Science

Activation of the ISR mediates the behavioral and neurophysiological abnormalities in Down syndrome

Ping Jun Zhu, Sanjeev Khatiwada, Ya Cui, Lucas C. Reineke, Sean W. Dooling, Jean J. Kim, Wei Li, Peter Walter and Mauro Costa-Mattioli

Science 366 (6467), 843-849. DOI: 10.1126/science.aaw5185

Tuning stress protects cognition Down syndrome (DS) is a chromosomal disorder that occurs when a person has an extra copy of chromosome 21. DS causes intellectual disabilities, among other health issues, but little is known about the mechanisms underlying the memory deficits in DS. Zhu et al. used a multidisciplinary approach to show that a defect in integrated stress response, a conserved pathway that controls protein homeostasis, can explain the cognitive and neuronal deficits in a mouse model of DS (see the Perspective by Halliday and Mallucci). These insights into the biological basis underlying DS could potentially help in the design of treatments for this condition. Science, this issue p. 843; see also p. 797

ARTICLE TOOLS http://science.sciencemag.org/content/366/6467/843 SUPPLEMENTARY MATERIALS http://science.sciencemag.org/content/suppl/2019/11/13/366.6467.843.DC1 http://science.sciencemag.org/content/sci/366/6467/816.full http://science.sciencemag.org/content/sci/366/6467/818.full http://science.sciencemag.org/content/sci/366/6467/822.full http://science.sciencemag.org/content/sci/366/6467/827.full http://science.sciencemag.org/content/sci/366/6467/827.full RELATED http://science.sciencemag.org/content/sci/366/6467/802.full http://stience.sciencemag.org/content/scitransmed/5/201/201ra120.full http://stm.sciencemag.org/content/scitransmed/4/124/124ra29.full http://stm.sciencemag.org/content/scitransmed/1/7/7ra17.full REFERENCES This article cites 68 articles, 15 of which you can access for free http://science.sciencemag.org/content/366/6467/843#BIBL PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Use of this article is subject to the Terms of Service

Science (print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. The title Science is a registered trademark of AAAS.

Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works

Supplementary Materials for

Activation of the ISR mediates the behavioral and neurophysiological abnormalities in Down syndrome

Ping Jun Zhu, Sanjeev Khatiwada, Ya Cui, Lucas C. Reineke, Sean W. Dooling, Jean J. Kim, Wei Li, Peter Walter*, Mauro Costa-Mattioli*

*Corresponding author. Email: costamat@bcm.edu (M.C.-M.); peter@walterlab.ucsf.edu (P.W.)

Published 15 November 2019, *Science* **366**, 843 (2019) DOI: 10.1126/science.aaw5185

This PDF file includes:

Materials and Methods Figs. S1 to S15 Tables S1 and S2 References

Material and Methods

Mouse husbandry. All experiments were conducted on 3-5 months old animals. Ts65Dn mice were purchased from Jackson laboratory. Pkr^{-} mice (22) and $Eif2s1^{S/A}$ mice (55) have been previously described. Double mutant mice were generated by crossing Ts65Dn mice to either Pkr^{-/-} mice or Eif2s1^{S/A} mice. It is not possible to obtain Ts65Dn mice in a pure genetic background because repeated backcrossing of the Ts65Dn chromosome onto an inbreed genetic background for several generations fails to recover trisomic progeny. Thus, investigators in the field are required to use the Ts65Dn mice in a hybrid background. We used littermate controls for our experiments. Briefly, to generate Ts65Dn-Pkr^{/-} mice, we first crossed Ts65Dn female (B6EiC3H) with Pkr^{/-} males (129Svev). The resulting F1 Ts65Dn-*Pkr^{+/-}* females were crossed with *Pkr^{+/-}* males. Finally, we compared side-by-side Ts65Dn mice withTs65Dn-Pkr^{/-} mice from the same F2 litter. Thus, littermate controls have the same hybrid background as our experimental mice (Ts65Dn mice). Similarly, when we crossed Ts65Dn females (B6EiC3H) with Eif2^{S/A} males (C57Bl6), we compared Ts65Dn-Eif2s1^{S/S} with Ts65Dn-Eif2s1^{S/A} littermate controls. Ts65Dn mice were genotyped as recommended by Jackson laboratory. PKRi (56) was freshly dissolved in saline and Ts65Dn mice and WT littermates were administered either PKRi (0.1 mg/kg) or vehicle (0.02 % DMSO) intraperitoneal (i.p.) for 6 days, as we previously described (22). Ts65Dn mice were injected with ISRIB (2.5 mg/kg) or vehicle once every two days for a week, as previously described (27). Mice were weaned at the third postnatal week, genotyped and kept on a 12h / 12h light/dark cycle (lights on at 7:00 am) and had access to food and water ad libitum. Animal care and

experimental procedures were approved by the institutional animal care and use committee (IACUC) at Baylor College of Medicine, according to NIH Guidelines.

Electrophysiology. Electrophysiological recordings were performed as previously described (22). Field recording were performed from CA1 horizontal hippocampal slices (320 µm thick), which were cut from the brain of adult mice (3-6 months old) with a vibratome (Leica VT 1000S, Leica Microsystems, Buffalo Grove, IL) at 4°C in artificial cerebrospinal fluid solution (ACSF; 95% O₂ and 5% CO₂) containing in mM: 124 NaCl. 2.0 KCl, 1.3 MgSO₄, 2.5 CaCl₂, 1.2 KH₂PO₄, 25 NaHCO₃, and 10 glucose (2-3 ml/min). Slices were incubated for at least 60 min prior to recording in an interface chamber and continuously perfused with artificial cerebrospinal fluid (ACSF) at 28 - 29°C at a flow rate of 2 - 3 ml/min. The recording electrodes were placed in the stratum radiatum. Field excitatory postsynaptic potentials (fEPSPs) were recorded with ACSF-filled micropipettes and were elicited by bipolar stimulating electrodes placed in the CA1 stratum radiatum to excite Schaffer collateral and commissural fibers. The intensity of the 0.1-ms pulses was adjusted to evoke 30 - 35% of maximal response. A stable baseline of responses at 0.033 Hz was established for at least 30 min. L-LTP was induced by applying four tetanic trains of high-frequency stimulation (100 Hz, 1 s) separated by 5-min intervals.

Whole-cell recordings were performed using a MultiClamp 700B amplifier (Molecular Devices, Union City, CA) in a submerged chamber (2 - 3 ml/min) at 31 - 32°C using conventional patch-clamp techniques. CA1 neurons were visually identified by infrared differential interference contrast video microscopy on the stage of an upright microscope (Axioskope FS2, Carl Zeiss, Oberkochen, Germany). Patch pipettes

(resistances 2 - 5 MΩ) were filled with (in mM): 140 CsCl, 10 HEPES, 10 Na₂phosphocreatine, 0.2 BAPTA, 2 Mg₃-ATP, 0.2 Na₃-GTP; pH was adjusted to 7.2 and osmolarity to 295~300 mOsm using a Wescor 5500 vapor pressure osmometer (Wescor, Logan, UT). Miniature inhibitory postsynaptic currents (mIPSCs) were recorded at -60 mV in the presence of NBQX (5 μ M, 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline disodium salt), AP5 (25 μ M, DL-2-Amino-5-phosphonopentanoic acid) and TTX (1 μ M, tetrodotoxin). For recording excitatory currents, CsCl was replaced with 130 mM Kgluconate and 10 mM KCl. Excitatory postsynaptic currents (EPSCs) were recorded at -70 mV in the presence of 100 μ M picrotoxin. All drugs were obtained from Tocris (Ellisville, MO).

