

1

Supplementary Material

Exploring the potential of a gamified DEvelopmental assessment on

an E-Platform (DEEP) tool to measure cognitive development in

rural Indian preschool children

Debarati Mukherjee1, Supriya Bhavnani1,3, Akshay Swaminathan2, Deepali Verma3,

Dhanya Parameshwaran4, Gauri Divan3, Jayashree Dasgupta3, Kamalkant Sharma3, Tara

C. Thiagarajan4, Vikram Patel1,2,3*

1Centre for Chronic Conditions and Injuries, Public Health Foundation of India, Gurugram, India
2Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
3Child Development Group, Sangath, Goa, India
4Sapien Labs, Arlington, VA, USA

* Correspondence:

Vikram Patel
vikram_patel@hms.harvard.edu

This supplementary appendix contains a detailed description of the machine learning (ML)

approach used in this study to predict a child’s cognitive development using backend metrics

of DEEP

Feature Set

Meaningful features that measure a diverse set of cognitive skills and comprehensively

characterize a child’s performance in each game were extracted or computed from DEEP’s

backend metrics. Supplementary Table S1 lists the source, names, and descriptions of these

features. Raw features extracted directly from the backend of DEEP and higher-order derivations

of them yielded a total of 971 features across all nine games (Table 2). Features with

distributions that were either left- or right-skewed (with skewness values > +1 or < -1

respectively) were replaced with appropriate mathematical transformations (square-root and

square) for the data to better approximate a normal distribution. Highly correlated features

(Pearson’s r > 0.9) were removed to avoid multi-collinearity during model generation, resulting

in an initial set of 412 features (out of the 971 features) for exploratory analysis.

We conducted a preliminary run of our machine learning algorithm using these 412 features,

which identified a subset of 20 unique features that were the best predictors of the outcome

(BSID-cognitive score), in lieu of being selected into the top five models (see Supplementary

Table S2 for details). Seventeen of the 20 selected features represented two games – matching

shapes and jigsaw, while two of them represented all nine games (sum of all the levels played

and the total accuracy across all games).

Generating interaction terms for the entire dataset was impractical due to the large size of the

initial feature set, therefore, two-way interaction terms were only generated for the 20 features

described above. Interaction terms were computed as products and ratios of each feature with

every other feature. Only viable features, those having null values for < 15% of the sample, and

uncorrelated (Pearson’s r ≤ 0.9) with the original dataset was retained, resulting in 83 interaction

terms being added to the original feature set.

One feature was engineered using the mas-o-menos algorithm1 and added to the feature set.

Briefly, in this algorithm, the feature set is scaled and the marginal association of each feature

with the BSID-cognitive score is computed. The normalized features, weighted by the signs of

their marginal associations, are summed to generate the mas-o-menos score for every child.

Finally, principle components (PC) were computed for the entire feature set and the first 26 PCs

that accounted for 70% of the variance in the data were added. Therefore, the final ML algorithm

was run on 412 (initial feature set) + 83 (interaction terms) + 1 (mas-o-menos) + 26 (principle

components) = 522 features (Table 2 in the main manuscript lists the number of features

contributed by each game, as well as each of the above feature types described above). The

feature set was scaled prior to training the ML models.

Generating the training and test datasets

The full dataset (N = 200) was randomly split such that 70% of the data comprised the training

set (N = 140) and the remaining 30% assigned to the test set (N = 60). ML models were only

trained on the training set, and the final algorithm was applied to the test set to evaluate the

generalizability and accuracy of the models to predict a naïve dataset that did not contribute to

3

training the models.

Cross Validation (CV)

We employed 10-fold CV to train our ML models. The training set (N = 140) was randomly split

into 10 sub-samples or ‘folds’ (see Fig. 1A). During each CV iteration, models were trained on

data from nine of the 10 folds, and predictions were generated for the remaining hold-out

sample. The modelling steps within each CV fold comprised (1) feature selection, (2) bagging,

(3) modelling, (4) top model selection, and (5) ensemble modelling, each of which is described

below and schematically represented in Fig. 1B.

