
GigaScience

Watchdog 2.0: New developments for reusability, reproducibility and workflow
execution

--Manuscript Draft--

Manuscript Number: GIGA-D-19-00409R2

Full Title: Watchdog 2.0: New developments for reusability, reproducibility and workflow
execution

Article Type: Technical Note

Funding Information: Deutsche Forschungsgemeinschaft
(FR2938/7-1)

Prof. Dr. Caroline C. Friedel

Deutsche Forschungsgemeinschaft
(FR2938/10-1)

Prof. Dr. Caroline C. Friedel

Deutsche Forschungsgemeinschaft
(CRC 1123 (Z2))

Prof. Dr. Caroline C. Friedel

Abstract: Background: Advances in high-throughput methods have brought new challenges for
biological data analysis, often requiring many interdependent steps applied to a large
number of samples. To address this challenge, workflow management systems, such
as Watchdog, have been developed to support scientists in the (semi-)automated
execution of large analysis workflows.

Implementation: Here, we present Watchdog 2.0, which implements new
developments for module creation, reusability and documentation and for
reproducibility of analyses and workflow execution. Developments include a graphical
user interface for semi-automatic module creation from software help pages, sharing
repositories for modules and workflows and a standardized module documentation
format. The latter allows generation of a customized reference book of public and user-
specific modules. Furthermore, extensive logging of workflow execution, module and
software versions and explicit support for package managers and container
virtualization now ensures reproducibility of results. A step-by-step analysis protocol
generated from the log file may e.g. serve as a draft of a manuscript methods section.
Finally, two new execution modes were implemented. One allows resuming workflow
execution after interruption or modification without re-running successfully executed
tasks not affected by changes. The second one allows detaching and reattaching to
workflow execution on a local computer while tasks continue running on computer
clusters.

Conclusions: Watchdog 2.0 provides several new developments that we believe to be
of benefit for large-scale bioinformatics analysis and that are not completely covered
by other competing workflow management systems. The software itself, module and
workflow repositories, and a comprehensive documentation are freely available at
https://www.bio.ifi.lmu.de/watchdog.

Corresponding Author: Caroline C. Friedel
Ludwig-Maximilians-Universitat Munchen
München, GERMANY

Corresponding Author Secondary
Information:

Corresponding Author's Institution: Ludwig-Maximilians-Universitat Munchen

Corresponding Author's Secondary
Institution:

First Author: Michael Kluge

First Author Secondary Information:

Order of Authors: Michael Kluge

Marie-Sophie Friedl

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Amrei L. Menzel

Caroline C. Friedel

Order of Authors Secondary Information:

Response to Reviewers: The response to reviewer and editor comments was uploaded as a separate PDF as
Supplementary Material to the submission.

Please note that the file created by the submission system from the uploaded LaTeX
file does not show the citations, references and the list of abbreviations correctly. The
main manuscript file main.pdf we uploaded as well shows these correctly.

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://scicrunch.org/resources
https://scicrunch.org/resources
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/editorial_policies_and_reporting_standards#Availability
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist

Placeholder for
OUP logo
oup.pdf

GigaScience, 20xx, 1–10

doi: xx.xxxx/xxxx

Manuscript in Preparation

Technical Note

T E C H N I C A L N O T E

Watchdog 2.0: New developments for reusability,
reproducibility and workflow execution

Michael Kluge1, Marie-Sophie Friedl1, Amrei L. Menzel1 and Caroline C. Friedel1,⇤

1Institut für Informatik, Ludwig-Maximilians-Universität München, Amalienstr. 17, Munich 80333, Germany
⇤Correspondence address: Caroline C. Friedel, LFE Bioinformatik, Institut für Informatik, Ludwig-Maximilians-Universität München, Amalienstr. 17,
Munich 80333, Germany. E-mail: caroline.friedel@bio.ifi.lmu.de
ORCID IDs: Michael Kluge: 0000-0002-5733-6133, Caroline C. Friedel: 000-0003-3569-4877

Abstract
Background: Advances in high-throughput methods have brought new challenges for biological data analysis, often requiring many
interdependent steps applied to a large number of samples. To address this challenge, workflow management systems, such as
Watchdog, have been developed to support scientists in the (semi-)automated execution of large analysis workflows.
Implementation: Here, we present Watchdog 2.0, which implements new developments for module creation, reusability and
documentation and for reproducibility of analyses and workflow execution. Developments include a graphical user interface for
semi-automatic module creation from software help pages, sharing repositories for modules and workflows and a standardized module
documentation format. The latter allows generation of a customized reference book of public and user-specific modules. Furthermore,
extensive logging of workflow execution, module and software versions and explicit support for package managers and container
virtualization now ensures reproducibility of results. A step-by-step analysis protocol generated from the log file may e.g. serve as a
draft of a manuscript methods section. Finally, two new execution modes were implemented. One allows resuming workflow
execution after interruption or modification without re-running successfully executed tasks not affected by changes. The second one
allows detaching and reattaching to workflow execution on a local computer while tasks continue running on computer clusters.
Conclusions: Watchdog 2.0 provides several new developments that we believe to be of benefit for large-scale bioinformatics
analysis and that are not completely covered by other competing workflow management systems. The software itself, module and
workflow repositories, and a comprehensive documentation are freely available at https://www.bio.ifi.lmu.de/watchdog.

Key words: Workflow management system; Bioinformatics; Automated biological data analysis; Next-generation sequencing;
Reusability; Reproducibility; Open science tools;

Background

Due to improvements in sequencing technologies, sequencing costs
have dropped massively in the last years [1]. While the first hu-
man genome sequence cost about $2.7 billion and took 13 years
to complete [2], companies now offer genome sequencing to private
customers using state-of-the-art next-generation-sequencing (NGS)
technologies for less than $1000. In addition, other cellular proper-
ties can now be measured at large scale using NGS. This includes
e.g. the expression of genes (RNA-seq) [3], protein binding to DNA
(ChIP-seq) [4], open chromatin regions (ATAC-seq) [5] and many
more.

As a consequence, data analysis has become more complex with

new challenges for bioinformatics, often requiring multiple interde-
pendent steps and integration of numerous replicates and several
types of high-throughput data. Since manual execution of all re-
quired analysis steps is cumbersome, time-consuming and laborious
to repeat, several tools have been developed for performing large-
scale bioinformatics analyses. One group of tools consists of static
analysis pipelines specifically designed for one application, e.g. tran-
scriptome analysis [6, 7]. While these pipelines have the advan-
tage that a particular analysis can be repeated without great effort,
components of these analysis pipelines are often not easily reusable
for other related applications. As an alternative, workflow man-
agement systems (WMSs) have been developed that support cre-
ation of such analysis pipelines (denoted as workflows in this con-

Compiled on: May 27, 2020.
Draft manuscript prepared by the author.

1

Manuscript Click here to access/download;Manuscript;Watchdog2.pdf

https://www.editorialmanager.com/giga/download.aspx?id=97594&guid=91992d17-158f-4886-b0e1-5d7167265546&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=97594&guid=91992d17-158f-4886-b0e1-5d7167265546&scheme=1

2 | GigaScience, 20xx, Vol. 0, No. 0

text) from reusable components and allow (semi-)automated execu-
tion of these workflows. Popular WMSs are Galaxy [8], KNIME [9],
Snakemake [10] and Nextflow [11] and differ in the implemented set
of features, target audience, the required training period, usage fees
and more (for more details see the comparison in the first article on
Watchdog [12] and at the end of this article).

