

undergo heavy rearrangements during receptor activation and

desensitization) with the extracellular domain of N-cadherin.

Likewise, the present data are compatible with the additional hy-

pothesis that other KAR scaffold/accessory proteins could

participate in the GluK2 binding with N-cadherin/b-catenin.

In our uncaging experiments, we observed that the activation-

induced interaction of GluK2 with N-cadherin/b-catenin (which

immobilizes KARs at synapses) plays a role in tuning the extent

of current desensitization. Importantly, in mutants with impaired

GluK2-N-cadherin/b-catenin interaction (thus lacking activation-

induced KAR immobilization and showing a reduced current

desensitization), the receptor immobilization by X-link restored

the extent of current desensitization to the control values

observed with WT LiGluK2. Surprisingly, the X-link of WT

LiGluK2 did not affect the extent of desensitization of KAR-medi-

ated uncaging currents. This result might appear in contrast with

the general paradigm that the regulated mobility of desensitized

receptors canmodulate the accumulation of current desensitiza-

tion, as demonstrated here in physiological experiments study-

ing KAR-mediated synaptic currents and in other studies with

different receptors (AMPAR and GABAAR) (Heine et al., 2008;

de Luca et al., 2017). However, it has to be noted that in the

experimental conditions with impaired GluK2-N-cadherin/b-cat-

enin interaction (LiGluK2-D16 and LiGluK2/N-cadDE), KARs

exhibit an overall higher mobility as compared to WT LiGluK2 re-

ceptors, particularly in the open/desensitized state. This implies

that the effect of the X-link protocol is clearly sizable in the mu-

tants whereby the open/desensitized KAR diffusion coefficient

is high; conversely, it can be reasoned that the lower mobility

of open/desensitized WT LiGluK2 makes the additional immobi-

lization induced by the X-link moderate, supporting the possibil-

ity that changes of WT current desensitization are poorly detect-

able. Additionally, the effect of the X-link protocol on the extent of

desensitization of WT-LiGluK2 uncaging currents might be hin-

dered by several factors, including (1) the relatively low spatial

resolution of the uncaging technique and (2) the possible lower

segregation of overexpressed KARs at synapses as compared

to AMPARs and GABAARs.

A previous study has identified the regulated diffusion of KARs

at synapses as a determinant for long-term plasticity (Carta et al.,

2013). Here, we demonstrate that the immobilization of desensi-

tized LiGluK2 at synapses modulates the kinetics of KAR-medi-

ated EPSCs, therefore implicating KARs’ synaptic mobility also

in glutamatergic short-term synaptic plasticity. In particular, we
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demonstrate that the immobilization of open/desensitized KARs

occurs through increased GluK2 interaction with the N-cadherin/

b-catenin complexes. In a similar although opposite paradigm,

desensitized AMPARs increase their diffusion at synapses

through reduced AMPAR interactions with the stargazin-

PSD95 complex (Constals et al., 2015). The different players

involved in the synaptic trapping of KARs and AMPARsmay pro-

vide the molecular basis for the distinct action of desensitization

on the lateral mobility of these two ionotropic receptors at gluta-

matergic synapses. We demonstrate that during sustained syn-

aptic activity, this opposite regulation of AMPARs’ mobility can

tune the relative weight of AMPAR- and KAR-mediated compo-

nents in mixed AMPAR-KAR EPSCs by reducing the KAR-medi-

ated slow component in favor of the AMPAR-mediated fast

component. In these conditions, the time window for synaptic

input integration is regulated by the degree of synaptic KAR

desensitization that, in turn, is modulated by the frequency of

synaptic activity. This emphasizes that the interplay between

the desensitization and lateral mobility of AMPARs and KARs

represents a form of integrated short-term plasticity at glutama-

tergic synapses expressing AMPAR-KAR.
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Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Andrea

Barberis (andrea.barberis@iit.it).

Materials Availability
All unique/stable reagents generated in this study are available from the Lead Contact with a completed Materials Transfer

Agreement.

Data And Code Avalability
The code generated during this study is available at github: https://github.com/thierrynieus/Kainate-receptor-activation-

shapes-short-term-synaptic-plasticity-by-controlling-receptor-lateral-mo.

Original full-length images of western blot experiments have been deposited to Mendeley Data, https://doi.org/10.17632/

9p5bgckkyh.1

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Primary neuronal cultures
All experiments have been approved by the Italian Ministry of Health (authorization 079 2015) and by the IIT animal welfare body. The

experiments have been carried out in accordance with the guidelines established by the European Directive (2010/63/EU of 22

September 2010), and by the national legislation (D.Lgs.26/2014). Primary cultures of hippocampal neurons were prepared from

P0-P1 C57BL/6J mice of either sex as previously published (de Luca et al., 2017). The animal were housed in 12:12 hr light-dark cir-

cles in individually ventilated cages. Neurons were plated at a density of 60 3 103 cells/cm2 on poly-D-lysine pre-coated coverslips

and kept in Neurobasal-A medium (Thermo Fisher, Italy) supplemented with B-27 (Thermo Fisher, Italy) 2%, Glutamax 1% (Thermo

Fisher, Italy) and gentamycin 5 mg/ml (Sigma) at 37�C in 7.4% CO2. All the experiments were performed at Days In Vitro (DIV) 14-17.
Cell Reports 31, 107735, June 9, 2020 e2

mailto:andrea.barberis@iit.it
https://github.com/thierrynieus/Kainate-receptor-activation-shapes-short-term-synaptic-plasticity-by-controlling-receptor-lateral-mo
https://github.com/thierrynieus/Kainate-receptor-activation-shapes-short-term-synaptic-plasticity-by-controlling-receptor-lateral-mo
https://doi.org/10.17632/9p5bgckkyh.1
https://doi.org/10.17632/9p5bgckkyh.1
https://www.moleculardevices.com/Products/Software/Meta-Imaging-Series/MetaMorph.html
https://www.moleculardevices.com/Products/Software/Meta-Imaging-Series/MetaMorph.html
https://www.moleculardevices.com/products/software/pclamp.html
https://www.moleculardevices.com/products/software/pclamp.html
https://www.moleculardevices.com/products/software/pclamp.html
https://www.moleculardevices.com/products/software/pclamp.html
https://www.mathworks.com/products/matlab
https://www.graphpad.com/
https://kyenslab-inc.software.informer.com/
https://www.python.org


Article
ll

OPEN ACCESS
Cell lines
Human Embrionic Kidney 293T cells (ATCC) were cultured at 37�C in 5% CO2 in DMEM (Thermo Fisher, Italy) medium containing

10% fetal bovine serum (Thermo Fisher, Italy) and penicillin/streptomycin (EuroClone).