<u>Western Blotting.</u> Hippocampus and cortex from mice were isolated, homogenized in cold homogenizing buffer [200 mM HEPES, 50 mM NaCl, 10% Glycerol, 1% Triton X-100, 1 mM EDTA, 50 mM NaF, 2 mM Na₃VO₄, 25 mM β -glycerophosphate, and EDTA-free complete ULTRA tablets (Roche, Indianapolis, IN)], and centrifuged at 14,000 *rpm* for 15 min at 4° C. Human tissue was obtained from University of Maryland Brain and Tissue Bank, a brain and tissue repository of the NIH Neurobiobank. Post-mortem human brain samples from Down syndrome patients and those from age- and sex-matched unaffected controls (see Supplementary Table I) were homogenized as described above. The supernatants (30 µg of protein/sample) were resolved on SDS–PAGE and transferred onto nitrocellulose membranes (Pall, Port Washington, NY). Antibodies against p-eIF2 α (catalog # 3398, 1:1000), total eIF2 α (catalog # 9722, 1:1000), total PERK (catalog # 3192, 1:1000), p-4E-BP1 (catalog # 9459, 1:1000), total 4E-BP1 (catalog # 9452, 1:1000), p-S6 (catalog # 4856, 1:1000), total S6 (catalog # 2217, 1:1000), p-elF4E (catalog # 9741, 1:1000), GAPDH (catalog # 2118, 1:5000) were purchased from Cell Signaling Technology (Danvers, MA), β -actin (1:5000) from Novus Biologicals (Centennial, CO), p-PKR (catalog # ab32036, 1:500), p-GCN2 (catalog # ab75836, 1:1000), and total-GCN2 (catalog # ab137543, 1:1000) from Abcam (Cambridge, MA), total-PKR (catalog # 18244-1-AP, 1:1000) from Proteintech (Rosemont, IL), p-PERK (catalog # 649401, 1:1000) from Biolegend (San Diego, CA), ATF6 (catalog # 24169, 1:2000) from Proteintech, and total-elF4E (catalog # 610269, 1:1000) from BD Transduction Laboratories.

<u>Measuring Ire1 activity by RT-PCR and qPCR.</u> For RT-PCR, RNA was isolated from the hippocampus from WT and Ts65Dn mice and reverse transcribed with the VILO superscript kit (Thermo Fisher Scientific). cDNA for *XBP1* was then amplified with specific primers (Fw: AAACAGAGTAGCAGCGCAGACTGC and Rev: TCCTTCTGGGTAGACCT CTGGGAG). The PCR products were digested with the Pst1 restriction enzyme (New England Biolabs) and the products were subjected to agarose gel electrophoresis. For qPCR, PowerUp SYBR green master mix was used on a step-one plus qPCR machine (Applied Biosystems) using cDNA prepared as described above. Primers specific for spliced (Fw: CTGAGTCCGAATCAGGTGCAG and Rev: GTCCATGGGAAGATGTTCTG G) and unspliced *XBP1* (CAGCACTCAGACTATGTGCA and Rev: GTCCATGGGAAGATGTTCTG GTTCTGG) were previously described (*57*).

Generation of Down Syndrome (DS) iPS cells. To determine whether the ISR response was activated in cells from DS patients, we reprogramed Detroit 532 foreskin fibroblasts (ATCC[®] CCL-54[™], Lot #58237511) by infecting them with a non-integrating Sendai viruses (58) expressing OCT4, SOX2, KLF4, and C-MYC (59) (Thermo Fisher Scientific, CytoTune[™]-iPS Sendai Reprogramming 2.0 Kit) using manufacturer's recommendations. Clonal human induced pluripotent cell (hiPSC) colonies were manually picked and expanded under feeder-free conditions using hESC-qualified Matrigel (Corning) and TeSR-E8 medium (STEMCELL Technologies). The cell line was designated as HSCC-046iPS-S and abbreviated as "DS" followed by the clone number. As expected, a clonal line (DSc1) was shown to have a trisomy 21 male karyotype by Gbanding at Passage 9 (Fig. S1A). Surprisingly, a second clonal line (DSc2) was found to have a normal male karyotype (Fig. S1B), which was used as an "isogenic control". The authenticity of the euploid (DSc2) clone was confirmed by short-tandem repeats (STRs) profile using the ATCC's STR Profiling Cell Authentication Service. Briefly, the euploid DSc2 iPSCs clone, which was discovered serendipitously, perfectly matched the original CCL-54[™] line (Figure S1C) and was the perfect isogenic control for our experimental DSc1 line. iPSCs were cultured on Matrigel® hESC-Qualified Matrix (Corning) and in mTeSR[™]1 medium (Stemcell Technologies) and passaged using ReLeSR[™] (Stemcell Technologies) every 4 - 5 days with daily medium changes.

<u>Novel Object Recognition.</u> The experimenters were blind to the genotype for all of the behavioral experiments. For object recognition, mice were handled for 5 days (5-10 min for each day) and then habituated to a black Plexiglas rectangular chamber (31 x 24 cm,

height 27 cm) for 10 min under dim ambient light for 5 days. Two identical objects were presented to mice to explore for 5 min, after which, mice were returned to the home cage. Twenty-four hours later, one object was replaced by one novel object and the mouse was again placed in the chamber 5 min. The novel object has the same height and volume but different shape and appearance. Exploration of the objects was defined as sniffing of the objects (with nose contact or head directed to the object) within at 2 cm radius of the objects. Sitting or standing on the objects was not scored as exploration. Behavior was recorded from cameras positioned above the training chamber. Discrimination Index (DI) was computed as DI = (Novel Object Exploration Time – Familiar Object Exploration Time/Total Exploration Time) X 100. To control for odor cues, the open field arena and the objects were thoroughly cleaned with ethanol, dried, and ventilated between mice.

<u>Contextual fear conditioning.</u> Experiments were performed as previously described (*55*), with some modifications. Briefly, mice were first handled for 5 min per day for 5 days and then habituated to the conditioning chamber for 20 min for another 2 days. On the training day, mice were placed in the conditioning chamber for 2 min (naïve) and then received two-foot shocks (0.75 mA, 2 sec, 90 sec apart), after which the mice remained in the chamber for an additional minute before being returned to their home cages. Twenty-four hours later, mice were re-exposed to the same context (training chamber) for 5 min and "freezing" (immobility with the exception of respiration) responses were recorded using real-time video and analyzed by FreezeView. The fear condition training was always the last behavioral test performed.