Feature Selection

We applied seven feature selection methods (see Supplementary Table S3) on the CV training

sub-sample (comprising 522 features) to narrow down the feature set to those that were the most

predictive. Feature sets were capped to have at most 15 features in order to prevent overfitting

(which was about 10% of the number of observations in the training sub-sample).

Bagging

Due to the small sample size of the training set, we employed bagging (bootstrap aggregation) to

decrease the variance of the predictions. Bagging improves model stability and accuracy by

averaging predictions across several bootstrapped datasets.2 For each feature set, four

bootstrapped datasets were generated by sampling from the CV training sub-sample observations

(with replacement), resulting in a total of 5 datasets (1 original + 4 bootstrapped). The optimal

number of bootstrapped datasets was determined using cross-validation. For a schematic of the

bagging method used in this study, see Supplementary Fig. S3.

Each of 5 prediction functions (linear regression, random forest3, support vector machine4,

logistic regression, and extreme gradient boosting5) in combination with each of the 7 feature

sets (Supplementary Table S3) was trained on the 5 datasets, and used to predict the outcomes

for the hold-out sample. This resulted in 175 prediction vectors (5 prediction functions X 7

feature sets X 5 datasets) for each child in the holdout sample. Predictions from the five datasets

for each model was averaged, to arrive at the final ‘bagged’s prediction vector for each of the 35

models in the holdout sample (see Supplementary Fig. S3).

Notes about prediction functions

Before performing linear regression, highly correlated features (r > 0.99) were removed. Before

running random forest models, missing data were imputed using the “rfImpute” function from

the “randomForest” R package.6 The optimal number of trees set to grow for the random forest

was determined through CV and set to 800. For support vector machine models, the linear kernel

function was used, and the optimal cost and epsilon parameters were determined through CV and

were set to 1 and 0.01 respectively. Before performing logistic regression, the continuous

outcome was converted to a binary outcome using the 25th percentile BSID-cognitive score as

the cut-off (66 in our sample). For extreme gradient boosting, the “xgboost” function was used

from the “xgboost” package. The optimal maximum number of boosting iterations was

determined through cross validation and set to 5, and the “booster” parameter was set to

“gblinear”.

Top Model Selection

The top models were selected based on the highest pairwise Pearson’s correlation co-efficient

(Pearson’s r) between the 35 bagged prediction vectors corresponding to the 35 models, and the

outcome variable (BSID-cognitive score) in the holdout sample.

Ensemble Modelling

The optimum number of top models to use for ensemble modelling was empirically determined

by running five iterations of the 10-fold CV using different number of models for ensemble

modelling. The root-mean-squared error (RMSE) of the final predictions across the five runs

were plotted as boxplots, along with the raw data points (Supplementary Fig. S4). We observed

that ensembling the top five models would result in the best bias-variance trade-off, defined as

having the lowest RMSE and variance when compared to ensembling the top 2, 3, 4, 6, or 7 top

models. The top five models during each CV run were identified and saved for later use.

We used stacking (stacked generalization)8 and weighted averaging to combine predictions from

the top five models. Briefly, stacking involves combining multiple “base learners” via a single

meta-learner. The base learners are the top five models selected as described above. Predictions

of these top five models comprise the input features for the meta-learner. We stacked predictions

of the top five models using 3 different meta-learners: linear regression, random forest and

extreme gradient boosting, and used these three models to generate three stacked predictions for

the holdout sample.8 The three stacked predictions were combined using ten different weighted

averaging schemes (see Supplementary Table S5 for details on weighting schemes used), which

resulted in the generation of 10 prediction vectors for each child in the holdout sample. At the

end of the 10-fold CV run, when these 10 ‘ensembled’ prediction vectors were generated for the

entire training set (N = 140), the weighting scheme that corresponded to the prediction vector

with the least RMSE was identified as the best scheme for the particular CV run (see

Supplementary Fig. S5 for a schematic of the ensemble modelling approach used in this study).