METHOD DETAILS

Plasmid constructs
The pTR-hSynGrik2-L439C-GFP plasmid (LiGluK2 plasmid) was kindly provided by Prof. E. Isacoff (Berkeley University of California).

The HA-LiGluK2 was obtained by inserting the Hemagglutinin (HA) sequence at the fourth amino acid of the pTR-hSyn Grik2-L439C-

GFP. Please note that throughout the text, the resulting HA-LiGluK2-GFP plasmid was referred to as HA-LiGluK2. HA-GluK2 was

obtained by retromutation of the cysteine 439 of the HA-LiGluK2 to a lysine, as found in the wild-type GluK2. HA-LiGluK2D4 and

HA-LiGluK2D16 were obtained by deleting the last 4 residues (ETMA) or the last 16 residues (MHTFNDRRLPGKETMA) from the

HA-LiGluK2 plasmid, respectively. All the aforementioned plasmid editings were performed with the QuickChange II Site-Directed

Mutagenesis Kit (Agilent). The N-cadherinDE-myc construct was a gift from Prof. O. Thoumine (University of Bordeaux-2). Neto2

plasmid was kindly provided by Prof. S. Tomita (Yale University). Homer1c-DsRed plasmid (kindly provided by Prof. D. Choquet) en-

codes for DsRed at the N terminus of Homer1c (Petrini et al., 2009). All constructs were verified by DNA sequencing.

Transfection
Hippocampal neurons were transfected at DIV 7 using Effectene (QIAGEN, Germany) following the manufacturer’s protocol.

HEK293T were transfected with the plasmids of interest using Lipofectamine 2000 (Thermo Fisher, Italy) according tomanufacturer’s

protocol.

Light-gated glutamate receptors (LiGluK2)
Light-Gated Glutamate receptors (LiGluK2), developed by the Isacoff Lab (Volgraf et al., 2006) consist of an engineered kainate re-

ceptor to bind the photoswitchable tethered ligand (PTLs) maleimide-azobenzene-glutamate (MAG). In particular, the ligand gluta-

mate is linked to azobenzene that can reversibly photoisomerize between a trans and cis configuration in response to illumination with

light at different wavelengths (380 nm and > 460 nm, respectively) (Gorostiza and Isacoff, 2008). Azobenzene, in turn, is anchored to a

mutated cysteine introduced into the ligand-binding domain (LBD) of GluK2 receptor through the cysteine-reactive groupmaleimide.

Photoswitching is operated by the reversible binding of the glutamate moiety of MAG, which is presented to the ligand-binding site in

the cis configuration and withdrawn in trans. The MAG molecule was kindly provided by Dr Dirk Trauner (The Ludwig Maximilians

University of Munich) and Pau Gorostiza (Institute of Bioengineering of Catalonia, Barcelona). After dilution in DMSO, MAG conjuga-

tion with LiGluK2 was performed by exploiting the photo affinity labeling procedure. In brief, MAG was diluted in the extracellular

solution to 40 mM (from a 10 mM stock solution) and illuminated with 380 nm light to promote its accumulation of the cis-form,

thus favoring the binding between the GluK2 glutamate binding site and the engineered cysteine in the GluK2 ligand-binding domain

(LBD). Hippocampal neurons were then incubated withMAG (in cis configuration) at 37�C for 30min, rinsedwith extracellular solution

to remove any unreacted MAG, and subsequently used for recordings. The LiGluK2 photoconversion was performed by a diode-

based illumination device (Lumencor, SpectraX Light Engine, Optoprim, Italy) controlled by either the Clampex 10.6 software (for

electrophysiology experiments) or the Metamorph software (ver. 7.7.8, Molecular Devices, USA) for the single particle tracking ex-

periments. Samples were illuminated through a 60X oil-immersion/1.4NA Plan Apochromat immersion objective mounted on an in-

verted microscope (Eclipse Ti, Nikon, Japan). The light power measured at the exit of the objective was 3 mW for the 380 nm and 7

mW for the 488 nm illumination, respectively.

Electrophysiological recordings and Glutamate uncaging
Currents mediated by photoactivation of LiGluK2 receptors were recorded in the whole-cell configuration of the patch clamp tech-

nique at room temperature at holding potential of�65mV. External solution contained (in mM): 145 NaCl, 5 KCl, 1 CaCl2, 2 MgCl2, 10

glucose and 10HEPES, pH 7.4. Patch pipettes (pulled fromborosilicate glass capillaries, Hilgenberg,Malsfeld, Germany) had a 3.5–4

MU resistance when filled with the intracellular recording solution containing (in mM): 130 KGluconate, 5 KCl, 5 sucrose, 1 EGTA, 10

HEPES and 4 MgATP (300 mOsm and pH 7.2 with KOH). Currents were acquired using Clampex 10.6 software (Molecular Devices,

Sunnyvale, CA). Currents were sampled at 50 kHz, digitally filtered at 3 kHz using the 700B Axopatch amplifier (Molecular Devices)

and subsequently analyzed by using the Clampfit software. The stability of the patch was checked by repetitively monitoring the input

and series resistance during the experiments. Cells exhibiting 10%–15% changes were discarded from analysis. Concanavalin-A

(Sigma-Aldrich, Italy) was used at a concentration of 0.1 mg/ml in the extracellular solution to suppress desensitization of LiGluK2.

The maximal Concanavalin-A effect was typically achieved within 8 min after perfusion. (S)-5-Iodowillardiine (5-IW) was purchased

from Tocris Bioscience (Italy).