<u>T-maze spontaneous alternation task.</u> The apparatus was a black wooden T-maze with 25 cm high walls and each arm was 30 cm long and 9 cm wide. A removable central partition was used during the sample phase but not the test phase of each trial. Guillotine doors were positioned at the entrance to each goal arm. At the beginning of the sample phase, both doors were raised, and the mouse was placed at the end of the start arm facing away from the goal arms. Each mouse was allowed to make a free choice between the two goal arms; after its tail had cleared the door of the chosen arm, the door was closed, and the mouse was allowed to explore the arm for 30 sec. The mouse was then returned to the end of the start arm, with the central partition removed and both guillotine doors raised, signaling the beginning of the test phase. This sequence (trial) was repeated 20 times. Trials that were not completed within 120 seconds were terminated and disregarded during analysis. Correct alteration between trails was expressed as % alteration = (number of correct alteration) / 20 x 100%

<u>Polysome profiling and RNA isolation.</u> Polysome profiling followed by RNA sequencing was carried out as we previously described (*60*), with some modifications. Briefly, we prepared fresh 12 ml of 10 – 50% sucrose density gradients [10 mM HEPES-KOH (pH 7.6), 5 mM MgCl₂, 150 mM KCl, 200 U/ml RNasin Rnase inhibitor (Promega, Madison, WI)]. Gradients were kept at 4° C for at least 2 h before use. Mouse brain tissue was dissected in a cutting solution [1X HBSS, 2.5 mM HEPES-KOH (pH 7.6), 35 mM glucose, 4 mM NaHCO₃, 100 μ g/ml cycloheximide (Sigma-Aldrich, St. Louis, MO)] and washed in ice-cold PBS containing 100 μ g/ml cycloheximide by centrifugation at 3000 rpm for 10 min at 4°C. The tissue was then lysed in polysome lysis buffer [10 mM HEPES-KOH (pH

7.4), 5 mM MgCl₂, 150 mM KCl, 0.5 mM DTT, 100 U/ml RNasin Rnase inhibitor (Promega, Madison, WI), 100 μg/ml cycloheximide, and EDTA-free protease inhibitors (Roche Indianapolis, IN)] and centrifuged at 2000 x g for 10 min at 4°C. The supernatant was then transferred to a pre-chilled tube, supplemented with 0.5% NP-40, and kept on ice for 10 min. Samples were centrifuged at 14,000 rpm for 10 min at 4°C. The supernatant was either layered onto sucrose gradient or reserved for total RNA isolation. Gradients were centrifuged in a SW-40Ti rotor at 35,000 rpm at 4°C for 2 h and then analyzed by piercing the tube with a Brandel tube piercer, passing 70% sucrose through the bottom of the tube and monitoring the absorbance of the material eluting from the tube using an ISCO UA-6 UV detector. Fractions were collected throughout and RNA was extracted with TRIzol following manufacturer's instructions (Life Technologies, Carlsbad, CA).

Experiments were performed in three biological replicates for each group. Polysomal (light and heavy) mRNA was isolated from WT, Ts65Dn, and Ts65Dn-*Pkr^{/-}* mice. To identify the mRNAs translationally dysregulated in the brain of Ts65Dn mice compared to WT mice, we focused on mRNAs with no significant change in total mRNA levels, but either increased or decreased in their association with polysomes (> 1.5 fold) by comparing the ratio between the translational RNAseq (light and heavy polysmes) and transcriptional RNAseq (total RNA).

<u>RNA-Seq and data analysis.</u> RNA-seq library was generated using RNA isolated from polysomal fractions (light and heavy) and total RNA using the KAPA RNA HyperPrep Kits with RiboErase protocol for Total RNASeq. The library was then sequenced using Illumina NS500 Single-End 75bp (SE75), which generated 20-35 million reads per sample. For

analysis of RNA-seq data, we removed adapters and low-quality bases by Trimmomatic (v0.38) (61) using default parameters. We then aligned clean reads to the mm10 mouse reference genome by HISAT2(v2.1.0) (62) and converted these aligned bam files into bigwig format using RSeQC (v2.6.5) (63) and wigToBigWig from UCSC (64). Cufflinks (v2.2.1) (65) was used to assess differentially expressed genes (DEGs) (GENCODE vM18 as the genes reference annotation file) between groups [q (p-value corrected for false discovery rate, FDR) < 0.05 and fold change > 1.5). Default thresholds of Cufflinks were used to identify DEGs. In order to improve the robustness of transcript abundance estimates, we also used "-M" parameter of Cufflinks to mask rRNA regions (build mm10) retrieved from UCSC Table Browser. Only protein-coding genes (defined in GENCODE vM18 GTF file) whose significant differential expression status were labeled "yes" by Cufflinks were used in subsequent analyses. DEGs in light and heavy polysomes are combined and expressed as DEGs at the translational level. Because of low sequence depth, one of the heavy-polysome replicates in the Ts65Dn-Pkr/- group was excluded from the analysis. For DEGs identified only in light or heavy polysomes, we used the expression values (RPKM) from the corresponding group (Fig. 3E). However, for genes that were found expressed in both light and heavy polysomes, we only used the RPKM value from the light polysomes to avoid combining different RPKM values. KEGG pathway enrichment analysis for genes down-regulated at only the translational level in Ts65Dn mice compared to WT was performed on the DAVID 6.8 website (66). In order to obtain the gene expression value matrix for all samples (including the low sequence depth), we used two R packages, Rsubread and edgeR, to count the reads number and convert the count number to RPKM value. Multi-mapping reads were also counted. A multi-mapping read will carry a count of 1/x, instead of 1, where x is the total number of alignments reported for the same read. We then used package pheatmap of R to generate the heatmap based on this RPKM matrix.

Surface Sensing of Translation (SUnSET). Protein synthesis was measured using SUnSET, a non-radioactive labeling method to monitor protein synthesis, as previously described (67). Briefly, hippocampal slices were cut (300 µm) with a McIlwain Tissue Chopper (Mickle, UK) and incubated for 1 hour at room temperature in oxygenated (95%) O₂, 5% CO₂) ACSF followed by incubation at 32°C for 1 hour in oxygenated (95% O₂, 5% CO₂) ACSF prior to treatment as we previously described (68). Puromycin (10 μ g/ μ l, dissolved in oxygenated ACSF) was bath applied to the slices for 20 min followed by a wash with untreated oxygenated ACSF. The slices were then snap-frozen on dry ice and stored at -80 C until use. Frozen slices were lysed in homogenization buffer (in mM: 40 Tris HCl, pH 8.0, 150 NaCl, 25 β-glycerophosphate, 50 NaF, 2 Na₃VO₃, 1X protease inhibitor cocktail, 10% glycerol, 1% Triton X-100). Puromycin incorporation was detected by Western blot using the 12D10 antibody to puromycin (Catalog # MABE343, 1:5000, EMD Millipore Corp, Darmstadt, Germany) as we previously described (60). The density of the resulting bands was quantified using ImageJ and statistical significance assessed by Student's *t*-test.

<u>Statistical analyses.</u> Data are presented as means \pm SEM. Statistics were based on twotailed Student's *t*-test or Mann-Whitney Rank Sum test for two-group comparisons. Oneway ANOVA followed by Bonferroni *post hoc* analysis was performed for multiple comparisons, unless otherwise indicated. P < 0.05 was considered significant (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).

С

D3S1358	17	18						
TH01	7	9			7	9		
D21S11	30	31.2						
D18S51	12	13						
Penta_E	13	16						
D5S818	9	12			9	12		
D13S317	11	13			11	13		
D7S820	8				8			
D16S539	10	13			10	13		
CSF1PO	12				12			
Penta_D	8	9						
Amelogenin	X	Y			X	Y		
vWA	16	18			16	18		
D8S1179	12							
TPOX	8				8			
FGA	20	24						
D19S433	13	14						
D2S1338	22	25						
Number of shar	ed alleles be	etween quer	y sample an	d database p	orofile:			15
Total number of	f alleles in th	e database	profile:					15
Percent match	between the	submitted s	ample and t	he database	profile:			100

Fig. S1. Zhu et al.

Fig. S1. Identification of a CH21-trisomic iPSC clone and its isogenic control.

(**A-B**) Karyotype analysis shows that the DS iPSC clone was trisomic (**A**) and the isogenic control (**B**), from the same individual with DS, was euploid. (**C**) The authenticity of the euploid isogenic clone was confirmed by short-tandem repeats (STRs) profiling, which found 100% match to the original DS fibroblast CCL-54TM line.