Previously, we presented the WMS Watchdog for the distributed
analysis of large-scale experimental data originating e.g. from NGS
experiments [12]. The core features of Watchdog include straightfor-
ward processing of replicate data, support for and flexible combina-
tion of distributed computing or remote executors, customizable er-
ror detection, user notification on execution errors and manual user
intervention. In Watchdog, reusable components are encapsulated
within so-called modules, which are defined by an XSD file specify-
ing the program to execute, input parameters and return values of
the module. In addition, modules can contain scripts or compiled
binaries that are invoked in the module. There are no restrictions
on included software or on the programming language used in addi-
tional scripts. Modules may also deploy required software internally
using Conda [13], Docker [14] or similar tools.

A Watchdog workflow is defined in an XML format and con-
sists of a sequence of tasks and dependencies between tasks. Each
task uses one module and the same task can be automatically run
on multiple samples or with multiple parameter combinations using
so-called process blocks. This creates several subtasks, one for each
sample or parameter combination. A workflow can either be created
manually using any XML editor or the Watchdog graphical user in-
terface (GUI) for workflow construction. While XML may be more
complex than e.g. YAML or JSON, it is widely used and numerous
XML editors are available, e.g. plugins for Eclipse [15]. Further-
more, using the GUI requires neither understanding of XML nor
programming skills and thus allows easy construction of workflows
from a pre-defined set of modules. In this case, the only Watchdog
syntax that has to be learned is how to reference variables.

Workflows can be executed using the Watchdog scheduler via a
command-line interface or the GUI, which are both implemented in
Java and thus platform-independent. The Watchdog scheduler con-
tinuously monitors the execution status of tasks and schedules new
tasks or subtasks for execution if all tasks they depend on finished
successfully. The execution status of tasks is reported to the user
via standard output, a web interface that allows manual intervention
and (optionally) email.

In the workflow, different executors can be specified for different
tasks. Currently, three types of executors are supported (local host,
remote host via SSH or computer clusters using SGE or SLURM).
Thus, resource-intensive or long-running tasks can e.g. be submitted
to a computer cluster while less demanding tasks may be executed
on the local host. Furthermore, Watchdog provides a plugin system
that allows users with programming skills to add new executor types,
e.g. for cloud computing, without having to change the original
Watchdog code (for details see [12]).

In this article, we present Watchdog 2.0, a new and improved
version of Watchdog with several new developments for module cre-
ation and documentation, reusability of modules and workflows, re-
producibility of analysis results as well as workflow execution.

Implementation

Overview

In the following, we describe only new developments that were
added in Watchdog 2.0. The general principle of Watchdog and
features already present in the previously published version remain
unchanged, thus we refer to our previous publication for a detailed
introduction to Watchdog [12]. The central improvements provided
by Watchdog 2.0 are the following and are described in more detail in
subsequent sections (see Fig. 1 for an overview). First, Watchdog 2.0

now provides a GUI for semi-automatically creating a new module
from a software’s help page. Second, a standardized documentation
format for modules was introduced in Watchdog 2.0. From module
documentation files, a searchable module reference book can then
be generated providing an overview and details on existing modules.
Third, a community platform was created for sharing Watchdog
modules and workflows with other scientists.

Improvements for reproducibility of analysis results comprise ex-
tensive logging of executed steps, including module and software
versions, and the possibility to automatically generate a summary
of the executed workflow steps, e.g. as a draft for an article methods
section. In addition, we added fully integrated support for container
virtualization or package managers in the form of so-called execu-
tion wrappers, in particular for Docker containers and the Conda
package management system.

Finally, two additional execution modes were implemented to
provide more comfort and flexibility in workflow execution. The re-
sume mode allows restarting execution of a workflow by (re-)running
only tasks that previously did not run (successfully), were added or
modified compared to the original execution. The second mode al-
lows detaching the scheduler from workflow execution without abort-
ing tasks running on a computer cluster and reattaching to execution
at a later time on the same or a different computer.

The GUI for module creation and all new command-line tools de-
scribed in the following are implemented in Java and thus platform-
independent.

Semi-automated module generation

To make a software available for use in Watchdog workflows, a new
module has to be created. Watchdog already provides a helper
script for creating the module XSD file and (optionally) a skele-
ton Bash script that only has to be extended by the program
call. Nevertheless, this requires manually listing all parameters for
the module. The newly developed GUI moduleMaker (available
at https://github.com/watchdog-wms/moduleMaker) now automat-
ically extracts parameters and flags from a software help page to
more conveniently create the corresponding module.

The moduleMaker GUI uses sets of regular expressions match-
ing common help page formats to parse the help page of a software.
Currently, 8 pre-defined regular expression sets are provided but
users can also define new sets using the GUI and add them to the
pre-defined list. When creating a module with the GUI, users may
either choose one particular regular expression set explicitly or let
moduleMaker rank the regular expression sets based on how well
they match the help page. In the later case, the user can then exam-
ine the results of the n best-matching regular expression sets (with
n user-defined) and choose the result they consider best. Subse-
quently, the user can correct errors in the automatic detection, add
additional flags or parameters and modify or delete detected param-
eters. In a next step, existence checks for input files or directories
can be added and return values for the module can be defined.

Once the user is finished, moduleMaker creates the module XSD
file and a wrapper Bash script for the software that – in contrast
to the skeleton Bash script created by the helper script – is almost
complete. The only manual changes required by the developer in-
volve assigning values to return values. This wrapper script checks
that required software is installed, parses parameters, verifies that
mandatory parameters are set, performs existence checks on required
input files and directories, executes the program, performs default
error checks after execution and writes return values to a correspond-
ing file read by the scheduler. Optionally, a project file can be
saved that allows reloading and modifying modules created with
the moduleMaker at a later time.

Thus, developing a module does not require understanding XML
or the module XSD schema. Furthermore, little or no Bash scripting
experience is required if the GUI or helper script is used, respectively.

Kluge et al. | 3

Reusability Reproducibility Workflow execution

Semi-automated module creation

Module documentation

Module & workflow sharing

Automated reporting

Module versioning

Resume mode

Detach / reattach mode

Software version logging

XSDsoftware

LOGv3.1.6 v1.7a

XSD

v2

XSD

v3

XSD XML

www

LOG

XSD

Execution wrappers

software

Figure 1. Overview on new developments in Watchdog 2.0. New features are broadly grouped into the categories reusability, reproducibility,
and workflow execution. Left: New modules can now be developed in a semi-automated manner from software help pages using a GUI. A standardized
documentation format was developed, allowing to automatically compile a reference book of available modules. Public repositories for sharing modules
and workflows are now available. Center: Extensive logging of workflow execution ensures reproducibility of results and allows automated creation of a
step-by-step report on analysis methods. Versioning of modules allows adaption to new requirements with backward compatibility without unnecessary
module duplication. Software and module versions are now automatically reported in the log files. Execution wrappers now allow automatic deployment
of software using container virtualization or package managers. Right: Workflow execution becomes more flexible with the resume and detach/reattach
modes. The resume mode allows resuming interrupted or modified workflow execution without unnecessarily re-running tasks. Detach/reattach allows
shutting down the scheduler on the local host while still running tasks on a computer cluster and reattaching to workflow execution on the same or
different computer at a later time.

The GUI creates a Bash script that is finished apart from the return
value assignment. If the helper script is used, there is no require-
ment to use a Bash script to execute the commands. Any type of
executable can be called in the module, e.g. a Python script. Ex-
amples for modules using Python scripts are included in the new
module repository (see below).