Improving Stability

Given the small size of our training set, the results from CV were affected by the particular

random allocation of the 140 observations into the 10 CV folds. We therefore repeated the 10-

fold CV approach ten times for improved stability. Each run of the 10-fold CV resulted in a

slightly different set of top five models being selected, and correspondingly different ‘best’

weighting schemes. Therefore, to generate predictions for the test set, the final top five models

were the five most commonly selected models across the (10 folds per CV iteration) x (10

iterations) = 100 CV folds. Supplementary Table S4 lists the 35 models used in this study sorted

based on the number of times they were selected across the 100 folds, with the top five models

5

that appeared most frequently marked in bold. The final weighting scheme was the most

commonly selected weighting scheme across the 10 CV iterations (weights for linear regression,

random forest and XGBoost = 0.25, 0.25, 0.50 respectively, and marked in bold in

Supplementary Table S5. This weighting scheme was selected five times across the 10 CV

repeats).

References

1. Zhao SD, Parmigiani G, Huttenhower C, Waldron L. Mas-o-menos: a simple sign

averaging method for discrimination in genomic data analysis. Bioinformatics 2014;

30(21): 3062-9.

2. Breiman L. Bagging Predictors. Machine Learning 1996; 24: 123-40.

3. Liaw A; Wiener M. Classification and Regression by randomForest. R News 2002; 2(3).

4. Vandewalle JAKSJ. Least Squares Support Vector Machine Classifiers. Neural

Processing Letters 1999.

5. Chen THT. xgboost: eXtreme Gradient Boosting, 2019.

6. Breiman LC, Adele. Breiman and Cutler's Random Forests for Classification and

Regression. CRAN; 2018. p. Classification and regression based on a forest of trees using

random inputs, based on Breiman (2001) <DOI:10.1023/A:1010933404324>.

7. Hastie TT, R; Friedman, J. The Elements of Statistical Learning: Springer; 2017.

8. Wolpert D. Stacked generalization. Neural Networks 1992; 5(2): 241-59.

7

Supplementary Table S1: Types of features extracted or computed from the DEEP

backend data

Sr.
No.

Source Feature name Description

1

Features

from the

tablet

Latency (Reaction time)
Time taken for the first tap or drag since the start

of the game

2 Completion time Total time taken to complete a level or game

3 Highest level reached The highest level of difficulty reached in a game

4 # of demo trials played
of demo trials practiced before switching to

game mode

5 # of correct clicks or drags Number of correct attempts in a level or game

6 # of incorrect clicks or drags Number of incorrect attempts in a level or game

7 # of background clicks
Number of taps in the background in a level or

game

8

Derived

Accuracy
Proportion of correct attempts to total number of

attempts or the number of incorrect attempts

9 Rate of correct clicks # of correct taps per second

10 Rate of incorrect clicks # of incorrect taps per second

11
Proportion of responses

inhibited

of incorrect responses actively avoided in a

response inhibition game

12 Activity
Total number of correct or incorrect attempts

divided by completion time

13 Playtime
Completion time minus latency (duration for

which the child actively played the game)

14 Inaccuracy
Proportion of incorrect or background taps/drags

to total number of attempts

Supplementary Table S2: Features used to derive interaction terms

Sr. No.
Features selected from initial exploratory ML run and used to generate interaction