Fig. S2. Zhu et al.

Fig. S2. The ISR is activated in human iPSCs from an individual with a mosaic trisomy 21. Representative Western blot (**A**) and quantification (**B**) of eIF2-P levels in the CH21-trisomic iPSC line (DS1) and its respective isogenic control (DS2U). Both lines were previously reported (Weick et al. *PNAS*, 2013) and were derived from the same individual with mosaic DS. (**C-D**) Karyotype analysis shows that the DS1 iPSC line was CH21-trisomic (**D**) and the isogenic control iPSC line DS2U (**C**) from the same individual with DS, was euploid. Experiment was replicated in 8-wells per genotype (*n* = 8 per group, $t_{14} = 0.59$, *P* < 0.05). Data are mean ± s.e.m. **P* < 0.05.

Fig. S3. Zhu et al.

Fig. S3. mTORC1 and elF4E activity are not altered in the hippocampus of Ts65Dn mice. (A) Schematic of mTORC1-mediated translation signaling pathway. (B-G) Representative Western blots and quantification of 4E-BP1-P (B, E; n = 5-6 per group, $t_9=0.18$, P = 0.86), S6-P (C, F; n = 3 per group $t_4 = 1.39$, P = 0.24) and elF4E-P (D, n = 5-7 per group, $t_{10} = 0.59$, P = 0.57) levels in the hippocampus of WT and Ts65Dn mice. Data are mean ± s.e.m.

Fig. S4. Zhu et al.

Fig. S4. The PKR branch of the ISR is activated in the hippocampus of Ts65Dn mice.

(**A**) Schematic of a simplified ISR signaling pathway. Representative Western blots and quantification of GCN2-P (**B**, **E**; n = 4-5 per group, $t_7 = 1.00$, P = 0.35), PERK-P (**C**, **F**; n = 4-6 per group, $t_8 = 0.10$, P = 0.92) and PKR-P (**D**, **G**; n = 5-6 per group, $t_9 = 4.62$) levels in the hippocampus of WT and Ts65Dn mice. Data are mean ± s.e.m. **P < 0.01.

Fig. S5. Zhu et al.

Fig. S5. The Ire-1 and ATF6 branches of the UPR are not altered in the hippocampus of Ts65Dn mice. (**A-B**) Representative Western blots (**A**) and quantification (**B**) of full length (ATF6 FL) and cleaved ATF6 (ATF6(N) [n = 4-5 per group, t = 0.26, P > 0.999 for ATF6 FL and t = 0.83, P > 0.999 for ATF6(N)] levels in the hippocampus of WT and Ts65Dn mice. (**C**) Schematic representation of *XBP1* splicing assay. RT-PCR was performed to amplify the region of *XBP1* mRNA containing the IRE1 splice site. When the UPR is inactive and *XBP1* mRNA is not spliced, a Pst1 restriction enzyme site is present in the RT-PCR product. When the UPR is active, the Pst1 site is spliced out. (**D**) RT-PCR was performed on mRNA extracted from WT and Ts65Dn hippocampus. An aliquot of the PCR products was digested with Pst1 and run alongside the undigested PCR products. (**E**) RT-qPCR was performed on RNA extracted from WT and Ts65Dn mice with primers that specifically recognize spliced vs. unspliced *XBP1* mRNA (n = 3-4 per group, t = 0.05, P > 0.999 for spliced and t = 3.26, P = 0.057 for unspliced; Two-way ANOVA). Data are mean \pm s.e.m.

Fig. S6. Zhu et al.

Fig. S6. Genetic inhibition of the PKR branch of the ISR reduces eIF2-P levels in the cortex of Ts65Dn mice. Representative Western blots (A) and quantification (B) of eIF2-P levels in cortex from WT (n = 5), Ts65Dn (n = 6), and Ts65Dn-*Pkr^{-/-}* mice (n = 4) ($F_{2,12} = 5.60$). Data are mean ± s.e.m. *P < 0.05.

Β

Fig. S7. Zhu et al.

Fig. S7. Genetic or pharmacological inhibition of PKR has no effect on long-term memory in WT mice. (A-B) Freezing behavior before training (naïve) and 24 hours after training in WT, Pkr^{-t-} mice (A, n = 9-10 per group, $t_{17} = 0.61$, P = 0.552), and vehicle-treated and PKRi-treated WT mice (B, n = 7 per group, $t_{12} = 0.52$, P = 1.00). Mice were trained using a conventional training protocol (two foot-shocks at 0.7 mA for 2 sec). Data are mean \pm s.e.m.

Fig. S8. Zhu et al.

Fig. S8. Neither genetic nor pharmacological inhibition of PKR affects object exploration time in Ts65Dn mice and PKRi has no effect on long-term object recognition memory in WT mice. (A) Schematic of the novel object recognition paradigm. (B) Time exploring the identical right (R) and left (L) objects: WT (n = 15, $t_{28} = 0.066$, P = 0.94), Ts65Dn (n = 15, $t_{28} = 0.47$, P = 0.64) and Ts65Dn- Pkr^{-t} mice (n = 12, $t_{22} = 0.94$, P = 0.36). (C) Time exploring the identical right (R) and left (L) objects: vehicle-treated (n = 10, $t_{18} = 0.14$, P = 0.88) and PKRi-treated Ts65Dn mice (n = 12, $t_{22} = 0.68$, P = 0.49). (D) Time exploring the identical right (R) and left (L) objects: vehicle-treated (n = 6, $t_{10} = 1.12$, P = 0.28) and PKRi-treated WT mice (n = 6, U = 16.00, P = 0.81, Mann-Whitney U test). (E) Novel object discrimination index 24 hours post-training in vehicle-treated (n = 6) and PKRi-treated WT mice (n = 6, $t_{10} = 0.46$, P = 0.65). Data are mean \pm s.e.m.

Fig. S9. Zhu et al.

Fig. S9. Genetic or pharmacological inhibition of PKR rescues abnormal spontaneous T-maze alternation in Ts65Dn mice. (A) Schematic of the spontaneous T-maze. (B) Alternation scores (%) in the spontaneous alternation task in WT (n = 14), Ts65Dn (n = 10), and Ts65Dn-*Pkr^{-/-}* mice (n = 9, $F_{2,30} = 19.73$). (C) Alternation scores (%) in the spontaneous alternation task in vehicle-treated (n = 9) and PKRi-treated (n = 12) Ts65Dn mice (U = 9.00, Mann-Whitney U test). Data are mean ± s.e.m. **P < 0.01

Fig. 10. Zhu et al.

Fig. S10. Similar polysome profiling in WT and PKR-deficient mice. Heat map showing that the mRNAs whose translation is altered in the brain of Ts65Dn mice are not different between WT and $Pkr^{-/-}$ mice.

Fig. S11. Zhu et al.

Fig. S11. Genetic inhibition of eIF2-P levels improves long-term object recognition memory and spontaneous alternation in Ts65Dn mice. (A) Time exploring the identical right (R) and left (L) objects: WT (n = 9, $t_{16} = 1.28$, P = 0.22), Ts65Dn mice (n =10, $t_{18} = 0.03$, P = 0.97) and Ts65Dn-*Eif2s1*^{S/A} mice (n = 12, $t_{22} = 1.01$, P = 0.32) (B) Novel object discrimination index 24 hours post-training in WT (n = 9), Ts65Dn mice (n = 10) and Ts65Dn-*Eif2s1*^{S/A} mice (n = 12, $F_{2,28} = 13.79$). (C) Alternation scores (%) in the spontaneous alternation task in Ts65Dn mice (n = 8), and Ts65Dn-*Eif2s1*^{S/A} mice (n = 12, $t_{18} = 3.80$). Data are mean ± s.e.m. **P < 0.01.