Module documentation

While the Watchdog scheduler, features of Watchdog workflows and
workflow creation are already comprehensively documented [12], no
convenient way was so far available for documenting both individual
Watchdog modules and the set of available modules. To address this
problem, we developed i) a standardized documentation format for
modules and ii) a program for creating a nicely formatted, search-
able and updatable catalog of modules, the so-called reference book
(see Fig. 2 for an example), from the documentation files of indi-
vidual modules. The module entry in the reference book describes
software dependencies, parameters (i.e. input files and values) and
their default values, return values (i.e. output files and values) and
more. Thus, instead of inspecting the module XSD or input mask
in the GUI to obtain this information, users can now simply browse
the reference book.

Documentation format
Individual Watchdog modules are now documented using a stan-
dardized XML format. This contains general module information
(e.g. author, description, dependencies) and properties of module
parameters and return values (e.g. name, type, description). The
allowed semantic is described by an XSD schema file, allowing the
XML documentation files to be read and further processed by XML
parsing software.

To limit the overhead for creating the module documenta-
tion, a command-line tool (docuTemplateExtractor) is provided by
Watchdog 2.0. The docuTemplateExtractor extracts parameter and
return value information from the module XSD file and generates a
template documentation file. Module developers then only have to

fill in parts of the XML documentation not contained in the module
XSD file.

As noted above, modules may also contain additional scripts,
which can contain further information useful for documentation. For
example, many scripts utilize an argument parser that requires a
description or default values for each parameter. To exploit this
and guarantee consistency between documentation and scripts, the
docuTemplateExtractor also aims to extract this information. Since
the syntax used by the argument parser strongly depends on both
the used scripting language and the argument parser, this informa-
tion cannot be obtained with a generalized approach. Instead, we
developed a plugin system that allows developers to load custom
parameter and return value extractors by implementing a simple
Java interface. Currently, two parameter extractors for Bash- and
Python-based modules are available, which obtain description and
default value of parameters from argument parser definitions. For
Bash scripts, the shFlags library is supported and for Python the
argparse library.

Reference book

The reference book is implemented as an HTML webpage based
on the UIkit framework [16]. It can be opened with any browser
supporting JavaScript and does not require a dedicated web server.
The reference book can be created from the XML documentation
files using the refBookGenerator command-line tool. The reference
book can be created either for publicly available modules, personal
modules of the user or a combination of both. When new modules
are added or existing modules are removed, the reference book can
simply be regenerated using the refBookGenerator . Thus, every
user can generate their personalized reference book containing the
modules they work with or consider relevant to their work.

Fig. 2 shows the front page of the module reference book (gener-
ated for all publicly available modules) after searching for modules
containing the term “bam file” in the description. The main sec-
tion of the front page provides an overview on all available modules.
Every module is visualized as a box that contains its name, author,
assigned category and a short description. The search bar at the top

4 | GigaScience, 20xx, Vol. 0, No. 0

can be used to filter modules using a keyword search, which can be
applied to title, author, category and/or description. Alternatively,
the modules displayed in the overview section can be filtered based
on authorship, category and update date. Clicking on a module
box opens a detailed view, showing module dependencies, parame-
ters and valid input values, return values and if applicable citation
information and weblinks (see Fig. 3 for an example).

Public repositories for module and workflow sharing

Watchdog 2.0 now provides two repositories on Github under the
watchdog-wms organization (https://github.com/watchdog-wms/)
that are dedicated for sharing modules (watchdog-wms-modules) and
workflows (watchdog-wms-workflows), respectively, by other users.
In order to contribute either a module or workflow to one of the
repositories, users have to first create a copy (fork) of the repository,
change or add modules/workflows, commit the proposed changes to
the repository copy, and submit these changes for review to the origi-
nal repository via a pull request. An integration pipeline then checks
whether the proposed changes adhere to essential requirements. If
all automatic tests were successful, the proposed changes can be
accepted by Watchdog team members.

Currently, the module repository contains 60 modules. Each
module is located in a separate directory and must contain at least
the XSD module file and an XML documentation file. Currently,
most available modules focus on sequencing data analysis, in partic-
ular RNA-seq and ChIP-seq analysis. Some modules provide basic
functionalities like file compression or text search while others fulfill
more specific tasks, e.g. differential gene expression analysis (mod-
ule DETest), peak detection in ChIP-seq data (module GEM) or
identification of circular RNAs (modules circRNAfinder and ciri2).
By default, modules are licensed under Apache License 2.0, but a dif-
ferent license can be assigned to a module by including it in the mod-
ule folder. A reference book for all modules in the repository is avail-
able at https://watchdog-wms.github.io/watchdog-wms-modules/.
It is automatically updated with every commit to the master branch
of the module repository.

Workflows shared in the watchdog-wms-workflows repository

also have to be located in separate directories. Each workflow di-
rectory has to contain the XML workflow file, a readme file and op-
tionally example data. Workflows should be documented with inline
comments. Furthermore, lines that require modifications to adapt
e.g. to different computing environments or input data should be
highlighted in order to allow everyone to quickly adapt the workflow.
We recommend, but do not enforce, that paths or constant param-
eter values are not hard-coded in the task section of the workflow,
but rather that global constants are defined in the settings section.
A constant CONSTANT can then be referenced as ${CONSTANT} within
process block or task definitions. If this recommendation is followed,
the workflow can be quickly adapted to a new environment or data
by modifying only constants and executors.

Currently, the workflow repository contains e.g. the workflow for
RNA-seq mapping and differential gene expression analysis from the
original Watchdog release. Additionally, new workflows are available
e.g. for circular RNA detection with CIRI2 [17] and circRNA_finder
[18], ChIP-seq analysis using GEM (RRID:SCR_005339) followed
by ChIPseeker [19, 20], and download of public NGS data from the
NCBI Sequence Read Archive (SRA, RRID:SCR_004891) [21] fol-
lowed by alignment with HISAT2 (RRID:SCR_015530) [22].

Methods for ensuring reproducibility

A critical aspect of any analysis of biological data is the reproducibil-
ity of the results. While the use of a WMS already contributes to
reproducibility, workflows may be modified between different runs of
the workflow, e.g. by changing parameter values or in- or excluding
some steps, or the underlying software may be changed, e.g. by up-
dates to a new version. This may lead to uncertainty regarding the
steps, parameters and software environment of the analysis that pro-
duced specific results. Furthermore, when reporting the individual
steps of an analysis, for instance in a publication, some steps may be
unintentionally omitted, making it difficult for others to reproduce
the results. To address these problems, Watchdog 2.0 includes a
number of new developments to ensure reproducibility of analyses.

Figure 2. Overview page of the module reference book. The main section displays available modules as boxes, showing the module name, date
of last change, a short description, links and the author of the module. A search bar and category bar can be used to filter the displayed modules using
text search or multi-category filters. In this example, all modules containing the term “bam file” in the description are shown.

Kluge et al. | 5

Logging and automated reporting
When executing a workflow, Watchdog 2.0 now produces a time-
stamped log file (filename extension .resume) reporting on the suc-
cessful execution of each individual task. This log file is also used
for the resume mode (see below). If a task creates multiple subtasks,
e.g. for multiple input samples, successful execution of each subtask
is recorded. For each task/subtask the log file records the value of
each input parameter as well as return values.

