Table S1. Strains and plasmids used in this work.

Strains	Ref.	Description
Sinorhizobium meliloti 2011	[1]	Strain Rm2011, contains insertion sequence within
		expR gene, parental strain in this study; Sm ^r .
Sinorhizobium meliloti 2011∆trpL	[2]	$\Delta trpL$ mutant of strain 2011; Sm ^r .
Agrobacterium tumefaciens NTL4	[3]	Used for analysis of Atu-peTrpL.
<i>Bradyrhizobium japonicum</i> USDA 110spc4	[4]	Used for analysis of Bja-peTrpL; Sp ^r .
Escherichia coli DH5α	Thermo Fisher	Used for cloning; <i>fhu</i> A2 <i>lac(del)U169 phoA glnV44</i> Φ80' <i>lacZ(del)M15 gyrA96 recA1 relA1 endA1 thi-1</i> <i>hsd</i> R17.
Escherichia coli S17-1	[5]	<i>E. coli</i> 294 Thi RP4-2-Tc::Mu-Km::Tn7 integrated into the chromosome.
Plasmids	Ref.	Description
pRK4352	[6]	Broad host range plasmid with <i>rrn</i> promoter from <i>Rhodobacter sphaeroides</i> ; Tc ^r .
pRK-rnTrpL (synonym pRK- SmelRcsR1)	[7]	pRK4352 derivative for constitutive production of rnTrpL (previously SmelRcsR1) and peTrpL; Tc ^r .
pRK-trpL-egfp	[2]	pRK4352 derivative; contains a translational S. meliloti trpL::egfp fusion harboring the first 6 codons of trpL fused to the third codon of egfp; the trpL::egfp transcript is leaderless; Tc ^r pRK4352 derivative similar to pRK-trpL-egfp, with
pRK-SDtrpL-egfp	This work	exception of a typical Shine-Dalgarno sequence in the transcript, upstream of the <i>trpL</i> start codon; Tc ^r .
pSRKTc	[8]	Broad host range expression vector with tightly regulated, IPTG inducible <i>lacZ</i> promoter; Tc ^r
pSRKTc-peTrpL	This work	pSRKTc derivative; contains a recombinant ORF encoding the <i>S. meliloti</i> peTrpL peptide, cloned in frame with the ATG of the Ndel restriction site; Tc ^r .
pSRKTc-Atu-peTrpL	This work	pSRKTc derivative; contains a recombinant ORF encoding the <i>A. tumefaciens</i> peTrpL peptide, cloned in frame with the ATG of the Ndel restriction site; Tc ^r .
pSRKTc-Bja-peTrpL	This work	pSRKTc derivative; contains a recombinant ORF encoding the <i>B. japonicum</i> peTrpL peptide, cloned in frame with the ATG of the Ndel restriction site; Tc ^r .
pSRKGm	[8]	Broad host range expression vector with tightly regulated, IPTG inducible <i>lacZ</i> promoter; Gm ^r
pSRKGm-peTrpL	This work	pSRKGm derivative; contains a recombinant ORF encoding the <i>S. meliloti</i> peTrpL peptide, cloned in frame with the ATG of the Ndel restriction site; Gm ^r .
pSRKGm-peTrpL-3.UAG	This work	pSRKGm-peTrpL derivative, in which the third codon is replaced by a stop codon; Gm ^r .
pSRKGm-peTrpL-W10A	This work	pSRKGm-peTrpL derivative, in which the 10. (tryptophan) codon is replaced by an alanine codon; Gm ^r .
pSRKGm-peTrpL-W11A	This work	pSRKGm-peTrpL derivative, in which the 11. (tryptophan) codon is replaced by an alanine codon; Gm ^r .
pSRKGm-peTrpL-W12A	This work	pSRKGm-peTrpL derivative, in which the 12. (tryptophan) codon is replaced by an alanine codon; Gm ^r .
pSRKGm-3×FLAG-peTrpL	This work	pSRKGm-peTrpL derivative for production of 3×FLAG-peTrpL; Gm ^r .
pSRKGm-3×FLAG-peTrpL-W10A	This work	pSRKGm-3×FLAG-peTrpL derivative, in which the 10. (tryptophan) codon is replaced by an alanine codon; Gm ^r .
pSRKGm-3×FLAG-peTrpL-W12A	This work	pSRKGm-3×FLAG-peTrpL derivative, in which the 12. (tryptophan) codon is replaced by an alanine codon; Gm ^r .
pSRKGm-3×FLAG	This work	pSRKGm derivative, contains an ORF encoding a 3xFLAG peptide; Gm ^r .
pSRKGm-MS2as-smeR	This work	pSRKGm derivative; used for IPTG-induced transcription of MS2-as-smeR RNA; Gm ^r .