Fig. S12. Zhu et al.

Fig. S12. L-LTP and long-term memory are normal in mice with reduced elF2-P (*Eif2s1*^{S/A} mice). (A) L-LTP induced by 4 trains of high frequency stimulation (HFS, 4 x 100 Hz) in slices from WT (n = 11) and *Eif2s1*^{S/A} mice (n = 8, $t_{17} = 1.42$, P = 0.17). (B) Freezing behavior before training (naïve) and 24 hours after training in WT and *Eif2s1*^{S/A} littermates (n = 6-10, $t_{14} = 1.42$, P = 0.8). Mice were trained using a conventional training protocol (two foot-shocks at 0.7 mA for 2 sec). Data are mean ± s.e.m.

Fig. S13. Zhu et al.

Fig. S13. Treatment with ISRIB had no effect on L-LTP and long-term memory in

WT mice. (**A**) L-LTP induced by 4 trains of high frequency stimulation (HFS, 4 x 100 Hz) in vehicle-treated (n = 9) and ISRIB-treated WT mice (n = 9, $t_{16} = 0.51$, P = 0.62). (**B**) Freezing behavior before (naïve) and 24 hours post-training in vehicle-treated (n = 8) and ISRIB-treated WT mice (n = 8, $t_{14} = 1.1$, P = 0.27). Data are mean ± s.e.m.

Fig. S14. The amplitude of miniature inhibitory synaptic currents (mIPSCs) is unaltered in CA1 neurons from Ts65Dn mice. (A) Summary data show mIPSC amplitude in CA1 neurons from WT (n = 16), Ts65Dn (n = 20) and Ts65Dn-*Pkr^{-/-}* mice (n= 16; H = 0.12, P = 0.12, One-way ANOVA on Ranks). (B) Summary data show mIPSC amplitude in CA1 neurons from vehicle-treated (n = 16) and PKRi-treated (n = 17) Ts65Dn mice ($t_{31} = 1.23$, P = 0.23). (C) Summary data show mIPSC amplitude in Ts65Dn (n = 20) and Ts65Dn-*Eif2s1*^{S/A} mice (n = 17, $t_{35} = 0.66$, P = 0.51). D) Summary data show mIPSCs amplitude in vehicle-treated (n = 13) and ISRIB-treated Ts65Dn mice (n = 22, $t_{33} = 0.61$, P = 0.54). Data are mean ± s.e.m.

Fig. S15. Zhu et al.

Fig. S15. Excitatory synaptic transmission is unaltered in CA1 neurons from Ts65Dn mice (A-C) Sample traces (A) and summary show frequency (B, $t_{23} = 0.45$, P = 0.66) and amplitude (C, U = 75.00, P = 0.89, Mann-Whitney U test) of miniature excitatory postsynaptic currents (mESPCs) in CA1 neurons from WT (n = 13) and Ts65Dn mice (n = 12). Data are mean ± s.e.m.

Table S1

DS human tissue donor information

					Post mortem
					interval
UMB#	Genotype	Age	Sex	Race	(hours)
5762	Unaffected control	39 years 137 days	Female	Caucasian	19
5005	Down syndrome	39 years 59 days	Female	Caucasian	12
4369	Unaffected control	2 years 265 days	Female	Caucasian	14
5301	Down syndrome	3 years 212 days	Female	Caucasian	11
5871	Unaffected control	2 years 28 days	Male	Caucasian	Unknown
2135	Down syndrome	1 year 353 days	Male	Caucasian	12
5900	Unaffected control	0 years 0 days	Female	Caucasian	23
4457	Down syndrome	0 years 185 days	Female	Caucasian	32
4373	Unaffected control	0 years 100 days	Female	Caucasian	13
1282	Down syndrome	0 years 186 days	Female	Caucasian	28
6169	Unaffected control	25 years 100 days	Male	Unknown	12
5341	Down syndrome	25 years 311 days	Male	Black or African-American	16
1206	Unaffected control	57 years 134 days	Male	Caucasian	16
6135	Down syndrome	55 years 293 days	Male	Caucasian	12
5753	Unaffected control	28 years 222 days	Male	Caucasian	28
5713	Down syndrome	25 years 147 days	Male	Caucasian	22
5985	Unaffected control	55 years 227 days	Male	Caucasian	23
5439	Down syndrome	57 years 254 days	Male	Caucasian	3
6100	Unaffected control	0 years 187 days	Female	Black or African-American	32
5987	Down syndrome	0 years 65 days	Female	Black or African-American	28
5282	Unaffected control	2 years 306 days	Male	Unknown	16
5826	Down syndrome	2 years 56 days	Male	Unknown	18

Table S2

	le	log2(fold change)	e)		Up- or Down-	Rescued, Up- or
Gene ID	Gene name	log2(fold change)	P -value	<i>q-</i> value	regulated in	Down-regulated
		IS65Dh VS W I			Ts65Dn	in Ts65Dn;PKR-/-
ENSMUSG0000000792.2	Slc5a5	1.26359	5.00E-05	0.00298639	Up	Rescued
ENSMUSG0000001119.7	Col6a1	-0.98814	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000001444.2	Tbx21	2.98242	5.00E-05	0.00298639	Up	Rescued
ENSMUSG0000003411.10	Rab3b	0.915858	5.00E-05	0.00298639	Up	Rescued
ENSMUSG0000003657.9	Calb2	1.01247	5.00E-05	0.00298639	Up	Down
ENSMUSG0000003929.10	Zfp81	-1.13472	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000004637.15	Wwox	-1.65005	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000004885.5	Crabp2	1.09362	5.00E-05	0.00298639	Up	Rescued
ENSMUSG0000005540.10	Fcer2a	-2.01764	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000007682.6	Dio2	-1.12694	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000014956.15	Ppp1cb	-1.25408	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000015806.12	Qdpr	0.822304	5.00E-05	0.00298639	Up	Down
ENSMUSG0000017677.11	Wsb1	-0.998422	5.00E-05	0.00298639	Down	Up
ENSMUSG0000018727.19	Cpsf4l	-2.04495	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000019878.8	Hsf2	-1.04734	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000021098.14	Six6os1	-1.76461	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000021713.9	Ppwd1	-1.23074	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000022016.16	Akap11	-0.791382	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000022119.15	Rbm26	-0.840628	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000022193.7	Psmb5	0.72882	5.00E-05	0.00298639	Up	Down
ENSMUSG0000022235.15	Cmbl	1.33967	5.00E-05	0.00298639	Up	Rescued
ENSMUSG0000022658.10	TagIn3	0.9421	5.00E-05	0.00298639	Up	Rescued
ENSMUSG0000022672.8	Prkdc	-0.890176	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000022982.10	Sod1	1.13125	5.00E-05	0.00298639	Up	Rescued
ENSMUSG0000024290.8	Rock1	-0.962921	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000024293.15	Esco1	-1.90898	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000024404.6	Riok3	-0.828684	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000024511.15	Rab27b	-0.877541	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000024570.6	Rbfa	0.966048	5.00E-05	0.00298639	Up	Rescued
ENSMUSG0000024670.16	Cd6	-1.62281	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000025068.7	Gsto1	0.898654	5.00E-05	0.00298639	Up	Rescued
ENSMUSG0000025083.18	Afap1l2	4.45027	5.00E-05	0.00298639	Up	Rescued
ENSMUSG0000025175.12	Fn3k	0.868351	5.00E-05	0.00298639	Up	Rescued
ENSMUSG0000026034.17	Clk1	-1.23962	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000026355.11	Mcm6	2.13917	5.00E-05	0.00298639	Up	Rescued
ENSMUSG0000027363.15	Usp8	-0.778933	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000027447.6	Cst3	1.18947	5.00E-05	0.00298639	Up	Rescued
ENSMUSG0000027581.12	Stmn3	0.788781	5.00E-05	0.00298639	Up	Rescued
ENSMUSG0000027712.13	Anxa5	-1.14516	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000028256.16	Odf2I	-1.39284	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000028341.9	Nr4a3	-1.35156	5.00E-05	0.00298639	Down	Down
ENSMUSG0000028670.14	Lypla2	0.864241	5.00E-05	0.00298639	Up	Rescued
ENSMUSG0000028756.12	Pink1	0.801485	5.00E-05	0.00298639	Up	Rescued