Moreover, a report of the executed steps can be automati-
cally created from the log file using the new command-line tool
reportGenerator provided with Watchdog 2.0 (see Fig. 4 for an
example of the report). For this purpose, the XML documentation
file of each module contains the element paperDescription which
can be filled with a short description of the module and citation
information. It can also contain references to parameters of the
task or the software version (see below for software version logging).
The reportGenerator concatenates these descriptions in the order
the corresponding tasks were executed and replaces references by
the values reported in the log file. There is also an option to include
Pubmed IDs from the module documentation. The resulting report
can then be used as a step-by-step protocol of the analysis or be
further revised for the methods section of a manuscript.

Module versioning
Modules generally rely on third-party software that can be modi-
fied repeatedly to improve performance, fix bugs or be adapted to
changing requirements, for instance by adding support for new types
of experimental data. As a consequence, a module will need to be
adapted over time, e.g. by changing the parameters of the module to
support new parameters or drop obsolete ones. At the same, back-
ward compatibility needs to be ensured such that previously defined
workflows relying on the old module version can still be executed.
One solution to this problem would be to duplicate the module and
adapt the copy. However, this leads to unnecessary code duplication,
as most of the module XSD file will remain unchanged, and results
in code that is difficult to maintain.

To avoid this problem, Watchdog 2.0 now allows defining differ-
ent versions of a module within one module XSD file by specifying
the minimum and maximum supported module version for each ele-
ment in the XSD file. If neither minimum or maximum supported
version is indicated, the element is valid for all module versions.
This allows changing input parameters, return values, or even the

Figure 3. Detailed view of a module in the reference book. As an
example, the detailed view on the indexBam module is shown, contain-
ing a short description, dependencies on third-party software, parameters
with valid ranges and descriptions, return values, citation information and
weblinks. The citation information will also be included into the step-by-
step report automatically created from the workflow execution log file.

Quality of the sequencing data was checked using FastQC (0.11.3).
RNA-seq reads were mapped against the XXX genome using Con-
textMap (2.7.9) with BWA as short read aligner and default param-
eters. Samtools (1.9) was used to convert SAM to BAM files. Sam-
tools (1.9) was used to index the BAM files. Quality of the resulting
mappings was assessed using RSeQC (3.0.0). FeatureCounts (1.4.6)
was applied to count read/fragment counts per gene/exon/other fea-
ture according to Ensembl_Homo_sapiens.GRCh38.78.chr21.gtf
annotation. Differential gene expression analysis was performed
using DESeq2 (1.22.2).

Figure 4. Result of automated report generation for example

workflow. This example shows the step-by-step analysis report generated
with the reportGenerator from the execution log file for the RNA-seq ex-
ample workflow provided with Watchdog. The workflow was described in
detail in our original Watchdog publication [12]. The annotation file name
(a parameter to featureCounts) and software version numbers in brackets
are automatically obtained from the log file (see software version logging).
For this example, the workflow was simplified to perform differential gene
expression analysis only with DESeq2, instead of four different gene ex-
pression analysis methods as previously described. For modules without
paper description (e.g. unzipping or replicate merging), the report would
contain the text “No short description given in documentation of module
module name”. To shorten this example, these sentences were manually
removed as well as the citation information commonly included in the
module descriptions.

executed program call between different module versions. When ex-
ecuting a workflow, the module version for each task will also be
recorded in the log file. By default, the first version of a module
is used unless otherwise specified in the workflow XML file. This
guarantees that workflows defined before a new module version was
introduced do not have to be adapted.

Software version logging
Watchdog is very flexible with regard to how dependencies to third-
party software in a module can be handled by module developers.
Software can be shipped with the module, loaded via package and
environment management systems like Conda [13] or be required to
be installed on the system that will execute the corresponding task
(e.g. the local host or a computer cluster). In any case, it is crucial
to know which software versions were run for a particular analysis
in order to reproduce the analysis results or understand differences
in outputs between repeated runs since new software releases often
correct errors or may change the behavior of the software.

Thus, Watchdog 2.0 now implements a general approach for re-
porting versions of third-party software used in a module in the log
file. For this purpose, a new attribute in the module XSD file can
be used to define the flag for version printing of third-party soft-
ware. During workflow execution, after a task or subtask has been
completed successfully on a particular computer, the program call
defined in the corresponding module is invoked with the version flag
on the same computer to retrieve the installed third-party software
version. This software version is then reported for the task/subtask
in the log file. If the version flag has not been defined in the module,
this step is omitted for the corresponding tasks. This option is also
useful for identifying differences in installed third-party software be-
tween different executors used for workflow execution, such as the
local host, a computer cluster or remote executors accessed by SSH.

Execution wrappers
A disadvantage of Watchdog’s flexibility on how installation of third-
party software is handled is that it complicates both reusability and
reproducibility of workflows. Having to install all required software
before modules or workflows can be used can be cumbersome. Fur-
thermore, to fully reproduce results from a workflow, users would
have to make sure that they (still) have the same software versions
installed as in the original run of a workflow. Thus, we now im-

6 | GigaScience, 20xx, Vol. 0, No. 0

plemented execution wrappers to explicit support automatic deploy-
ment of software via package managers or container virtualization in
Watchdog 2.0. Execution wrappers are initialized in the settings sec-
tion of a Watchdog workflow and are then assigned to individual ex-
ecutors, which in turn use the wrapper to deploy the software for all
tasks they run. Each executor can be assigned both a package man-
ager and a container, thus package managers can also be used within
containers. Furthermore, different packager managers or containers
can be assigned to different tasks by using different executors and
corresponding execution wrappers for these tasks. Execution wrap-
pers are implemented using Watchdog’s plugin system, thus the set
of available execution wrappers can be extended by users without
having to modify the Watchdog code.

Currently, Watchdog 2.0 provides execution wrappers for the
Conda package manager (RRID:SCR_018317) [13] and for Docker
container virtualization [14]. To enable use of Conda for a module,
the module directory only has to contain a YAML file defining the
default Conda environment (modulename.conda.yml). For different
versions of a module, different Conda environments can be defined
(ending in .v[0-9]+.conda.yml). If no version-specific Conda defini-
tion file is found, the default Conda environment for the module is
used. If Conda execution wrappers are not employed in a workflow
or for a particular executor, the Conda environment definition will
simply be ignored for the whole workflow or the tasks run by the
executor, respectively. Thus, previously developed workflows will
not be affected by these changes.

The Docker execution wrapper allows running tasks within con-
tainers built from Docker images using Docker, Podman or Singular-
ity. Furthermore, it provides an option for automatically mounting
files and directories on the host machine that are used in parame-
ters of tasks. This option is enabled by default but can be disabled.
Thus, adding container virtualization to an executor does not re-
quire changes to corresponding tasks. Similar to the Conda execu-
tion manager, module- and module-version-specific Docker images
can be enabled by adding one or more files to the module folder
specifying the image name to be used for the corresponding tasks.
An example for using Docker and Conda in combination is provided
in the workflow for RNA-seq mapping and differential gene expres-
sion analysis available from the workflow repository and with the
Watchdog distribution.