pSRKTc-3×FLAG-peTrpL	This work	pSRKTc-peTrpL derivative for production of 3×FLAG- peTrpL; Tc ^r .
pSUP202pol4	[9]	Suicide plasmid, allows for construction of integration vectors; Tc ^r .
pSUP202pol4-exoP	This work;	pSUP202pol4 derivative, contains 300 nt of the 3' exoP region as an chromosomal integration site in S. meliloti [10]; Tc ^r .
pSUP-PasRegfp	This work	pSUP202pol4-exoP derivative, contains a transcriptional fusion of <i>egfp</i> to the promoter P _{as} (-290 to +2 in respect to the putative asRNA transcription start site, as determined by RNAseq of CoIP RNA); the <i>egfp</i> ORF is preceded by a Shine-Dalgarno sequence, Tc ^r .
pSW2	S.B.W and E.E.H, unpublished	pSRKGm derivative, in which the <i>E. coli lacZ</i> operon module was replaced by the constitutive promoter P_{sinl} followed by Xbal and BamHI restriction sites and a transcription terminator; Gm ^r .
pSW2-trpL-egfp	This work	pSW2 derivative, allows for constitutive transcription of the leaderless <i>trpL::egfp</i> fusion from P _{sinI} ; the fusion contains the first 6 codons of <i>trpL</i> fused to the third codon of <i>egfp</i> ; Gm ^r .
pSW2-SDtrpL-egfp	This work	Similar to pSW2-trpL-egfp, but the constitutively transcribed <i>trpL::egfp</i> is preceded by a Shine- Dalgarno sequence; Gm ^r
pRS-SDegfp	This work	pSW2 derivative, in which <i>egfp</i> preceded by a Shine- Dalgarno sequence is constitutively transcribed from P _{sinl} ; kindly provided by Robina Scheuer ; Gm ^r .
pRJ-MCS (synonym pRJPaph- MCS)	[11]	Integration vector for <i>B. japonicum</i> ; contains a constitutive <i>nptII</i> promoter; Tc ^r
pRJ-Bja-peTrpL	This work	pRJ-MCS derivative for constitutive overproduction of peTrpL in <i>B. japonicum</i> ; Tc ^r
pLK46	[12]	Contains egfp with GC rich codons; Tcr

References:

- 1. Casse F, Boucher C, Julliot JS, Michel M, Denarie J. 1979. Identification and characterization of large plasmids in *Rhizobium meliloti* using agarose-gel electrophoresis. Gen Microbiol 113: 229-242.
- Melior H, Li S, Madhugiri R, Stötzel M, Azarderakhsh S, Barth-Weber S, Baumgardt K, Ziebuhr J, Evguenieva-Hackenberg E. 2019. Transcription attenuation-derived small RNA rnTrpL regulates tryptophan biosynthesis gene expression in *trans. Nucleic Acids Res* 47: 6396-6410.
- Cha C, Gao P, Chen YC, Shaw PD, Farrand SK. 1998. Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plantassociated bacteria. Mol Plant Microbe Interact 11: 1119-1129.
- Regensburger B, Hennecke H. 1983. RNA polymerase from *Rhizobium japonicum*. Arch Microbiol 135: 103-109.
- 5. Simon R, Priefer U, Pühler A. 1982. A broad host range mobilization system for *in vivo* genetic engineering: transposon mutagenesis in gram-negative bacteria. Biotechnology 1: 784-791.

- 6. Mank NN, Berghoff BA, Hermanns YN, Klug G. 2012. Regulation of bacterial photosynthesis genes by the small noncoding RNA PcrZ. Proc. Natl Acad Sci U S A 109: 16306-16311.
- Baumgardt K, Šmídová K, Rahn H, Lochnit G, Robledo M, Evguenieva-Hackenberg E (2016) The stress-related, rhizobial small RNA RcsR1 destabilizes the autoinducer synthase encoding mRNA *sinl* in *Sinorhizobium meliloti. RNA Biol* 13: 486-499.
- Khan SR, Gaines J, Roop RM2nd, Farrand SK. 2008. Broad-host-range expression vectors with tightly regulated promoters and their use to examine the influence of TraR and TraM expression on Ti plasmid quorum sensing. Appl Environ Microbiol 74: 5053-5062.
- Fischer HM, Babst M, Kaspar T, Acuna G, Arigoni F, Hennecke H. 1993. One member of a gro-ESLlike chaperonin multigene family in *Bradyrhizobium japonicum* is co-regulated with symbiotic nitrogen fixation genes. EMBO J 12: 2901-2912.
- 10.Schlüter JP, Czuppon P, Schauer O, Pfaffelhuber P, McIntosh M, Becker A. 2015. Classification of phenotypic subpopulations in isogenic bacterial cultures by triple promoter probing at single cell level. J Biotechnol 198: 3-14.
- 11.Hahn J, Thalmann S, Migur A, von Boeselager RF, Kubatova N, Kubareva E, Schwalbe H, Evguenieva-Hackenberg E. 2017. Conserved small mRNA with an unique, extended Shine-Dalgarno sequence. RNA Biol 14: 1353-1363.
- 12.McIntosh M, Krol E, Becker A. 2008. Competitive and cooperative effects in quorum-sensingregulated galactoglucan biosynthesis in *Sinorhizobium meliloti*. J Bacteriol 190: 5308-5317.