A Details of Computational Methods

A.1 Setting Parameters of BayesHL

We run MCMC sampling in two stages. In stage 1, we run MCMC sampling with all p
features. Then we use MCMC means of p coefficients to choose the top p* features. In stage
2, we run MCMC sampling with a reduced dataset with only the p* selected features from
stage 1. Typically, we use the same MCMC sampling settings in two stages as listed below.

e Model specification parameters: «q,wp, a1, w;

The oy and /Wy are the shape and scale parameter of ¢ distribution for modelling y;|z;
in (3equation.0.3). The oy and /w; are the shape and scale parameter of ¢ distribution
as the prior for §;. They are all fixed at a9 = 1,wp = 0.5,a1 = 1,w; = exp(—10) in
most experiments if there is not specific mentioning.

e Restricted Gibbs sampling thresholding n

In step 3 of “Restricted Gibbs sampling with HMC” presented in Sec. equation.0.4,
we only choose f; with j € U = {j|\; > n} to update with HMC. We typically choose
n so that 10% of B3 are updated.

e HMC step size adjustment factor € and lengths of trajectory /; and [,

There are two critical tuning parameters for HMC: the step size of each leapfrog step
and the length of leapfrog trajectory. Fortunately they can be tuned independently
[4]. Following [4], we set leapfrog step size €; for ; with the second order derivative
~1/2

oy . The € is an adjustment

052
factor usually chosen from 0.1 to 1 such that we obtain the optimal rejection rate
30% for HMC [4]. The required second-order derivative of U with respect to ; is
’u
07

multiplied by a common adjustment factor e: €; = €

n 2
approximated by: ~ Qf\i + %, where x;; are the value of the jth feature in the
i=1 " J

ith case.

The choice of length of trajectory is a little complicated. [3] recommended to run
HMC in two phases: initial (burn-in) phase and sampling phase. In initial phase, one
uses a leapfrog trajectory of short length [y so that the log likelihood can be changed
more quickly and the Markov chain can more quickly reach equilibrium or a local mode
for our problems. In sampling phase, one should use a leapfrog trajectory of longer
length [to make full use of the ability of HMC to reach a distant point from the
starting. ls is usually chosen after some pre-run experiments. Users may want to pre-
run a Markov chain with a relatively large value of I (e.g. 500,1000) and look at the
trajectory of the magnitude of 3. Because the leapfrog trajectory may go backwards
to the starting point, [y should be chosen such that the magnitude of 3 is explored in
only one direction to the furthest extent without backtracking. However, the optimal
choice of [y is hard. It depends on specific problems. In addition, for our problems,
the posterior are highly multi-modal, therefore, the optimal choice of I may vary for

different modes. An automatic scheme for choosing Iy, called NUTS, is proposed by
[2].

In our empirical studies, for the simplicity, we use I = 50 which appears sufficiently
long for our problems. We set a shorter /; = 10 in burn-in phase for faster convergence.
We note further that it is possible to avoid this ad-hoc selection of leap-frog steps by
adopting NUTS algorithm instead of plain HMC. This points to some avenues for future
research through investigations of computational efficiency to improve the performance
of our method.

A.2 Implementation of Existing Feature Selection Methods

e Penalized Logistic Regression using Hyper-LASSO penalty (PLR)

We use the function bayesglm in the R package arm to fit Penalized Logistic Regres-
sion using Hyper-LASSO penalty. The function bayesglm uses the penalty based on
T(a,w) prior, the scaled t-distribution with shape parameter « and scale parameter
vw. By default, bayesglm sets oy = 1 and scale parameter /w; = 2.5 after the feature
values are standardized in the suggested way [1].

e LASSO

LASSO is implemented using the R package glmnet. The choice of regularization
parameter A is critical for the performance of LASSO. We feed the R function glmnet
with a set of regularization parameters A = {\,,,m = 1,2,..., M}. By default, we
start with minimum A; value A\; = 0.01 and choose M = 100 candidate values with
Am = 0.0lm,m = 1,2,...,M. To find an optimal LASSO solution, we conduct cross-
validation with respect to average minus log-probability over all candidate \,, values.
At last, we rerun glmnet on the whole dataset again with the optimal A.