New execution modes

In the original Watchdog version, the Watchdog scheduler had to
run continuously on the computer on which workflow execution is
started. If workflow execution was interrupted, e.g. by a computer
crash or reboot, only a manual restart option was available. This
required identifying the last task finished successfully or re-running
some analyses in case only some subtasks of a task finished suc-
cessfully. To avoid this problem, Watchdog 2.0 now supports two
additional execution modes (see Fig. 5). The first one allows resum-
ing workflow execution at any point and re-running only the tasks or
subtasks in a workflow that did not finish successfully, were modified
or depended on modified tasks. The second execution mode allows
detaching from workflow execution by shutting down the Watchdog
scheduler on the current computer while tasks distributed to a com-
puter cluster continue running. The scheduler can then reattach to
the workflow execution at a later time either from the same or a
different computer. This can be used for instance to reboot the ma-
chine running the scheduler or to switch from a desktop computer
to a laptop without interrupting execution of tasks running on a
computer cluster.

Resume mode
As described above, Watchdog 2.0 creates a detailed log file during
execution of a workflow containing successfully finished (sub)tasks
as well as their input parameters and return values. In resume mode,

(a) Resume mode

(b) Detach / reattach mode

PClaptop

time

cluster

B F

A

task dependencies

inferred subtasks

successfully executed tasks

new tasks

modified tasks

new replicates

E
Z

D

D1 D2

C

scheduler scheduler

request detach reattach endstart

F

E

CB

Z

D3

D4

tasks re-executed

D3 D4

Figure 5. New execution modes in Watchdog 2.0. (a) Resume mode:
From the log file of a previous workflow execution and the workflow XML
file, the Watchdog scheduler automatically detects (sub)tasks that either
have not yet run successfully, are new or modified or require processing
of additional samples. Consequently, only these (sub)tasks are executed
as well as all (sub)tasks depending on them (dependencies indicated as
dashed lines in this figure). Here, light red indicates (sub)tasks that were
previously executed successfully, light blue tasks that were since modified,
dark blue new tasks that were added and dark red additional subtasks
that have to be executed because additional samples were added. Double
lines around tasks indicate which (sub)tasks have to be (re-)executed after
resuming this workflow. (b) Visualization of the detach/reattach mode
after resuming the workflow shown in (a). In this case, subtasks of D and
task E are executed on a computer cluster, while a local executor is used
for all other tasks. In this example, the Watchdog scheduler is originally
started on a laptop and some tasks are scheduled and executed. After a
while, a detach request is sent and no more new tasks are scheduled on
the local host. Once the tasks on the local computer (blue) have finished,
the detach file is written and the scheduler terminates. Subtasks D3 and
D4 submitted to the computer cluster (yellow) continue to be executed.
When the user reattaches to workflow execution, this time on a desktop
computer (orange), new tasks are again scheduled.

Watchdog 2.0 uses the log file of a previous workflow run to deter-
mine which (sub)tasks have to be (re-)executed or not. Individ-
ual (sub)tasks are identified by their input parameter combinations.
(Sub)tasks not listed in the log file with exactly the same input
parameter values will be scheduled to be executed. Furthermore,

Kluge et al. | 7

(sub)tasks that previously finished successfully with the same pa-
rameters are re-executed if they depend on other (sub)tasks that
are (re-)run.

This not only allows resuming workflows that were interrupted
unexpectedly (e.g. by hardware failure or power outage) but also
workflows that were modified, i.e. by changing parameters for some
tasks, without unnecessarily re-running tasks. Here, Watchdog 2.0
guarantees that all results are updated that may be affected by the
modification. Furthermore, additional samples, e.g. for other condi-
tions or more replicates, can be easily included without re-running
analyses for samples already processed. Importantly, identification
of (sub)tasks that require (re-)execution is performed automatically
without manual user input. This reduces both the overhead for the
user and eliminates the risk that they may forget some steps that
need to be repeated.

The Watchdog 2.0 resume mode is illustrated in Fig. 5(a) for
an example workflow. In this case, a task was modified (task B),
additional samples were added to task D (marked red), requiring
additional subtasks to be run, and additional tasks were added (F
and Z). In resume mode, task B will be re-run because of modified
parameters and task C because it depends on task B. For task D,
only the new subtasks will be executed, but task E will be repeated
as it depends on D. In addition, the newly added tasks will be run.

It should be noted here that after a workflow has been run at
least once, changes to the workflow should be limited to adding
new (sub)tasks (e.g. for new samples) or dependencies. Removing
(sub)tasks or dependencies between tasks may lead to inconsistencies
with old versions of input data being accidentally used for a task.
Thus, this should only be done with utmost care.

Detach / reattach mode
In most cases, the Watchdog scheduler will run on a laptop or desk-
top computer and outsource all resource-intensive tasks to a dis-
tributed computer system, e.g. a computer cluster. As execution of
long, resource-intensive workflows may take hours or even days to
complete, it may not always be possible for the Watchdog scheduler
to be running continuously on the host computer. For instance, the
host running Watchdog might require a reboot to install software
updates or dedicated computer cluster submission hosts may not
allow long-running programs. If the Watchdog scheduler is run on
a laptop, the user may want to change locations with their laptop.
To support these use cases, Watchdog 2.0 now provides the option
to detach the scheduler from a running workflow and reattach at a
later time. Notably, the user does not have to decide before execu-
tion whether to use this mode, but can decide to detach at any time
after starting execution in either normal or resume mode.

In Watchdog 2.0, the user can request to detach using a keystroke
combination (Ctrl-C) or a link in the email notification. After the re-
quest is sent, Watchdog will wait for tasks to complete that are run-
ning either on the local host or a remote host via SSH, but schedule
no further tasks on these executors. In contrast, Watchdog will con-
tinue to submit tasks on cluster executors with workload managers
working independently of Watchdog (currently SGE and SLURM
are supported). Once all tasks on the local and remote hosts are
finished, Watchdog will save the information on tasks running on
cluster executors to a file and then terminate itself. From this mo-
ment, tasks already running on or submitted to computing clusters
will continue running or be scheduled to run by the corresponding
workload managers, but no new tasks can be submitted to these
clusters.

The detach file can then be used at a later time to reattach to
workflow execution at the point where it was stopped previously.
Watchdog will then obtain information on the execution status of
tasks that were still running on or submitted to computer clusters
before detaching, i.e. whether they are still running or finished suc-
cessfully or with errors, and continue scheduling tasks on all ex-
ecutors accordingly. Notably, the Watchdog scheduler can also be
reattached on another computer using the detach file, allowing for

instance to switch from a laptop at home to a desktop computer
at work as illustrated in Fig. 5(b). Moreover, Watchdog 2.0 also
provides a command-line tool to periodically start the scheduler in
auto-detach mode. In this mode, the scheduler checks if tasks were
finished successfully, submits new tasks if possible and then termi-
nates itself automatically.

Comparison to other WMSs

In this article, we present a number of new developments
in our WMS Watchdog. The previously published ver-
sion of Watchdog [12] was already extensively compared
against the most popular WMSs for biological analyses, i.e.
Galaxy (RRID:SCR_006281) [8], KNIME (RRID:SCR_006164) [9],
Snakemake (RRID:SCR_003475) [10], and Nextflow [11] (see Fig.
12 in [12] for this comparison). Compared features included e.g.
availability of GUIs/web interfaces for workflow design, execution
and monitoring, support for parallel, distributed and cloud com-
puting, dependency definition and many more. This showed that
Watchdog combined features of existing WMSs and provided novel
useful features for execution and monitoring of workflows both for
users with and without programming skills.

Since these features are essentially unchanged, we will not repeat
this comparison here, but refer to our original publication [12]. In
the following, we will discuss how Watchdog 2.0 compares to these
other WMSs regarding the new features we present in this article
since these were not previously analyzed. First, we provide a very
brief description of Galaxy, KNIME , Snakemake and Nextflow . For
more details, please refer to our original publication [12].