Uncaging experiments were performed by exploiting MNI-L-Glutamate (Tocris Bioscience, Italy): MNI-Glutamate (5 mM) was dis-

solved in the extracellular solution and locally perfused through a patch pipette (2-4 mM tip diameter) by means of a pressure-based

application system (20 psi) (Picospritzer, Parker, USA) and placed at 10 and 20 mM (x- and z axis, respectively) from the region of

interest. Experiments were performed in the presence of 50 mMD-APV (Tocris) to block NMDA receptor; EPSCsmediated by kainate
e3 Cell Reports 31, 107735, June 9, 2020
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receptor (KAR) were pharmacologically isolated in the presence of 10 mM GYKI 53655 (Sigma). A 378 nm diode laser (Cube 378, 16

mW, Coherent Italia, Italy) was directly coupled to the microscope objective (Olympus UPlanSApo 100X oil-1.40 NA). In order to

obtain the smallest laser spot size on the sample we backfilled the objective by using a beam expander placed in the optical pathway

between the laser source and the objective. The measured point spread function (PSF) of the 378 nm illumination had lateral

dimension of 487 ± 55 nm (FWHM, n = 6). The laser beamwas steered in the field of view bymeans of a galvanometric mirrors-based

pointing system allowing the illumination of specific regions of interest tailored around glutamatergic synapses (UGA32, Rapp

OptoElectronics, Hamburg, Germany). Synchronization of optical stimulations and electrophysiological recordings was controlled

with the UGA32 software interfacedwith the Clampex 10.6 software (Molecular Devices, Sunnyvale, CA, USA). Currents were elicited

by 500 ms light pulses with a power intensity of 80-100 mW at the exit of the objective.

For experiments with synaptic stimulation, mixed AMPAR/KARs EPSCs were recorded in the presence of 50 mM D-APV (Tocris)

and 10 mM bicuculline (Sigma) whereas pure KAR EPSCs in the presence of 10 mM GYKI 53655 (Sigma). Synaptic responses were

evoked byminimal stimulation (0.8 ms pulse length) through an electrode filled with extracellular solution placed nearby the cell body

of the postsynaptic neuron. The duration and the amplitude of the extracellular stimulus were controlled by Model DS2A Constant

Voltage Isolated Stimulator (Digitimer Ltd.) synchronized with Clampex 10.6 software (Molecular Devices). The desensitizing depo-

larization trains were elicited at either 100 or 50 Hz. Since the effect of trains at these two frequencies were indistinguishable, data

were pooled together.

AMPAR decay kinetics were obtained using a mono exponential function and mixed AMPAR/KAR decay kinetics using a bi-expo-

nential function: I = A1*e (�t/tfast) + A2*exp(�t/tslow), where A1 and A2 are the current amplitudes of the fast and slow components,

respectively. tweighted values were calculated using the equation: tweighted = (A1*tfast + A2*tslow)/(A1+A2).

Single particle tracking
Quantum Dot (QD) staining of surface HA-LiGluK2 or HA-GluK2 receptors was performed as described previously (Petrini et al.,

2014). Briefly, anti-HA antibodies (Roche) were premixed with anti-mouse QD 655 (Invitrogen, Italy) for 30 min in the presence of ca-

seine (Vectorlab, Italy) to prevent nonspecific binding. Neurons were then incubated with the diluted antibody-QD premix for 3 mi-

nutes at room temperature to obtain a final QD concentration of 0.1 nM. For SPT experiments with VGCC blockers, we sequentially

added to the extracellular solution 10 mM nifedipine, 2 mM u-conotoxin MVIIC, 50 mMD-APV, 10 mMGYKI 53655, 100 mM 2-APB and

10 mM ryanodine and we recorded the mobility of kainate receptors in the different conformational states in the continuous presence

of these drugs. 2-APB, D-APV, Ryanodine and u-conotoxin MVIIC were purchased from Tocris Bioscience (Italy). GYKY-53655,

L-Glutamate and nifedipine were purchased fromSigma-Aldrich (Italy). The specificity of QD labeling was demonstrated by the exclu-

sive binding of anti-HA-coupled QDs to HA-tagged overexpressed proteins and by the absence of QD labeling when the primary

antibody was omitted fromQD-antibody premix (data not shown). QD recording were performed on an inverted microscope (Eclipse

Ti, Nikon, Japan) equipped with a 60X oil-immersion/1.4NA Plan Apochromat immersion objective by acquiring 100 consecutive

frames at 20 Hz with a 512x512 pixel EM-CCD camera (9100, Hamamatsu, Japan) using Metamorph software (ver. 7.7.8, Molecular

Devices, USA). The highly diluted QD labeling resulted in < 20 QDs per field of view, so that individual QD receptor complexes did not

overlap the trajectories of neighboring complexes. When, occasionally, two QDs were too close to unambiguously reconstruct their

individual trajectories, both QDs were discarded from the analysis. Samples were illuminated in epifluorescence with a diode-based

illumination device (Lumencor, SpectraX Light Engine, Optoprim, Italy) controlled by the Metamorph software providing the appro-

priate excitation for Homer1c and QDs. By taking advantage of their wide excitation spectrum, QDs were imaged at either 380 or

488 nm, thus allowing the opening or closing of LiGluK2 and simultaneous QD imaging. Emission wavelengths were selected by

means of optical filter (Semrock, Italy) mounted on a filter wheels controlled by the Metamorph software. Experiments were per-

formed on an inverted microscope (Eclipse Ti, Nikon, Japan) equipped with a 60X oil-immersion/1.4NA Plan Apochromat immersion

objective. During the experiments, neurons were kept at 32�C in an open chamber and continuously superfused with the recording

solution at 12ml/h (see below). Synapses were identified by transfection of Homer1c-DsRed. QDs, recognized by their diffraction

limited fluorescence spot shape and characteristic blinking, were tracked with 50 ms time resolution. QD spatial coordinates

were identified in each frame as sets of > 4 connected pixels using two-dimensional object wavelet-based localization at sub-diffrac-

tion limited resolution (�40 nm) with MIA software based on simulated annealing algorithm. Continuous tracking between blinks was

performed with an implemented version of custom software originally written in MATLAB (The Mathworks Inc., Italy) in Dr Choquet’s

lab. The method is based on a QDmaximal allowable displacement (4 pixels) during a maximal allowable duration of the dark period

(25 frames, corresponding to 1.25 s acquisition). This stringent reconnection of trajectories across QD blinking combined with the

highly diluted QD labeling have been set to avoid erroneous reconnection of neighboring QD in the same trajectory and to provide

unambiguous observations of individual receptor QD complex trajectories. Receptor trajectories were defined as ‘synaptic’ or ‘ex-

trasynaptic’ when their spatial coordinates coincided or not with those of the localization of the postsynaptic compartment,

respectively.