terms

1 ms_l1_latency

2 ms_l1_activity_sqrt

3 msjig_total_incorrectdrag_sqrt

4 ms_l1_correctdrags

5 ms_total_incorrectdrag_sqrt

6 msjig_total_playtime

7 sum_total_accuracy_cbyt

8 ms_l1_totaldrags_sqrt

9 st_correctclicks

10 ms_l1_correctrate_sqrt

11 sum_all_levels_played

12 ms_av_playtime

13 ms_l2_latency

14 jig_l1_activity

15 ms_l2_correctrate_sqrt

16 ms_l1_accuracy_cbyi

17 ms_l2_activity_sqrt

18 jig_l3_accuracy_cbyi_sqrt

19 jig_av_correctrate_sqrt

20 ms_l3_correctrate_sqrt

Features selected into the top five models during the initial exploratory ML run were shortlisted,

and interaction terms (defined as two-way products and ratios of each feature with every other

feature) were derived from this subset of 20 features.

Prefixes refer to the game that contributed the feature: ms = matching shapes; jig = jigsaw; msjig

= combination of ms and jig; sum = across all nine games; st = single tap (manual processing

speed)

9

Supplementary Table S3: Description of feature selection methods

Feature Set Name Method used to derive feature set

Feature Set 1 Conduct univariate linear regression of BSID-COG with all features. Keep the top 15

features with the lowest Bonferroni-adjusted p-value

Feature Set 2 Intersection between Feature Set 1 and the top 30 features with the largest coefficients

in absolute magnitude

Feature Set 3 Convert continuous outcome to binary based on 25th percentile BSID-cognitive score

cutoff. Conduct univariate logistic regression with all features. Keep the top 15

features with the lowest Bonferroni-adjusted p-value

Feature Set 4 Intersection between Feature Set 3 and the top 30 features with the largest coefficients

in absolute magnitude

Feature Set 5 Convert continuous outcome to binary based on 25th percentile BSID-cognitive score

cutoff. Conduct separate two-sample t-tests with all features. Keep the top 15 features

with the lowest Bonferroni-adjusted p-value

Feature Set 6 Intersection between Feature Set 5 and the top 50 features with greatest fold change

across classes

Feature Set 7 Compute pairwise Pearson correlation coefficient between BSID-cognitive score and

all features. Keep the top 15 features with the greatest magnitude of Pearson’s r.

Supplementary Table S4: Frequency of models selected among the top five across ten

repeats of 10-fold cross-validation

Sr. # Feature set-model combination

Frequency of being among the top 5 models across 10 repeats of

10-fold CV

1 Feature Set 1_XGBoost 38

2 Feature Set 2_XGBoost 31

3 Feature Set 3_XGBoost 31

4 Feature Set 7_XGBoost 30

5 Feature Set 2_SVM 27

6 Feature Set 5_Random Forest 25

7 Feature Set 3_Random Forest 23

8 Feature Set 1_Linear Regression 22

9 Feature Set 4_Random Forest 20

10 Feature Set 2_Random Forest 18

11 Feature Set 4_Logistic Regression 17

12 Feature Set 5_Logistic Regression 16

13 Feature Set 2_Linear Regression 16

14 Feature Set 5_XGBoost 15

15 Feature Set 1_SVM 15

16 Feature Set 3_Linear Regression 15

17 Feature Set 1_Random Forest 13

18 Feature Set 4_XGBoost 13

19 Feature Set 7_Random Forest 13

20 Feature Set 7_SVM 12

21 Feature Set 3_Logistic Regression 11

22 Feature Set 5_Linear Regression 10

23 Feature Set 4_SVM 10

24 Feature Set 4_Linear Regression 10

25 Feature Set 3_SVM 10

26 Feature Set 7_Logistic Regression 10

27 Feature Set 7_Linear Regression 10

28 Feature Set 5_SVM 9

29 Feature Set 2_Logistic Regression 5

30 Feature Set 1_Logistic Regression 4

31 Feature Set 6_Logistic Regression 1

Top five models used to predict the test set is marked in bold. They appeared most frequently across 100

iterations of the CV runs. Extreme gradient boosting (XGBoost) was the most common prediction
function in the top five models. Feature set 2 (see Supplementary Table S3) appeared 2 out of 5 times.