Galaxy is targeted at experimentalists without programming ex-
perience and allows performing data analyses in the web browser.
Workflows can be constructed on public or private Galaxy servers
in a web-based user interface from a set of available tools and can
then be executed. New tools for use in a Galaxy workflow are de-
fined in an XML format specifying the input parameters for this tool
as well as the program to execute.

KNIME is an open-source data analysis platform based on the
Eclipse integrated development environment (IDE). It provides a
powerful GUI for workflow construction, execution and visualization
of results, which can also be used without programming experience.
Java programming skills are required for making a new tool available
in a so-called node as multiple Java classes have to be extended.

Snakemake uses a Python-based language to define workflows in
a so-called Snakefile as a set of rules that describe how output files
are created from input files. Dependencies between rules are deter-
mined automatically based on input and output files and the order of
rule execution is determined upon invocation based on these depen-
dencies. Encapsulation of re-usable components can be performed
using so-called wrappers. Writing workflows and wrappers requires
knowledge of the Snakemake syntax and some degree of program-
ming skills.

Nextflow extends the Unix pipes model to transfer complex data
between consecutive processes as shared data streams. It provides
its own scripting language based on the Groovy programming lan-
guage to define workflows. Individual analysis steps are defined as
processes in the Nextflow workflow itself, thus no actual encapsu-
lation of tools into re-usable components is supported. Similar to
Snakemake, programming experience is required to define workflows
and no GUI is provided.

For the following comparison, features were grouped broadly into
categories reusability, reproducibility and workflow execution. A
summary of the comparison is shown in Table 1.

Reusability
For this part of the comparison, we focused on features that sup-
port development and sharing of tools (modules in Watchdog, tools
in Galaxy, nodes in KNIME , rules in Snakemake, processes in

8 | GigaScience, 20xx, Vol. 0, No. 0

Nextflow) for (re-)use in multiple analysis workflows as well as shar-
ing and repurposing of existing workflows (F1-F7 in Table 1). As
there is no real encapsulation of tools in Nextflow , most of these
features are not applicable to it.

Support for tool creation (F1) is provided in Galaxy by the
command-line program Planemo, which is similar to the helper
script originally provided by Watchdog for module creation. No-
tably, Planemo also requires manually adding all parameters for a
new tool. For KNIME , an Eclipse extension (KNIME Node Wizard)
is available, which generates the project structure, the plug-in man-
ifest and all required Java classes. However, the Java classes only
contain the basic backbone (in particular no parameters or flags)
and have to be massively extended by the developer. Snakemake
does not provide any software or script for defining wrappers.

All three WMSs allow documenting (F2) tools and their parame-
ters in XML or YAML format. In case of Snakemake, the specifica-
tion does not require to explicitly document parameters and in- and
output. Instead, an example Snakefile showing the use of the wrap-
per has to be provided. A reference book containing information on
all available tools (F3) can be generated for Snakemake wrappers
as a separate webpage. This contains the example Snakefile, the
code of the wrapper, author information and software dependencies.
In contrast, the documentation of KNIME nodes and Galaxy tools,
respectively, is displayed on their respective GUI/web interface dur-
ing workflow creation. Furthermore, all three WMSs perform tool
versioning (F4).

For sharing tools (F5) or complete workflows (F6) with other
users, Galaxy and KNIME operate dedicated sharing platforms [23,
24], while Snakemake provides source code repositories similar to
Watchdog 2.0 [25, 26]. Furthermore, dedicated sharing platforms
are operated by the KNIME and Nextflow community [27, 28].

Repurposing an existing workflow for new data (F7) requires dif-
ferent steps in the different WMSs. In Galaxy and KNIME , existing
workflows can be imported and subsequently input files or values
have to be selected/modified in the web interface and GUI, respec-
tively. For Nextflow , input is provided via command-line parame-
ters. For Snakemake, relative paths to input files are hard-coded
in the Snakefile. Thus, repurposing a Snakemake workflow only re-
quires copying the Snakefile to a directory in which input files are
stored or linked in the subdirectory structure used in the Snakefile.
In Watchdog workflows, input files and parameters are also hard-
coded but absolute paths are used. In a well-designed workflow,
global constants are defined for input values and files in the settings
section and used throughout the workflow. Thus, repurposing only
requires editing these constants either in a text or XML editor or
the GUI. This is not more effort than required by other WMSs, with
the exception of Snakemake. However, it provides more flexibility
than Snakemake regarding how input data is distributed in the file
system and workflows can be stored anywhere, e.g. in a directory
containing all previously developed workflows.

Reproducibility
Here, we focus on features (F8-F11) related to reproducibility of
analysis results carried out at an earlier time, on different computer
systems and/or by other scientists. Most of the other WMSs do not
support explicit logging of external software during workflow execu-
tion similar to Watchdog 2.0 (F8). However, Galaxy, Snakemake
and Nextflow support controlling external software dependencies
and versions with the Conda package manager or using Docker con-
tainers (F9). Furthermore, Snakemake reports on executed work-
flows (see next paragraph) display the Conda environment for each
task, including software versions.

A description of all performed analysis steps (F10) can be ob-
tained in Snakemake and Nextflow through generation of HTML
reports, in which individual steps are listed in a table format and in
case of Snakemake also visualized as a graph. Galaxy displays all ex-
ecuted tasks as a list in its analysis history. In contrast, KNIME sup-
ports only static workflow descriptions that have to be prepared by

the workflow developer. The dynamic report created by Watchdog
2.0 from the execution log does not only list performed steps, but in-
cludes short descriptions of each step prepared by module developers
with citation information and (optionally) Pubmed IDs (F11). The
only other WMS allowing to declare citations for tools is Galaxy.
In this case, a list containing citations for all used tools can be ex-
ported after executing a workflow in Galaxy. None of the other
WMSs support creation of a step-by-step report for inclusion in a
manuscript draft similar to Watchdog 2.0.

Execution
All WMSs except Galaxy can resume execution of partly executed
workflows (F12) and are able to detect new tasks, modified tasks
or tasks with altered dependencies and consequently execute only
these tasks (F13). With Snakemake and Nextflow , new samples
(e.g. additional replicates) can be included in an analysis work-
flow without having to reprocess all samples (F14), but this option
has to be forcibly triggered in Snakemake. This is not possible for
KNIME workflows. One possibility to avoid unnecessary reprocess-
ing in KNIME is to implement KNIME nodes that can detect if
the corresponding task was already executed successfully on a sam-
ple as done by Hastreiter et al. [29]. However, this adds additional
overhead for node development.

Finally, similar execution modes to the detach/reattach mode of
Watchdog 2.0 (F15) are at least partly supported by all compared
WMSs apart from Nextflow . Since Galaxy is a web-based system,
the user can log off (detach) and log in (reattach) at any time and
from different client systems. Furthermore, the Galaxy server can
also be restarted while tasks continue running on a computer clus-
ter if no tasks are executed locally on the server. In KNIME , re-
mote execution is only possible with non-free extensions like the
KNIME Server or a cluster extension. If tasks are executed remotely
using such an extension, the local KNIME instance can be detached
and reattached to workflow execution. Finally, Snakemake provides
the option to stop scheduling by sending the TERM signal and wait
for all jobs to be finished before terminating. Later, workflow exe-
cution can then simply be resumed. However, this mode also stops
scheduling of jobs on computer clusters and waits for jobs running
on computer clusters to be finished. Alternatively, Ctrl+C kills the
main Snakemake process and all jobs running on the local computer,
but jobs already running on a computing cluster keep running. With
the correct use of profiles, it is then possible for the workflow to
check the status of those jobs after a restart.