Although the definition of the compartments was diffraction limited, the sub-wavelength resolution of the single particle detection

(�40 nm) allowed accurate description of receptor mobility within synaptic regions. Instantaneous diffusion coefficients, D, were

calculated as previously described (Tardin et al., 2003) from linear fits of the n = 1–4 values of the MSD versus time plot, according

to the equation: MSD(t) = < r2 > = 4Dt for two-dimensional diffusion.

MSD(t) was calculated according to the formula:
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for reconstructed trajectories of 100 frames using a custom-made software developed by Dr Choquet (Bordeaux, France). To better

characterize receptor mobility, receptor QDs have been distinguished into mobile and immobile populations by using as a threshold

the local minimum of the bimodal distribution of synaptic diffusion coefficients (0.0075 mm2 s-1). Next, the diffusive properties of the

mobile receptor population were described as their median ± IQR, defined as the interval between 25%–75%percentiles. The immo-

bile receptor population was described by the immobile fraction defined as the relative duration of the residency of a receptor QD in a

given compartment with coefficient < 0.0075 mm2 s-1.

Cross-link (X-link) protocol
The X-linking of HA-tagged kainate receptors (HA-LiGluK2, HA-LiGluK2D16 and HA-GluK2) was achieved by first incubating hippo-

campal neurons for 10 min with an excess of the anti-HA primary antibody (Roche) and subsequently with an appropriate secondary

antibody for 10 min (Gerrow and Triller, 2014; Heine et al., 2008). After washing, neurons were used for the recordings of uncaging

synaptic currents (uEPSCs).

Immunocytochemistry
Neuronswere rinsed in extracellular solution, fixedwith 4%paraformaldehyde (PFA) for 10min and subsequently incubatedwith BSA

(1%) for 30 min to prevent nonspecific binding. Anti-HA antibody (1:50; Roche, Italy) was incubated for 60 minutes at room temper-

ature, followed by incubation with Alexa-647 secondary antibody for 45 min at room temperature. Immunostaining of intracellular

protein Homer1c (1:500, SySy) or VGLUT1 (1:400, Millipore) was performed by permeabilizing neurons with 0.2% Triton X-100 for

10min after fixation, and sequential incubation with primary and secondary antibodies. Control experiments without the primary anti-

body were performed to test fluorescence signal arising from nonspecific binding of the secondary antibody. Coverslips were

mounted in DAKO fluorescent mounting medium. Images were acquired using an inverted microscope (Eclipse Ti, Nikon, Japan)

equipped with a 60X oil-immersion/1.4NA Plan Apochromat immersion objective and a 512x512 pixel EM-CCD camera (9100, Ha-

mamatsu, Japan) with pixel size 16 mm. Quantification of immunocytochemistry experiments was carried out using Metamorph 7.8

(Molecular Device, USA). For each neuron, a dendritic portion was outlined to define the region of interest (ROI) included in the anal-

ysis. The same ROI was transferred to all channels to quantify the total average fluorescence of each probe (Homer1c, LiGluK2,

N-cadherin). For the cluster analysis, in order to outline cluster regions, a user-defined threshold was applied to each FFT-processed

image and regions were generated around the thresholded area (within the boundaries of the dendritic ROI). Thresholds were set

individually for each channel and kept constant across each experiment. Cluster quantification was performed on LiGluK2 (or N-cad-

herin) and Homer1c images after subtraction of background fluorescence and without thresholding. Cluster immunoreactivity was

quantified as the integrated fluorescence intensity measured in the aforementioned cluster regions. Synaptic analysis was performed

by considering LiGluK2 immunoreactivity colocalizing with the postsynaptic marker Homer1c or juxtaposed (within 2 pixels) to the

presynaptic marker vGlut. Data from clusters were averaged to give a value per neuron. Clusters smaller than 0.07 mm2 were

excluded from the analysis. For each neuron, the cluster density was computed as the total number of cluster regions divided by

the area of the dendritic ROI.

Coimmunoprecipitation and Western Blot
HEK293T were transfected with HA-LiGluK2 or HA-GluK2 plasmids alone, or along with N-cadDE-myc or with HA-LiGluK2D16 using

Lipofectamine 2000 and after 48h cells were lysed in a buffer containing 150 mMNaCl, Tris-HCl pH 7.4 25mM, 1 mM EDTA, 1% Np-

40, supplementedwith a cocktail of protease (Sigma, P8340) and phosphatase inhibitors (Sigma, P5726). The lysates were incubated

on ice for 10 min and then centrifuged for 10 min at 13000 g 4�C. The supernatant was incubated with 25 mL of pre-washed anti-HA

magnetic beads for 1 hour in a rotating wheel at 4�C. Beads were then collected on a magnetic stand and washed three times with

ice-cold washing buffer (150 mMNaCl, Tris-HCl pH 7.4 25mM, 1 mMEDTA, 1%Np-40). Beads were re-suspended in sample buffer,

heated at 95�C and magnetically separated. The eluted proteins were resolved by SDS–PAGE using 4%–12% Tris-glycine gels (No-

vex NuPAGE SDS–PAGE gels, Invitrogen) along with the ‘‘supernatant’’ (i.e., the remaining solution after IP) and electroblotted onto

nitrocellulose membranes. Membranes were then incubated with anti-HA antibodies (1:1000, Roche), anti b-catenin (1:2000, Sigma)

or anti-myc (1:1000, Cell Signaling) overnight at 4�C, washed, and incubated for 2 hours with horseradish peroxidase (HRP)-conju-

gated goat anti-rat, anti-rabbit immunoglobulin or anti-mouse (IgG) antibodies, respectively (1:5000, Invitrogen).