ENSMUSG0000028964.14	Park7	0.73187	5.00E-05	0.00298639	Up	Down
ENSMUSG0000029169.11	Dhx15	-0.900311	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000029202.12	Pds5a	-1.17339	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000029712.14	Actl6b	0.871934	5.00E-05	0.00298639	Up	Rescued
ENSMUSG0000029781.7	Fkbp9	1.13981	5.00E-05	0.00298639	Up	Rescued
ENSMUSG0000029823.16	Luc7l2	-1.00155	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000029875.5	Ccdc184	1.04216	5.00E-05	0.00298639	Up	Rescued
ENSMUSG0000030225.11	Dera	-2.0097	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000030307.8	Slc6a11	0.932067	5.00E-05	0.00298639	Up	Rescued
ENSMUSG0000030652.11	Coq7	0.926164	5.00E-05	0.00298639	Up	Down
ENSMUSG0000031445.5	Proz	-1.17434	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000031712.10	II15	#NAME?	5.00E-05	0.00298639	Up	Rescued
ENSMUSG0000032128.15	Robo3	-1.92741	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000032446.14	Eomes	1.63707	5.00E-05	0.00298639	Up	Rescued
ENSMUSG0000032925.16	ltgbl1	-1.07204	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000032959.12	Pebp1	0.949576	5.00E-05	0.00298639	Up	Down
ENSMUSG0000033036.9	AC164004.4	#NAME?	5.00E-05	0.00298639	Up	Rescued
ENSMUSG0000033981.14	Gria2	-0.798946	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000034009.14	Rxfp1	-1.15291	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000034021.15	Pds5b	-0.878031	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000034265.8	Zdhhc14	0.89449	5.00E-05	0.00298639	Up	Up
ENSMUSG0000034551.12	Hdx	-1.6923	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000034640.9	Tiparp	-1.61689	5.00E-05	0.00298639	Down	Down
ENSMUSG0000034681.16	Rnps1	0.726424	5.00E-05	0.00298639	Up	Rescued
ENSMUSG0000035133.9	Arhgap5	-1.01096	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000035202.8	Lars2	1.34513	5.00E-05	0.00298639	Up	Down
ENSMUSG0000035429.13	Ptprh	2.79182	5.00E-05	0.00298639	Up	Rescued
ENSMUSG0000035868.8	Zfp983	-2.01709	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000035967.15	Ddx26b	-1.12726	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000036097.7	SIf2	-0.861008	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000036181.2	Hist1h1c	1.0926	5.00E-05	0.00298639	Up	Down
ENSMUSG0000036469.16	1-Mar	-0.83142	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000036887.5	C1qa	1.47556	5.00E-05	0.00298639	Up	Rescued
ENSMUSG0000036916.13	Zfp280c	-1.47151	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000037166.5	Ppp1r14a	1.02256	5.00E-05	0.00298639	Up	Rescued
ENSMUSG0000037266.18	Rsrp1	-0.992466	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000037627.16	Rgs22	-3.23615	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000038370.6	Pcp4l1	0.872394	5.00E-05	0.00298639	Up	Rescued
ENSMUSG0000038855.10	ltpkb	0.913897	5.00E-05	0.00298639	Up	Rescued
ENSMUSG0000039539.13	Sgcz	-1.13418	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000039634.12	Zfp189	-1.33146	5.00E-05	0.00298639	Down	Down
ENSMUSG0000039735.15	Fnbp1l	-0.938381	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000039753.16	Fbxl5	-0.882835	5.00E-05	0.00298639	Down	Rescued
ENSMUSG00000040123.17	Zmym5	-0.954815	5.00E-05	0.00298639	Down	Rescued
ENSMUSG00000040258.6	Nxph4	1.14864	5.00E-05	0.00298639	Up	Rescued
ENSMUSG0000040321.3	Zfp770	-0.788117	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000040511.14	Pvr	-1.51864	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000040565.7	Btaf1	-0.834797	5.00E-05	0.00298639	Down	Rescued

ENSMUSG0000040740.7	Slc25a34	1.38686	5.00E-05	0.00298639	Up	Rescued
ENSMUSG0000042256.4	Ptchd4	-0.906744	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000042670.5	Immp1l	-1.06868	5.00E-05	0.00298639	Down	Down
ENSMUSG0000043424.10	Eif3j2	-1.53049	5.00E-05	0.00298639	Down	Rescued
ENSMUSG00000044349.15	Snhg11	-1.30919	5.00E-05	0.00298639	Down	Rescued
ENSMUSG00000044676.10	Zfp612	-0.81242	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000046138.15	RP24-408B13.1	-0.80175	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000046160.6	Olig1	1.00978	5.00E-05	0.00298639	Up	Down
ENSMUSG0000046402.10	Rbp1	1.26894	5.00E-05	0.00298639	Up	Rescued
ENSMUSG0000048222.3	Mfap1b	-1.09211	5.00E-05	0.00298639	Down	Down
ENSMUSG0000048285.9	Frmd6	-1.29357	5.00E-05	0.00298639	Down	Rescued
ENSMUSG00000049539.3	Hist1h1a	1.12716	5.00E-05	0.00298639	Up	Rescued
ENSMUSG0000051617.3	Krt9	0.978625	5.00E-05	0.00298639	Up	Rescued
ENSMUSG0000052676.16	Zmat1	-1.07601	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000052861.13	Dnah6	-1.20195	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000055202.10	Zfp811	-1.49595	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000058064.5	Gm10036	-2.04722	5.00E-05	0.00298639	Down	Down
ENSMUSG0000058773.2	Hist1h1b	1.33164	5.00E-05	0.00298639	Up	Rescued
ENSMUSG0000060224.3	Pyroxd2	-2.11493	5.00E-05	0.00298639	Down	Down
ENSMUSG0000060803.5	Gstp1	0.800398	5.00E-05	0.00298639	Up	Rescued
ENSMUSG0000063535.7	Zfp773	-1.59699	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000064179.13	Tnnt1	1.22472	5.00E-05	0.00298639	Up	Rescued
ENSMUSG0000064341.1	mt-Nd1	-1.75986	5.00E-05	0.00298639	Down	Up
ENSMUSG0000064345.1	mt-Nd2	-1.91025	5.00E-05	0.00298639	Down	Up
ENSMUSG0000064351.1	mt-Co1	-1.38715	5.00E-05	0.00298639	Down	Up
ENSMUSG0000064363.1	mt-Nd4	-1.67834	5.00E-05	0.00298639	Down	Up
ENSMUSG0000064367.1	mt-Nd5	-1.29512	5.00E-05	0.00298639	Down	Up
ENSMUSG0000064370.1	mt-Cytb	-1.75487	5.00E-05	0.00298639	Down	Up
ENSMUSG0000067928.6	Zfp760	-1.51582	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000067931.5	Zfp948	-1.33724	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000068523.12	Gng5	1.10266	5.00E-05	0.00298639	Up	Up
ENSMUSG0000068748.7	Ptprz1	-0.898523	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000069049.11	Eif2s3y	-1.47188	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000069309.2	Hist1h2an	#NAME?	5.00E-05	0.00298639	Up	Rescued
ENSMUSG0000070803.6	Cited4	1.17064	5.00E-05	0.00298639	Up	Rescued
ENSMUSG0000071073.4	Lrrc73	0.802965	5.00E-05	0.00298639	Up	Rescued
ENSMUSG0000074505.5	Fat3	-0.789768	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000078435.5	RP24-406I15.2	-1.73392	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000078866.10	RP23-67E6.5	-1.7641	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000079065.3	RP23-314A12.1	-1.39383	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000087075.2	RP23-41J14.2	1.10931	5.00E-05	0.00298639	Up	Down
ENSMUSG0000090622.1	RP23-281E24.2	-2.19773	5.00E-05	0.00298639	Down	Rescued
ENSMUSG0000090862.3	Rps13	0.805572	5.00E-05	0.00298639	Up	Down
ENSMUSG0000092607.9	Scnm1	1.2747	5.00E-05	0.00298639	Up	Rescued
ENSMUSG0000095567.7	Noc2l	1.1201	5.00E-05	0.00298639	Up	Rescued
ENSMUSG0000096883.2	Shisa8	1.52941	5.00E-05	0.00298639	Up	Rescued
ENSMUSG0000096910.1	Zfp955b	-1.53109	5.00E-05	0.00298639	Down	Rescued
ENSMUSG00000110185.1	lgip	-0.831958	5.00E-05	0.00298639	Down	Rescued