Conclusion

In this article, we present the new developments in Watchdog 2.0,
which focus on improving reusability of modules and workflows, re-
producibility of analysis results and convenience of workflow execu-
tion.

To simplify module development, we developed the
moduleMaker GUI for semi-automatically creating a module
for a software by parsing its help page. Manual overhead for the
module creator is then mostly limited to choosing the best regular
expression set, validating and correcting automatically identified
parameters and adding additional parameters or return values
considered necessary. Furthermore, we established public sharing
repositories to support and encourage exchange of developed
modules and workflows between scientists. Modules are now
documented in a standardized documentation format, from which
an HTML-based module reference book can automatically be
created. The reference book provides an overview and details on
available modules and can be easily regenerated to integrate new
modules, e.g. modules created by other developers.

To guarantee reproducibility of workflow results, we introduced
module versions and extensive logging of successfully executed steps
including parameter values and third-party software versions. From

Kluge et al. | 9

Feature Watchdog Galaxy KNIME Snakemake Nextflow

re
u
sa

b
il
it
y

F1 Support for tool creation command-line/GUI command-line1 Eclipse Wizard no n.a.

F2 Tool documentation XML based XML based XML based YAML based2 n.a.

F3 Tool reference book webpage generator part of GUI part of GUI webpage generator n.a.

F4 Tool versioning yes yes yes yes n.a.

F5 Sharing of tools
repository3 ToolShed4 KNIME Hub5

/ NodePit6,⇤
repository7 n.a.

F6 Sharing of workflows repository8 nf-core9,⇤

F7 Repurposing of workflows XML edit/GUI GUI GUI copy Snakefile command-line

re
p
ro

d
u
ci

b
il
it
y F8 Software version logging yes no no yes no

F9 Software deployment execution wrappers/
Conda, Docker

Conda, Docker no Conda, Docker Conda, Docker

F10 Creation of workflow report yes list via history static description10 HTML report HTML report

F11 Citation export yes yes no no no

ex
ec

u
ti

on

F12 Resume workflow yes no yes yes yes

F13 Process only updated tasks yes no yes yes11 yes

F14 Process only new replicates yes no no yes11 yes

F15 Detach / reattach yes yes12 non-free feature13 yes14 no

Table 1. Comparison of Watchdog with four other commonly used WMSs. The selected WMSs are compared against Watchdog
based on features grouped broadly into the categories reusability, reproducibility, and execution. Footnotes: 1 Python-based command-line
program (Planemo); 2 no explicit documentation of parameters but example Snakefile and wrapper source code is part of the documentation;
3 https://github.com/watchdog-wms; 4 [23]; 5 [24]; 6 [27]; 7 [25]; 8 [26]; 9 [28]; 10 a description that was manually created for a specific
workflow can be displayed but is not dynamically created; 11 flag --list-params-changes or --list-input-changes in combination with the
--forcerun flag; 12 client: anytime / server: if jobs are not executed locally on the server; 13 non-free SGE extension or KNIME server
required; 14 sending of a TERM signal stops scheduling of new jobs and waits for all running jobs to finish; Ctrl+C kills all jobs running on
the local computer, jobs running on a computing cluster continue to run; ⇤ community project

the log file of a workflow execution, a report can then be automati-
cally generated that serves both as a documentation of the analysis
steps and as a starting point for drafting the corresponding methods
section of a manuscript. This not only reduces the effort in creating
a description of the analysis, it also prevents accidental omission
of individual steps. In addition, Watchdog 2.0 now provides inte-
grated support for automatic deployment of software, in particular
with Conda or Docker, in the form of execution wrappers.

Finally, with the new resume and detach/reattach execution
mode, convenience and flexibility of workflow execution is greatly en-
hanced in Watchdog 2.0. The resume mode not only implements the
state-of-the-art for WMSs that allows resuming interrupted work-
flow execution, but automatically identifies and re-executes tasks
with modified parameters or additional input samples as well as
downstream tasks that depend on them. The detach/reattach mode
allows shutting down the Watchdog scheduler on a local computer
while jobs continue to be executed on computer clusters. The user
can then reattach to workflow execution and resume scheduling of
tasks at a later time and even from a different computer.

While many of the new features in Watchdog 2.0 are also present
in other popular WMSs, none are implemented in all of them. Fur-
thermore, even if these features are available in other WMSs, the
implementations in Watchdog 2.0 often add additional capabilities,
such as e.g. the possibility to automatically generate a step-by-step
report. Combined with the existing advantages of Watchdog high-
lighted in our original publication, we thus believe that Watchdog
2.0 will be of great benefit to users with a wide range of computer
skills for performing large-scale bioinformatics analyses in a flexible
and reproducible manner.

Availability of source code and requirements

• Project name: Watchdog 2.0
• Project home page: https://www.bio.ifi.lmu.de/watchdog

• Source code: https://github.com/klugem/watchdog, https://

github.com/watchdog-wms

• Operating system(s): Platform independent

• Programming language: Java
• Other requirements: Java 11 or higher, JavaFX 11 or higher for

the GUIs, individual requirements for modules
• License: GNU General Public License v3.0
• DOI: https://doi.org/10.5281/zenodo.3764538

• RRID: SCR_018355
• biotoolsID: biotools:watchdog

Availability of supporting data

Snapshots of the Watchdog 2.0 code and the module and workfow
repository used for this article are available in the GigaDB data
repository [30].

Declarations

List of abbreviations

GUI graphical user interface
IDE integrated development environment
NGS next-generation-sequencing
WMS workflow management system

Competing Interests

The authors declare that they have no competing interests.

Funding

This work was supported by grants FR2938/7-1, FR2938/10-1 and
CRC 1123 (Z2) from the Deutsche Forschungsgemeinschaft (DFG)
to CCF.

10 | GigaScience, 20xx, Vol. 0, No. 0

Author’s Contributions

MK developed the software and wrote the manuscript. M-SF tested
Watchdog 2.0 and implemented modules and the workflow for the
analysis of circular RNAs in high-throughput sequencing data. ALM
implemented the moduleMaker GUI under supervision of CCF and
MK. CCF tested the software, helped in revising the manuscript
and supervised the project. All authors read and approved the final
manuscript.

References

1. Hayden EC. Technology: The $1,000 genome. Nature
2014;507:294–295.

2. Consortium IHGS. Finishing the euchromatic sequence of the
human genome. Nature 2004;431:931–945.

3. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool
for transcriptomics. Nature reviews Genetics 2009;10:57–63.

4. Furey TS. ChIP-seq and beyond: new and improved methodolo-
gies to detect and characterize protein-DNA interactions. Na-
ture reviews Genetics 2012;13:840–852.

5. Buenrostro JD, Wu B, Chang HY, Greenleaf WJ. ATAC-seq:
A Method for Assaying Chromatin Accessibility Genome-Wide.
Current protocols in molecular biology 2015;109:21.29.1–9.

6. Guo W, Tzioutziou N, Stephen G, Milne I, Calixto C, Waugh R,
et al. 3D RNA-seq - a powerful and flexible tool for rapid and
accurate differential expression and alternative splicing analysis
of RNA-seq data for biologists. bioRxiv 2019;.