For coimmunoprecipitation experiments of KARs in the desensitized state, cells were incubated in an extracellular solution sup-

plemented with glutamate (100 mM) with or without calcium for 2 minutes and then lysed by following the aforementioned protocol.

10% of total extract was loaded as control input.

For Neto2Western Blot experiments, hippocampal neurons plated on 6-well Petri dishes coated with poly-D-lysine (0.1mg/ml) at a

density of 550.000/well were washed with cold PBS and then lysed in RIPA buffer (which contained 50 mM Tris-HCl pH 7.4, 150 mM

NaCl, 1 mM EDTA, 1%NP-40, 0.1% SDS, 0.5% NaDOC) supplemented with the aforementioned cocktail of protease and phospha-

tase inhibitors for 30minutes at 4�C. Lysate were cleared by centrifugation at 20000 g for 20minutes at 4�C and the total protein level

was quantified by BCA (Pierce BCA Protein Assay Kit, ThermoScientific). Equivalent amounts of total protein (10 mg) were separated
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on NuPAGE 4%–12% (Invitrogen, Carlsbad, CA) in reducing conditions, transferred to nitrocellulose membranes, and immunoblot-

ted overnight at 4�C with either monoclonal anti-NETO2 (1:1000, Abcam) or anti-GAPDH-HRP (1:1000, Invitrogen) antibodies.

After washing, membranes incubated with the anti-Neto2 antibody were incubated for 2 hours with HRP-conjugated anti-mouse

IgG antibodies (1:5000, Invitrogen). Blots were visualized by chemiluminescence detection, scanned and quantified using ImageJ

software.

Model simulations
We performed computer simulations to recapitulate our main findings concerning the role of kainate receptor (KAR) diffusion in the

short-termmodulation of KAR-mediated EPSCs. Themodeling of kainate receptor (KAR) gating (Figure S6B) was performed by using

a kinetic scheme optimized from Barberis et al., (2008) to match the KAR-receptor mediated currents obtained experimentally in the

present work (Figures 5C and S4). In line with the experimental stimulation protocol represented in Figures 5C and S4, the simulated

stimulation protocol consisted of a control pulse to elicit a simulated KAR-mediated EPSC followed by a train of KAR-mediated

EPSCs (1 s @100Hz) to induce massive receptor desensitization, and a ‘‘test’’ KARs-EPSC elicited 50 ms after the train to monitor

the degree of receptor desensitization. Such simulated KAR-EPSCs were elicited by 0.3 ms pulses of glutamate 1mM. The fraction of

receptors exchanged during the stimulation train (1 s) with the external naive ones was quantified by using stochastic simulations.

After 1 s, the exchange rate reached a steady state (i.e., simulations performed with longer time periods yielded the same result).

We next considered a simplified reaction-diffusion process to assess how changes in receptor lateral mobility (modulated by recep-

tor gating) tunes synaptic responses. At the beginning of each simulation, the receptors were uniformly distributed on the synaptic

disk (of radius 0.1 mm) at the density of 1100 receptors/mm2 (i.e., 27 receptors). In order to maintain the synapse populated by the

same number of receptors we imposed that any receptor leaving the synaptic disk is instantaneously replaced with a naive one

randomly positioned close to the border of the synaptic disk (Figure S6A). In the model, we assumed that: the receptors exchanged

at discrete time instants in coincidence with the stimulation pulses (i.e., every 10 ms).

We simulated 10 spatial randomarrangements of the receptors on the synaptic disk. Each onewas simulated 10 times startingwith

a different, randomly generated receptor seed. During the simulations, we prevented receptors overlap by introducing an elastic

repulsive force.

Each receptor (n) diffused according to a standard Brownian motion:�
Xnðt +dtÞ=XnðtÞ+41$s
Ynðt +dtÞ=YnðtÞ+42$s

(1)

where s =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2$D$dt

p
, D is the diffusion coefficient, dt the time step of the simulation and 41;2 are random numbers with a normal dis-

tribution. Equations (1) were integrated with a time step of 0.01 ms.

We performed simulations by considering different diffusion coefficients to mimic the control (i.e., closed receptor, D =

0.016 mm2/s) and the bound condition (open/desensitized receptor, 0.003 mm2/s). We found that synaptic receptors exchanged

with the extrasynaptic ones with probability p = 0.41 in the closed naive state, and p = 0.09 in the open/desensitized states. These

probabilities were used as weighting factors given to the naive receptors and the complementary weights to the immobile receptors

(i.e., always present/active in the synapse). Such difference in ‘‘exchange probability’’ observed in the ‘‘lower receptor mobility’’

configuration resulted in a significantly higher extent of desensitization, hence reduced amplitude of simulated KAR-EPSC after

the 100 Hz train, thus nicely reproducing our experimental data.

QUANTIFICATION AND STATISTICAL ANALYSIS

Values are given as means ± sem or, in the case of non-normally distributed QD data, as medians ± IQR. Prism 6.04 Software

(GraphPad, USA) was used to test statistical significance. Non-normally distributed datasets were tested by two-tailed non-para-

metric Mann-Whitney U-test. Normally distributed datasets were compared using the unpaired two-tailed Student’s t test, while

for paired non-parametric datasets, Wilcoxon paired test was used. Indications of significance correspond to P values < 0.05 (*),

p < 0.01 (**), p < 0.001 (***) and non-significant (ns). For QD tracking, n represents the total number of trajectories reconstructed after

different experiments performed on multiple neuronal preparations. For immunocytochemistry and electrophysiological recordings,

n represents the number of neurons analyzed.
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Figure S1. Functional and diffusion properties of LiGluK2 receptors (Related to Figure 1) 

(A) Left panel: Representative traces of activation and deactivation of LiGluK2 receptor-mediated 

currents induced by illumination with 380 nm and 488 nm light, respectively. Note that the current 

onset is followed by fast and profound desensitization. Right panel: Representative traces of 

activation and deactivation of LiGluK2 receptor-mediated currents induced by illumination at 380 

nm and 488 nm, respectively in the presence of Concanavalin-A (Con-A, 0.1 mg/ml). Note that Con-A 

abolishes the LiGluK2 desensitization thus preventing the fading of the current and induces a ~5-fold 

current amplitude increase. (B) Left Panel: Application of 10 mM glutamate puffs in the presence of 