ENSMUSG00000114279.1	Hist1h2bm	2.32053	5.00E-05	0.00298639	Up	Rescued
ENSMUSG0000001383.8	Zmat2	-0.676109	5.00E-05	0.00413376	Down	Rescued
ENSMUSG0000002365.10	Snx9	0.925744	5.00E-05	0.00413376	Up	Rescued
ENSMUSG0000007877.2	Тсар	-1.44671	5.00E-05	0.00413376	Down	Rescued
ENSMUSG0000009185.2	Ccl8	#NAME?	5.00E-05	0.00413376	Up	Rescued
ENSMUSG0000020255.8	RP24-227016.1	-0.764809	5.00E-05	0.00413376	Down	Rescued
ENSMUSG0000020459.14	Mtif2	-1.36506	5.00E-05	0.00413376	Down	Rescued
ENSMUSG0000021136.13	Smoc1	1.00924	5.00E-05	0.00413376	Up	Rescued
ENSMUSG00000022205.15	Sub1	-0.886893	5.00E-05	0.00413376	Down	Rescued
ENSMUSG00000022762.18	Ncam2	-1.09059	5.00E-05	0.00413376	Down	Rescued
ENSMUSG0000023031.8	Cela1	3.35731	5.00E-05	0.00413376	Up	Rescued
ENSMUSG0000023224.12	Serping1	1.48227	5.00E-05	0.00413376	Up	Up
ENSMUSG0000024610.14	Cd74	1.38196	5.00E-05	0.00413376	Up	Rescued
ENSMUSG0000025278.9	Flnb	3.87393	5.00E-05	0.00413376	Up	Rescued
ENSMUSG0000025867.8	Cplx2	-0.755761	5.00E-05	0.00413376	Down	Rescued
ENSMUSG0000026678.10	Rgs5	-0.915822	5.00E-05	0.00413376	Down	Rescued
ENSMUSG0000027162.7	Lin7c	-1.01999	5.00E-05	0.00413376	Down	Rescued
ENSMUSG0000027597.15	Ahcy	0.845411	5.00E-05	0.00413376	Up	Rescued
ENSMUSG0000027875.12	Hmgcs2	1.36858	5.00E-05	0.00413376	Up	Rescued
ENSMUSG0000030935.15	Acsm3	#VALUE!	5.00E-05	0.00413376	Down	Rescued
ENSMUSG0000032231.14	Anxa2	0.986395	5.00E-05	0.00413376	Up	Rescued
ENSMUSG0000033192.5	Lpcat2	1.3796	5.00E-05	0.00413376	Up	Rescued
ENSMUSG0000033770.13	Clcnka	#VALUE!	5.00E-05	0.00413376	Down	Rescued
ENSMUSG0000034729.16	Mrps10	-0.997393	5.00E-05	0.00413376	Down	Rescued
ENSMUSG0000036438.12	Calm2	-0.804658	5.00E-05	0.00413376	Down	Rescued
ENSMUSG0000036594.14	H2-Aa	2.37599	5.00E-05	0.00413376	Up	Rescued
ENSMUSG0000036908.16	Unc93b1	1.20818	5.00E-05	0.00413376	Up	Up
ENSMUSG0000038255.6	Neurod2	-0.709876	5.00E-05	0.00413376	Down	Rescued
ENSMUSG0000038550.10	Ciart	-0.903252	5.00E-05	0.00413376	Down	Down
ENSMUSG0000039007.10	Срq	1.49549	5.00E-05	0.00413376	Up	Rescued
ENSMUSG0000039221.10	Rpl22l1	-1.19083	5.00E-05	0.00413376	Down	Rescued
ENSMUSG0000039323.18	lgfbp2	0.889919	5.00E-05	0.00413376	Up	Rescued
ENSMUSG0000039801.7	AC158971.1	-2.07534	5.00E-05	0.00413376	Down	Rescued
ENSMUSG0000040128.9	Pnrc1	0.762287	5.00E-05	0.00413376	Up	Rescued
ENSMUSG0000040935.12	Padi6	#NAME?	5.00E-05	0.00413376	Up	Rescued
ENSMUSG00000044533.15	Rps2	-1.51922	5.00E-05	0.00413376	Down	Down
ENSMUSG0000050211.14	Pla2g4e	-0.984052	5.00E-05	0.00413376	Down	Rescued
ENSMUSG0000053070.5	RP23-349N15.3	-1.3355	5.00E-05	0.00413376	Down	Rescued
ENSMUSG0000053475.5	Tnfaip6	1.12635	5.00E-05	0.00413376	Up	Rescued
ENSMUSG0000054428.12	Atpif1	-0.729807	5.00E-05	0.00413376	Down	Rescued
ENSMUSG0000057163.3	Prss2	#NAME?	5.00E-05	0.00413376	Up	Rescued
ENSMUSG0000061086.12	Myl4	-1.19084	5.00E-05	0.00413376	Down	Rescued
ENSMUSG0000063698.9	Sfxn4	1.65811	5.00E-05	0.00413376	Up	Rescued
ENSMUSG0000066107.6	RP23-434B7.2	-1.99151	5.00E-05	0.00413376	Down	Rescued
ENSMUSG0000069516.8	Lyz2	2.09639	5.00E-05	0.00413376	Up	Up
ENSMUSG0000073079.6	Srp54a	-1.36797	5.00E-05	0.00413376	Down	Rescued
ENSMUSG00000079012.11	Serpina3m	#VALUE!	5.00E-05	0.00413376	Down	Rescued
ENSMUSG0000090093.8	RP23-330D3.6	5.73901	5.00E-05	0.00413376	Up	Rescued