11

Supplementary Table S5: Weighting schemes used to combine stacked predictions

Weighting

scheme #

Weight for Linear

Regression

Weight for Random

Forest

Weight for Extreme

Gradient Boosting

1 0.25 0.25 0.50

2 0.25 0.50 0.25

3 0.50 0.25 0.25

4 0.33 0.33 0.33

5 0.50 0.50 0

6 0 0.50 0.50

7 0.50 0 0.50

8 1 0 0

9 0 0 1

10 0 1 0

The weighting scheme selected most frequently (5 of 10 times) across 10 repeats of CV is

marked in bold and corresponds to 0.25, 0.25 and 0.50 for linear regression, Random Forest and

XGBoost respectively.

Supplementary Table S6:The relationship between sample size and prediction accuracies

across the BSID-cognitive score distribution

BSID-cognitive score

(Training dataset, N = 140)

N Mean Absolute Error (SD)

56 – 65 (< 25th percentile) 29 3.16 (2.00)

66 – 75 (25-90th percentile) 97 2.31 (1.65)

76 – 90 (> 90th percentile) 14 6.23 (3.97)

13

Supplementary Figure S1: Prediction error as a function of BSID-cognitive domain raw

score

The Bland-Altman plot shows the scatter of prediction errors (DEEP-BSID score) as a function

of the BSID-III cognitive score. DEEP tends to overestimate low scores and underestimate high

BSID scores.

Supplementary Figure S2: Number of difficulty levels attempted by low and high BSID scorers

on the cognitive scale

The boxplot demonstrates the variability of the total number of difficulty levels attempted across

the nine games of DEEP by two groups of children – those scoring ≤25th percentile (low scorers;

N = 42) or > 90th percentile (high scorers; N = 21) on the BSID-cognitive subscale. Solid lines

represent the median value. Dotted line represents the mean. Floor and ceiling effects are not

evident.

Supplementary Figure S3: Schematic of the bootstrapped aggregation (bagging) method used in this study

The four bootstrapped datasets derived from the original training sub-sample is represented as blue rectangles. A combination of 7 feature

sets and 5 prediction functions (35 models) were run on all 5 datasets (4 bagged and 1 original), and used to predict the holdout sample.

Predictions from the 5 datasets for each model were averaged to result in one ‘bagged’ prediction vector per model. The top five bagged

predictions (based on the highest correlations with the BSID-cognitive score) was later used for ensemble modelling.

 Supplementary Material

 16

Supplementary Figure S4: Evaluating the bias-variance trade-off to determine the optimal number of top models to use for ensemble

modelling

10-fold CV was repeated 5 times using 2-7 top models for ensemble modelling. The root-mean-squared error (RMSE) of the predictions for

each run was plotted against the number of models used for ensembling. The boxplot demonstrates the mean (dotted line), median (solid

line) and variability of the RMSE across 5 runs. 5 top models were selected for ensembling since it resulted in the least error and variance.

Individual data points are plotted on the left of the boxplots for each condition.

17

Supplementary Figure S5: Schematic of the ensemble modelling approach using stacking and weighted averaging used in this study

During each CV run, the top five ‘bagged’ predictions for the training subsample was used as input features to model the BSID-cognitive

score using three stacking functions – linear regression, XGBoost and Random Forest, and then used to predict the holdout sample. These

three stacked predictions were combined using 10 different weighted averaging schemes to generate ten ‘ensembled’ predictions for each

child in the holdout sample. Once all ten repeats of the CV run were over, the ensembled prediction vector with the least root-mean-squared-

error with respect to the outcome (BSID-cognitive score) was selected as the final predicted score (referred to in the manuscript as the DEEP

score). Operations in the training sample are coded in blue while those in the holdout sample in green.

 Supplementary Material

 18

Supplementary Figure S6: Screenshots of games on DEEP, brief instructions on how to play the game, and important metrics collected in

the backend to assess child performance