GYKY 53655 and D-APV leads to activation and desensitization of LiGluK2. Right panel: Application of 

5-IW (1 mM) does not elicit sizable current, suggesting the absence of GluK5 subunit. (C) Left panel: 

Representative image of surface HA-LiGluK2 immunoreactivity in a cultured hippocampal neuron 

(green) co-transfected with Homer1c-DsRed (red). Scale bar, 10 M. Right panel: Detail of the 

dendrite portion framed on the left panel, showing HA-LiGluK2 clusters (top), Homer1c clusters 

(middle) and LiGluK2-Homer1c clusters colocalization (bottom, arrows). Scale bar, 1 M. (D) Left 

panel: Quantification of immunocytochemistry experiments of LiGluK2 synaptic clusters. Note that 

that the integrated fluorescence intensity of synaptic LiGluK2 clusters is significantly increased with 



respect to the non-synaptic areas. Right panel: Percentage of synaptic LiGluK2 defined as those 

colocalizing with the postsynaptic marker Homer1c or juxtaposed to the presynaptic marker VGLUT1 

(n= 48 cells for each condition from 3 independent cultures). (E) Percentage of time spent at the 

synapse (left panel) and number of transitions (right panel) of LiGluK2 at synapses. In the 

desensitized state, LiGluK2 spent more time at synapses and displayed lower number of transitions 

between extrasynaptic and synaptic compartments (ntrajectories closed= 255, ntrajectories des= 186, 

ntrajectories recovery= 245, from 3 independent cultures, Mann-Whitney test). (F) Summary of median 

diffusion coefficient and IQR of synaptic LiGluK2 in the closed (blue) and desensitized state (purple) 

when nifedipine/-conotoxin MVIIC, D-APV, GYKI 53655 and 2-APB/ryanodine are sequentially bath 

applied to block voltage gated calcium channels (VGCC), NMDA receptors (NMDAR), AMPA receptors 

(AMPAR) and IP3/ryanodine receptors, respectively. (G) Summary of percentage of time spent by 

LiGluK2 at synaptic compartment (left panel) and LiGluK2 number of synaptic transitions (right 

panel) in the closed state (blue, ntrajectories= 255), closed state in the presence of the VGCC blockers 

cocktail (black, ntrajectories= 105), desensitized state in the presence of the VGCC blockers cocktail 

(purple, ntrajectories= 100) and in the recovery state (grey, ntrajectories= 118, Student’s test). For the 

detailed experimental protocol see Figure 1E. (H) Summary of median diffusion coefficient and IQR 

of extrasynaptic (ntrajectories=136; ns, Mann–Whitney U-test) and synaptic LiGluK2 (ntrajectories=100; ns, 

Mann–Whitney U-test) without MAG labeling. In the absence of MAG, the LiGluK2 diffusion 

properties during illumination at 380 nm (purple) are indistinguishable from the control (blue). 

Unless otherwise stated data are presented as mean ± SEM, *P < 0.05; **P <0.01; ***P <0.001 and 

ns, non-significant. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S2 

 

 

 

Figure S2. Diffusion properties of synaptic and extrasynaptic LiGluK2 and GluK2 receptors in 

control condition and in the presence of glutamate (Related to Figure 1) 

(A) Summary of diffusion coefficient (left panel) and MSD vs time curves (right panel) of synaptic 

LiGluK2 in control (black, ntrajectories= 61), during application of 100 M glutamate (red, ntrajectories= 50) 



and after glutamate wash out (grey, ntrajectories= 43). Note that values of diffusion coefficient of 

synaptic LiGluK2 receptors in the different conditions are undistinguishable with respect to that 

obtained with the GluK2 receptors. Receptor lateral diffusion was monitored in the continued 

presence of VGCC blockers and in nominal zero Ca2+ solution (see Fig.1). (B) Summary of median 

diffusion coefficient and IQR (left panel panel) and MSD vs time curves (right panel) of extrasynaptic 

LiGluK2 in control (black, ntrajectories = 179), during application of 100 M glutamate (red, ntrajectories = 

158) and after glutamate wash out (grey, ntrajectories= 142, ns, Mann–Whitney U-test). (C) Summary of 

median diffusion coefficient and IQR (left panel panel) and MSD vs time curves (right panel) of 

synaptic GluK2 in control (black, ntrajectories = 64), during application of 100 M glutamate (red, 

ntrajectories = 70) and after glutamate wash out (grey, ntrajectories= 34), from 4 neurons from 2 

independent cultures. Note that bath application of glutamate induced the immobilization of 

synaptic GluK2 receptors (red). Receptor lateral diffusion was monitored in the continued presence 

of VGCC blockers (see Fig.1). (D) Summary of median diffusion coefficient and IQR (left panel panel) 

and MSD vs time curves (right panel) of extrasynaptic GluK2 in control (black, ntrajectories = 204), during 

application of 100 M glutamate (red, ntrajectories = 196) and after glutamate wash out (grey, ntrajectories= 

175, ns, Mann–Whitney U-test). Note that the application of glutamate does not change the 

diffusion properties of extrasynaptic GluK2 receptors. Unless otherwise stated, data are presented 

as mean ± SEM, *P<0.05; **P<0.01; ***P<0.005; ns: non-significant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S3 

 

 



 

Figure S3. Surface expression, functional properties and diffusive properties of LiGluK24,  

LiGluK216 and LiGluK2/N-cadE receptors (Related to Figure 2) 

 (A) Left panel: Representative multicolor fluorescence image of the distribution of surface HA-

LiGluK24 receptors (green) and their colocalization with the postsynaptic marker Homer1c (red) in 

cultured hippocampal neurons. Scale bar, 10 M. Right panel: Magnification of the portion of a 

dendrite framed on the left panel, showing HA-LiGluK2 clusters (top), Homer1c clusters (middle,) 

and the LiGluK2-Homer1c colocalization (bottom). Arrows indicate synaptic clusters. Scale bar, 1 M. 