7. Sundararajan Z, Knoll R, Hombach P, Becker M, Schultze JL,
Ulas T. Shiny-Seq: advanced guided transcriptome analysis.
BMC Research Notes 2019;12:432.

8. Taylor J, Schenck I, Blankenberg D, Nekrutenko A. Using
galaxy to perform large-scale interactive data analyses. Cur-
rent protocols in bioinformatics 2007;Chapter 10:Unit 10.5.

9. Berthold MR, Cebron N, Dill F, Gabriel TR, Kötter T, Meinl
T, et al. KNIME: The Konstanz Information Miner. In: Studies
in Classification, Data Analysis, and Knowledge Organization
(GfKL 2007) Heidelberg-Berlin: Springer; 2007. p. 319–26.

10. Köster J, Rahmann S. Snakemake–a scalable bioinformatics
workflow engine. Bioinformatics 2012;28:2520–2.

11. Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo
E, Notredame C. Nextflow enables reproducible computational
workflows. Nature biotechnology 2017;35:316–9.

12. Kluge M, Friedel CC. Watchdog – a workflow management sys-
tem for the distributed analysis of large-scale experimental data.
BMC Bioinformatics 2018;19:97.

13. Conda. https://conda.io, accessed 11 Nov 2019.
14. Docker. https://www.docker.com/, accessed 01 Apr 2020.
15. McAffer J, Lemieux JM, Aniszczyk C. Eclipse Rich Client Plat-

form. 2nd ed. Boston, US: Addison-Wesley Professional; 2010.
16. UIkit. https://getuikit.com, accessed 11 Nov 2019.
17. Gao Y, Zhang J, Zhao F. Circular RNA identification based on

multiple seed matching. Briefings in bioinformatics 2018;19:803–
810.

18. Westholm JO, Miura P, Olson S, Shenker S, Joseph B, San-
filippo P, et al. Genome-wide analysis of drosophila circular
RNAs reveals their structural and sequence properties and age-
dependent neural accumulation. Cell reports 2014;9:1966–1980.

19. Guo Y, Mahony S, Gifford DK. High resolution genome wide
binding event finding and motif discovery reveals transcription
factor spatial binding constraints. PLoS computational biology
2012;8(8):e1002638.

20. Yu G, Wang LG, He QY. ChIPseeker: an R/Bioconductor pack-
age for ChIP peak annotation, comparison and visualization.
Bioinformatics (Oxford, England) 2015;31(14):2382–2383.

21. Leinonen R, Sugawara H, Shumway M, Collaboration INSD.
The sequence read archive. Nucleic acids research 2011;39:D19–

D21.
22. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-

based genome alignment and genotyping with HISAT2 and
HISAT-genotype. Nature biotechnology 2019;37:907–915.

23. Galaxy Tool Shed. https://toolshed.g2.bx.psu.edu, accessed
11 Nov 2019.

24. KNIME Hub. https://hub.knime.com, accessed 11 Nov 2019.
25. SnakeMake Wrappers repository. https://bitbucket.org/

snakemake/snakemake-wrappers, accessed 11 Nov 2019.
26. SnakeMake Workflows repository. https://github.com/

snakemake-workflows, accessed 11 Nov 2019.
27. NodePit. https://nodepit.com, accessed 11 Nov 2019.
28. nf-core. https://nf-co.re, accessed 11 Nov 2019.
29. Hastreiter M, Jeske T, Hoser J, Kluge M, Ahomaa K, Friedl

MS, et al. KNIME4NGS: a comprehensive toolbox for next
generation sequencing analysis. Bioinformatics 2017;33:1565–
1567.

30. Kluge M, Friedl MS, Menzel AL, Friedel CC. Supporting
data for "Watchdog 2.0: New developments for reusability, re-
producibility and workflow execution". GigaScience Database
2020;https://dx.doi.org/10.5524/100758.

Reusability Reproducibility Workflow execution

Semi-automated module creation

Module documentation

Module & workflow sharing

Automated reporting

Module versioning

Resume mode

Detach / reattach mode

Software version logging

XSDsoftware

LOGv3.1.6 v1.7a

XSD

v2

XSD

v3

XSD XML

www

LOG

XSD

Execution wrappers

software

Figure 1 Click here to access/download;Figure;Fig1.pdf

https://www.editorialmanager.com/giga/download.aspx?id=97558&guid=9f7c54f7-f6c8-4bde-87d0-2273406e00f6&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=97558&guid=9f7c54f7-f6c8-4bde-87d0-2273406e00f6&scheme=1

Figure 2 Click here to access/download;Figure;Fig2.png

https://www.editorialmanager.com/giga/download.aspx?id=97559&guid=5c1bfcd3-9a2c-4215-b6f9-540fbf6d0814&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=97559&guid=5c1bfcd3-9a2c-4215-b6f9-540fbf6d0814&scheme=1

Figure 3 Click here to access/download;Figure;Fig3.png

https://www.editorialmanager.com/giga/download.aspx?id=97560&guid=8cf4a74e-e1cf-4fac-b51e-3c71f0eda398&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=97560&guid=8cf4a74e-e1cf-4fac-b51e-3c71f0eda398&scheme=1

Quality of the sequencing data was checked using FastQC (0.11.3).

RNA-seq reads were mapped against the XXX genome using Con-

textMap (2.7.9) with BWA as short read aligner and default param-

eters. Samtools (1.9) was used to convert SAM to BAM files. Sam-

tools (1.9) was used to index the BAM files. Quality of the resulting

mappings was assessed using RSeQC (3.0.0). FeatureCounts (1.4.6)

was applied to count read/fragment counts per gene/exon/other fea-

ture according to Ensembl_Homo_sapiens.GRCh38.78.chr21.gtf

annotation. Differential gene expression analysis was performed

using DESeq2 (1.22.2).

Figure 4 Click here to
access/download;Figur

https://www.editorialmanager.com/giga/download.aspx?id=97561&guid=1c2e1100-0981-439c-a1cd-cf68b22d8458&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=97561&guid=1c2e1100-0981-439c-a1cd-cf68b22d8458&scheme=1

(a) Resume mode

(b) Detach / reattach mode

PClaptop

time

cluster

B F

A

task dependencies

inferred subtasks

successfully executed tasks

new tasks

modified tasks

new replicates

E
Z

D

D1 D2

C

scheduler scheduler

request detach reattach endstart

F

E

CB

Z

D3

D4

tasks re-executed

D3 D4

Figure 5 Click here to
access/download;

https://www.editorialmanager.com/giga/download.aspx?id=97562&guid=85cf7539-4883-4796-9e72-b30b1229d25f&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=97562&guid=85cf7539-4883-4796-9e72-b30b1229d25f&scheme=1

Response to reviewer and editor comments, v2

Click here to access/download
Supplementary Material

Watchdog_Response_to_reviewers_1st_round.pdf

https://www.editorialmanager.com/giga/download.aspx?id=97593&guid=d9c18882-907f-4f0d-9f03-bd21ea5bac30&scheme=1

Response to reviewer and editor comments, v2

Click here to access/download
Supplementary Material

response.pdf

https://www.editorialmanager.com/giga/download.aspx?id=97542&guid=927844c0-ffc0-4b8e-a6f3-5f467bd0c176&scheme=1

Manuscript with changes marked

Click here to access/download
Supplementary Material

main_marked.pdf

https://www.editorialmanager.com/giga/download.aspx?id=97541&guid=43f2b61b-40f2-4368-b2bc-2f72b1157663&scheme=1