e Group LASSO (GL)

We implement Group LASSO with prior group structure determined by hierarchical
clustering (HC). We first conduct hierarchical clustering with the hclust function in
the R package clust on the feature matrix X. For a given number of groups C', the R
function hclust can construct a tree with UPGMA (Unweighted Pair Group Method
with Arithmetic Mean), and then the tree is cut into several groups by specifying the
desired number of groups C. The optimal value of C' is chosen using the maximum
silhouette value from the set of {2,...,50}. With a chosen group structure (index),
we can run Group LASSO (using the R function gglasso) on different values of the
regularization parameter X\. An optimal A is chosen to minimize the cross-validated
AMLP (average minus log-probability). At last we fit Group LASSO again with this
optimal A and the given group structure.

e Supervised Group LASSO (SGL)

We use the same group structure as used for Group LASSO. Given this group structure,
SGL is implemented with a two-stage strategy. In stage 1, for each feature group we
then implement the LASSO algorithm with a reduced dataset and use the LASSO solu-
tion to extract significant features. More specifically, we fit LASSO (as we introduced

2

before) with all the features in the kth group. The features with nonzero coefficients
in the resulting LASSO solution will be retained and used as representatives of group
k. In stage 2, all group representative features are then combined into a consolidated
training dataset, with their group indices being retained. We then fit Group LASSO
as described above on this consolidated dataset with the retained group indices.

e Random Forest (RF)

We implement Random Forest algorithm with the R package RandomForest (based on
Breiman and Cutlers original Fortran code). Two important parameters in Random
Forest are the number of trees (ntree) to grow and the number of variables randomly
sampled as candidates at each split in the forest (mtry). With two arbitrary sets of
candidate values for them, we fit randomForest with cross-validation. By default we
use the candidate values of mtry ranging from /p to nif \/p < n, or nto \/pif \/p > n.
The candidate values of ntree are chosen from 250 to 500. For each pair value of mtry
and ntree we run the Random Forest algorithm with the R function randomForest
with cross-validation. The optimal pair values of mtry and ntree are then selected
with respect to minimum AMLP. We then fit the whole dataset again with the optimal
value of mtry and ntree.

A.3 An Investigation of Computational Efficiency of BayesHL

In this section, we use a simulation experiment to briefly demonstrate the high efficiency of
the sampler used in BayesHL. We will focus on the efficiency of BayesHL sampler in exploring
multiple modes of Robit posterior distributions, by comparing to the JAGS [5], a black-box
MCMC sampler. JAGS cannot scale well for very high-dimensional problems. Therefore,
we simulate a dataset with only p = 100 features for this comparison. Such examples also
represent the stage-2 of BayesHL in which only a pre-selected small feature subset is used.
However, we want to point it out that BayesHL works well in very high-dimensional problems
such as with p = 5000 in our real data analysis, except that the results are harder to interpret
due to the large number of feature subsets. We generate a dataset consisting of 4 groups of
features. 10 features are in each of Group 1-3, and 70 features in Group 4. We run BayesHL
and JAGS with Robit model for a long time (16835 seconds). For BayesHL, we use the
same settings as given in the appended Section A.1. We thin the original MCMC iterations
into 1000 super-transitions in a way such that each super-transition (a transition consists of
multiple original iterations) in BayesHL and JAGS costs the same time. We divide the 1000
MCMC samples produced by both BayesHL and JAGS to find feature subsets using the same
way as described in Section equation.0.12. We then monitor whether a mode switching occur
from two consecutive super-transitions. From our experience BayesHL sampler is much more
efficient than JAGS in exploring a large number of modes of Robit posterior distributions.

B Gene Networks Identified by LASSO and RandomForest for Endometrial
Cancer

Figure S1: Networks identified for endometrial cancer from LASSO selection by Ingenuity
Pathways Analysis. (a). Networks identified for genes selected by LASSO from the IPA
knowledgebase. (b) Subnetwork corresponding to Cell Cycle, DNA Replication, Recombina-
tion, and Repair, Cell-To-Cell Signaling and Interaction. Red indicates that the expression
of the gene has negative impact on survival outcome and cyan indicates positive impact.
White denotes no impact.