(B) Left panel. Quantification of synaptic integrated fluorescence intensity and density of LiGluK2 

(wt) and LiGluK24 (4) clusters (n=19 and n=22, respectively, from 2 independent cultures, P> 0.05, 

Student’s t-test). Right panel. Quantification of integrated fluorescence and density of Homer1c 

clusters in LiGluK2 and LiGluK24 expressing neurons. Note that the deletion of the PDZ binding 

domain does not affect the expression and the distribution of Homer1c puncta. (C) Representative 

averaged traces of light-evoked LiGluK24 receptor-mediated currents in the absence (left panel) or 

presence (right panel) of Concanavalin-A (0.1 mg/ml). LiGluK24 activations and deactivations were 

elicited by illuminations with 380 nm and 488 nm light, respectively. The LiGluK24-mediated 

current onset is followed by fast and profound desensitization. This desensitization is abolished 

when Con-A is added, thus inducing a ~ 5-fold current amplitude increase, similarly to LiGluK2-

mediated currents (compare with Supplementary Figure 1A). (D) Summary of median diffusion 

coefficient and IQR (left panel) and MSD vs time curve (right panel) of extrasynaptic LiGluK24 in the 

closed state (ntrajectories = 558, blue), desensitized state (ntrajectories = 448, purple) and closed recovery 

state (ntrajectories = 521, grey, from 8 neurons, ns, Mann–Whitney U-test). (E) Left panel. Distribution 

and colocalization of LiGluK216 (green) with the postsynaptic marker Homer1c (red) in cultured 

hippocampal neurons. Scale bar, 10 M. Right panel: Detail of the dendrite framed portion showing 

LiGluK216 clusters (top), Homer1c clusters (middle) and the LiGluK2-Homer1c colocalization 

(bottom, arrows). Scale bar, 1 M. (F) Left panel. Summary of immunocytochemistry experiments 

showing the integrated intensity of HA-LiGluK216 and the HA-LiGluK216 dendritic cluster density 

(n=36 cells) compared to HA-LiGluK2 wt (n= 36 and n=46 cells, respectively, from 3 independent 

cultures, P<0.01, Student’s t test). Right panel. Quantification of integrated fluorescence and density 

of dendritic Homer1c-GFP clusters in HA-LiGluK2 and HA-LiGluK216 expressing neurons. Note that 

the transfection of LiGluK216 mutant does not alter either the Homer1c expression or the Homer1c 

dendritic cluster density. (G) Left panel: Representative averaged traces of light-evoked LiGluK216 

receptor-mediated currents in the absence (left panel) or presence (right panel) of Con-A 

(0.1mg/ml). Similarly to LiGluK2 wt mediated currents, the LiGluK216 current onset is followed by 



fast and profound desensitization, abolished by the application of Con A. (H) Summary of median 

diffusion coefficient and IQR (left panel) and MSD vs time curve (middle) of extrasynaptic 

LiGluK216 in the closed state (ntrajectories = 321, blue), desensitized state (ntrajectories = 276, purple) and 

recovery (ntrajectories =280, grey) from 7 neurons, P> 0.05, Mann–Whitney U-test. (I) Representative 

image of a dendrite portion showing the colocalization (arrows) of N-cadherin (green) with Homer1c 

(red) in control neurons (upper panel) and in neurons overexpressing the dominant negative 

mutated N-cadherin (N-cadE) (lower panel). Note that, in N-cadE neurons, synaptic N-cadherin is 

decreased. Scale bar, 1 M. (J) Quantification of integrated fluorescence intensity of N-cadherin (left 

panel) and percentage (right panel) of N-cadherin colocalization with Homer1c in control neurons 

(wt, n=50 cells) and in neurons overexpressing N-cadE (E, n= 40 cells). (K) Representative 

fluorescence image of the distribution and colocalization of surface HA-LiGluK2 (green) and the 

postsynaptic marker Homer1c (red) in neurons overexpressing the dominant negative N-cadE 

mutant. Scale bar, 5 M. Right panel: Magnification of the portion of dendrite framed on the left 

panel, showing HA-LiGluK2 clusters (top), Homer1c clusters (middle) and the LiGluK2-Homer1c 

colocalization (bottom). Arrows indicate synaptic clusters. Scale bar, 1 M. (L) Left panel. Summary 

of immunocytochemistry experiments showing the integrated intensity of HA-LiGluK2 and the HA-

LiGluK2 dendritic cluster density in neurons overexpressing N-cadE with respect to neurons 

expressing HA-LiGluK2 alone (n=51 cells and n=73 cells, respectively, from 4 independent cultures, 

P<0.01, Student’s t test). Please note that the transfection of N-cadE reduced the expression of HA-

LiGluK2 while it left the HA-LiGluK2 dendritic cluster density unchanged. Right panel. Quantification 

of integrated fluorescence and density of dendritic Homer1c-GFP clusters in neurons overexpressing 

N-cadE with respect to neurons expressing HA-LiGluK2 alone. Please note that the N-cadE 

overexpression does not alter either the Homer1c expression or the Homer1c dendritic cluster 

density. (M) Left panel: Representative averaged traces of light-evoked LiGluK2 receptor-mediated 

currents in neurons overexpressing NCad-E, in the absence (left panel) or presence (right panel) of 

Con-A (0.1mg/ml). (N) Summary of median diffusion coefficient and IQR (left panel) and MSD vs time 

curve (right panel) of extrasynaptic LiGluK2 receptors in neurons expressing N-cadE in the closed 

state (ntrajectories = 194, blue), desensitized state (ntrajectories = 188, purple) and closed recovery state 

(ntrajectories = 174, grey, from 5 neurons, ns, Mann–Whitney U-test). Unless otherwise stated data are 

presented as mean ± SEM, *P<0.05; **P<0.01; ***P<0.005; ns: non-significant. 

 

 

 

 



Figure S4 

 

 

 

Figure S4. Electrophysiological properties of eEPSC mediated by AMPA, kainate or mixed 

AMPA/kainate receptors (Related to Figure 5). (A) Scatter dot plot of rise time of eEPSC mediated 

by AMPA receptors (black), AMPA/LiGluK2 receptors (blue) and AMPA/LiGluK216 receptors 

(green). (B) Left panel: Scatter dot plot of rise time of eEPSC mediated by LiGluK2 (blue) and 

LiGluK216 kainate receptors (green). Right panel: Bar graphs of average amplitude of eEPSC 

mediated by LiGluK2 (blue) and LiGluK216 kainate receptors (green). (C) Top: Representative 



“pure” AMPA receptors-mediated eEPSCs recorded in a hippocampal neuron during the delivery of 

100 Hz protocol. The protocol, used to monitor changes in the eEPSCs decay kinetics following 

massive receptor desensitization consisted of: i) delivery of a minimal stimulation to evoke an 

eEPSCs (before), ii) 500 ms gap, iii) the delivery of a depolarization train for 1 second, iv) 50 ms gap 

and, v) delivery of a second eEPSCs (after) (see methods). Bottom: magnification of the framed area 

showing EPSCs mediated by AMPAR before, during and after the train. (D) Matched time constants 

of AMPA receptors-mediated eEPSC before and after the train. (E) Top: Representative eEPSCs 

mediated by LiGluK2 receptors pharmacologically isolated by using GYKI 10 M recorded in a 

hippocampal neuron during the delivery of 100 Hz protocol. The protocol, used to monitor changes 

in the eEPSCs decay kinetics following massive receptor desensitization consisted of: i) delivery of a 

minimal stimulation to evoke an eEPSCs (before), ii) 500 ms gap, iii) the delivery of a depolarization 

train for 1 second, iv) 50 ms gap and, v) delivery of a second eEPSCs (after) (see methods). Bottom: 

magnification of the framed area showing EPSCs mediated by KARs before, during and after the 100 

Hz train. (F) Bar graphs of average amplitude of eEPSC mediated by LiGluK2 kainate receptors before 

and after the application of the train. Note the profound decrease of the current amplitude after the 

train. (G) Top: Representative eEPSCs mediated by LiGluK216 receptors pharmacologically isolated 

by using GYKI 10 M, recorded in a hippocampal neuron during the delivery of 100 Hz protocol. The 

protocol, used to monitor changes in the eEPSCs decay kinetics following massive receptor 

desensitization consisted of: i) delivery of a minimal stimulation to evoke an eEPSCs (before), ii) 500 

ms gap, iii) the delivery of a depolarization train for 1 second, iv) 50 ms gap and, v) delivery of a 

second eEPSCs (after) (see methods). Bottom: magnification of the framed area showing EPSCs 

mediated by LiGluK216 receptors before, during and after the 100 Hz train. (H) Bar graphs of 

average amplitude of eEPSC mediated by LiGluK216 kainate receptors before and after the 100 Hz 

train. Data are presented as mean ± SEM, *P<0.05; ns: non-significant. 

 

 

 

 

 

 

 

 

 

 



 

Figure S5 

 

 

 

 

Figure S5. Neto2 expression in hippocampal cultured neurons (Related to Figure 5) 

(A) Example traces of kainate mediated eEPSC in hippocampal neuron overexpressing LiGluK2 alone 

(black trace) or co-transfected with Neto2 (red trace). Note that the presence of Neto2 does not 

change the decay kinetics of the kainate current. (B) Left panel. Western Blot of Neto2 from cultured 

neurons at DIV 7, 14, 21 and 28, showing the decrease of the expression of Neto2 over 

development. Right panel. Quantification of Neto2 at the indicated DIV, normalized to Neto2 level at 

DIV 7 (n=5). Data are presented as mean ± SEM, *P<0.05; ns: non-significant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure S6 

 

 

 

 

 

Figure S6. Modeling of impact of receptor mobility on synaptic KARs-mediated responses (Related 

to Figure 5). A. Schematic representation of the synaptic disk and kainate receptors that have been 

used for modeling the synaptic receptor exchange in the conditions of both “high mobility” (i.e., 

closed receptor, D=0.016 µm2/s, left) and “low mobility” (i.e., open/desensitized receptor, D = 0.003 

µm2/s, right). Receptors were uniformly distributed on the synaptic disk (of radius 0.1 m) at the 

density of 1100 receptors/µm2 (i.e. 27 receptors). Receptors leaving the synaptic disk (grey dot) with 

high (blue arrow) and low mobility (purple) are substituted by a naive receptor (blurred dot with 

grey arrow) in a random position in the disk. “Synaptic” receptors exchanged with the “extra-

synaptic” ones with probability p = 0.41, in the closed naïve state, and p = 0.09, in the 



open/desensitized states. These probabilities were used as weighting factors given to the naive 

receptors and the complementary weights to the immobile receptors (i.e ever present/active in the 

synapse). Such difference in “exchange probability” observed in the “lower receptor mobility” 

configuration resulted in a significantly higher extent of desensitization (see panel C and D). B. 

Kinetic scheme used to simulate the KAR-mediated EPSCs adapted from Barberis et al., (2008). The 

rate constants (optimized to achieve the best formal fit of the experimental KAR-EPSCs decay time 

and desensitization) are (in ms-1 mM-1): kon=15; koff=1.8; k1off=0.9; 2=24; 3=24; 4=24; 2=0.8; 

3=0.8; 4=0.8; 1=0.125; 2=0.25; 3=0.5; 4=1; =0.0008. KARs-mediated EPSCs were elicited by 

delivering to synaptic receptor a synaptic-like glutamate pulse (0.3 ms, 1mM). C. Mean cumulative 

open probability (O2+O3+O4) of the kinetic scheme (in panel B) when synaptic kainate receptors 

were activated by:  i) a control pulse to induce a simulated KAR-mediated EPSC (indicated as  ); ii) 

a train of KAR-mediated EPSCs (1s @100Hz) to induce massive receptor desensitization (  ), and 

iii)  a “test” pulse delivered 50 ms after the train to monitor the degree of receptor desensitization 

from KARs-EPSC amplitude (  ). Such protocol was delivered in conditions of receptor “high 

mobility” (blue trace) and “low mobility” (purple trace). D. Magnification of simulated EPSCs at time 

point (  ) (framed in B) in conditions of receptor “high mobility” (blue traces) and low mobility” 

(purple trace). Shadowed areas indicates SEM. The code needed to reproduce the simulations in 

Figure S6 is available at github: thierrynieus/Kainate-receptor-activation-shapes-short-term-

synaptic-plasticity-by-controlling-receptor-lateral-mo 
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