(a) (b)

€250 NowL)

Figure S2: Subnetwork in S1 corresponding to Cancer, Cell Death and Survival, Organismal
Injury and Abnormalities. Red indicates that the expression of the gene has negative impact
on survival outcome and cyan indicates positive impact. White denotes no impact.

guapz
Mmm

(ANKIBT)
MRPS&S C
S
r B
, W e

ERPIA

e

MSUN

Table S1: The list of all subnetworks identified for endometrial cancer from Random Forest
selection by Ingenuity Pathways Analysis. It is worth noting that all 25 networks are isolated
from each other. ID: Pathway ID ranked by p-values. No. gene: number of molecules mapped
in the corresponding pathway.

ID No. gene Top disease and Functions
1 35 RNA Post-Transcriptional Modification, Nucleic Acid Metabolism, Small Molecule Biochemistry
2 35 Cancer, Cell Death and Survival, Organismal Injury and Abnormalities
3 34 Connective Tissue Disorders, Developmental Disorder, Hereditary Disorder
4 33 Metabolic Disease, Molecular Transport, Developmental Disorder
5 33 Hereditary Disorder, Neurological Disease, Organismal Injury and Abnormalities
6 33 RNA Post-Transcriptional Modification, Cellular Assembly and Organization, Cellular Function and Maintenance
7 33 Developmental Disorder, Neurological Disease, Organismal Injury and Abnormalities
8 32 Developmental Disorder, Hereditary Disorder, Metabolic Disease
9 32 RNA Post-Transcriptional Modification, Cellular Assembly and Organization, Developmental Disorder
10 32 Hematological System Development and Function, Hematopoiesis, Humoral Immune Response
11 32 Hereditary Disorder, Neurological Disease, Organismal Injury and Abnormalities
12 31 Cellular Assembly and Organization, Cellular Compromise, Cell Cycle
13 31 RNA Post-Transcriptional Modification, Cellular Development, Skeletal and Muscular Disorders
14 31 Cancer, Neurological Disease, Organismal Injury and Abnormalities
15 30 Cellular Development, Developmental Disorder, Gastrointestinal Disease
16 30 Cell Morphology, Cellular Function and Maintenance, Organ Morphology
17 30 Lipid Metabolism, Molecular Transport, Small Molecule Biochemistry
18 30 Cancer, Dermatological Diseases and Conditions, Organismal Injury and Abnormalities
19 30 DNA Replication, Recombination, and Repair, Cell Morphology, Cellular Function and Maintenance
20 30 RNA Post-Transcriptional Modification, Lipid Metabolism, Small Molecule Biochemistry
21 30 Embryonic Development, Cardiovascular Disease, Developmental Disorder
22 29 Carbohydrate Metabolism, Lipid Metabolism, Molecular Transport
23 29 Connective Tissue Disorders, Developmental Disorder, Hereditary Disorder
24 29 Cell Signaling, Post-Translational Modification, Protein Synthesis
25 29 Organismal Development, Visual System Development and Function, Lipid Metabolism

1]

References

A. Gelman, A. Jakulin, M. G. Pittau, and Y. Su. A weakly informative default prior
distribution for logistic and other regression models. The Annals of Applied Statistics,
2(4):1360-1383, Dec. 2008.

M. D. Hoffman and A. Gelman. The no-U-turn sampler: Adaptively setting path lengths
in hamiltonian monte carlo. The Journal of Machine Learning Research, 15(1):1593-1623,
2014.

R. M. Neal. Bayesian learning for neural networks. PhD thesis, University of Toronto,
1995.

R. M. Neal et al. Mcmc using hamiltonian dynamics. Handbook of Markov Chain Monte
Carlo, 2(11):2, 2011.

M. Plummer et al. Jags: A program for analysis of bayesian graphical models using
gibbs sampling. In Proceedings of the 3rd international workshop on distributed statistical
computing, volume 124, page 125. Vienna, 2003.