ENSMUSG0000093931.2	Amy2a3	#NAME?	5.00E-05	0.00413376	Up	Rescued
ENSMUSG00000112449.1	Srp54b	4.25324	5.00E-05	0.00413376	Up	Rescued
ENSMUSG0000000838.17	Fmr1	-0.927091	0.0001	0.00533164	Down	Rescued
ENSMUSG0000008140.17	Emc10	0.750334	0.0001	0.00533164	Up	Rescued
ENSMUSG0000017009.3	Sdc4	0.810426	0.0001	0.00533164	Up	Rescued
ENSMUSG0000020620.14	Abca8b	-0.938131	0.0001	0.00533164	Down	Rescued
ENSMUSG0000020732.13	Rab37	1.32795	0.0001	0.00533164	Up	Rescued
ENSMUSG0000020848.7	Doc2b	0.697578	0.0001	0.00533164	Up	Rescued
ENSMUSG0000024193.7	Phf1	0.675499	0.0001	0.00533164	Up	Rescued
ENSMUSG0000026730.12	Pter	-0.883801	0.0001	0.00533164	Down	Rescued
ENSMUSG0000028214.13	Gem	-1.696	0.0001	0.00533164	Down	Down
ENSMUSG0000030075.10	Cntn3	-0.82616	0.0001	0.00533164	Down	Rescued
ENSMUSG0000030309.16	Caprin2	-1.67102	0.0001	0.00533164	Down	Rescued
ENSMUSG0000030536.10	lqgap1	-1.66505	0.0001	0.00533164	Down	Rescued
ENSMUSG0000033991.9	Ttc37	-1.45378	0.0001	0.00533164	Down	Rescued
ENSMUSG0000038535.17	Zfp280d	-1.18839	0.0001	0.00533164	Down	Rescued
ENSMUSG0000042834.14	Nrep	-0.70448	0.0001	0.00533164	Down	Down
ENSMUSG0000044519.8	Zfp488	-1.00108	0.0001	0.00533164	Down	Rescued
ENSMUSG0000049164.6	Zfp518a	-1.14943	0.0001	0.00533164	Down	Rescued
ENSMUSG0000056201.7	Cfl1	0.813036	0.0001	0.00533164	Up	Down
ENSMUSG0000061665.6	Cd2ap	-1.02093	0.0001	0.00533164	Down	Rescued
ENSMUSG0000086022.1	Rad51ap2	-2.0408	0.0001	0.00533164	Down	Rescued
ENSMUSG0000017144.8	Rnd3	-1.27309	0.00015	0.00735351	Down	Down
ENSMUSG0000018293.4	Pfn1	0.677197	0.00015	0.00735351	Up	Down
ENSMUSG0000020436.17	Gabrg2	-0.806579	0.00015	0.00735351	Down	Rescued
ENSMUSG0000021712.15	Trim23	-0.738264	0.00015	0.00735351	Down	Rescued
ENSMUSG0000023882.15	Zfp54	-2.56085	0.00015	0.00735351	Down	Rescued
ENSMUSG0000025228.4	Actr1a	0.696921	0.00015	0.00735351	Up	Rescued
ENSMUSG0000027201.16	Myef2	-0.823422	0.00015	0.00735351	Down	Rescued
ENSMUSG0000030759.16	Far1	-0.993465	0.00015	0.00735351	Down	Rescued
ENSMUSG0000032285.15	Dnaja4	1.01346	0.00015	0.00735351	Up	Rescued
ENSMUSG0000034227.7	Foxj1	1.09034	0.00015	0.00735351	Up	Rescued
ENSMUSG0000040459.11	Arglu1	-0.742293	0.00015	0.00735351	Down	Rescued
ENSMUSG0000040681.15	Hmgn1	0.701853	0.00015	0.00735351	Up	Rescued
ENSMUSG00000041801.5	PhIda3	0.70176	0.00015	0.00735351	Up	Rescued
ENSMUSG00000049288.4	Lix1l	0.839148	0.00015	0.00735351	Up	Rescued
ENSMUSG0000053825.15	Ppfia2	-0.698583	0.00015	0.00735351	Down	Rescued
ENSMUSG0000067608.4	Pcna-ps2	-1.55182	0.00015	0.00735351	Down	Rescued
ENSMUSG0000071655.11	Ubxn1	0.662531	0.00015	0.00735351	Up	Down
ENSMUSG0000020460.15	Rps27a	-0.832728	0.0001	0.00786812	Down	Rescued
ENSMUSG0000023074.11	Mospd1	-1.20276	0.0001	0.00786812	Down	Rescued
ENSMUSG0000026234.12	Ncl	-0.703577	0.0001	0.00786812	Down	Down
ENSMUSG0000075602.10	Ly6a	3.45902	0.0001	0.00786812	Up	Rescued
ENSMUSG0000010538.14	Tsacc	-1.36863	0.0002	0.00903062	Down	Down
ENSMUSG0000013662.5	Atad1	-0.754921	0.0002	0.00903062	Down	Rescued
ENSMUSG0000022358.7	Fbxo32	-0.803165	0.0002	0.00903062	Down	Rescued
ENSMUSG0000024217.9	Snrpc	0.796919	0.0002	0.00903062	Up	Down
ENSMUSG0000024785.6	Rcl1	0.767016	0.0002	0.00903062	Up	Rescued

ENSMUSG0000024870.5	Rab1b	0.647036	0.0002	0.00903062	Up	Down
ENSMUSG0000025492.6	lfitm3	0.978212	0.0002	0.00903062	Up	Rescued
ENSMUSG0000030079.15	Ruvbl1	0.939302	0.0002	0.00903062	Up	Rescued
ENSMUSG0000034525.7	lce1	-0.726657	0.0002	0.00903062	Down	Rescued
ENSMUSG0000037416.13	Dmxl1	-0.78835	0.0002	0.00903062	Down	Rescued
ENSMUSG0000041238.15	Rbbp8	-1.07168	0.0002	0.00903062	Down	Rescued
ENSMUSG00000041685.16	Fcho2	-0.995185	0.0002	0.00903062	Down	Rescued
ENSMUSG0000042271.13	Nxt2	-1.00193	0.0002	0.00903062	Down	Rescued
ENSMUSG0000048388.3	Fam171b	-0.675569	0.0002	0.00903062	Down	Rescued
ENSMUSG0000052397.8	Ezr	1.00385	0.0002	0.00903062	Up	Up
ENSMUSG0000060594.6	Layn	2.46601	0.0002	0.00903062	Up	Rescued
ENSMUSG0000062931.15	Zfp938	-0.842997	0.0002	0.00903062	Down	Rescued
ENSMUSG0000063804.8	Lin28b	-1.18817	0.0002	0.00903062	Down	Rescued
ENSMUSG0000079317.10	Trappc2	-1.07854	0.0002	0.00903062	Down	Down
ENSMUSG00000100967.1	RP23-180L12.5	-1.02537	0.0002	0.00903062	Down	Rescued
ENSMUSG00000112160.1	RP24-406I15.3	-1.76841	0.0002	0.00903062	Down	Rescued
ENSMUSG0000001627.12	lfrd1	-0.903095	0.00025	0.0107239	Down	Rescued
ENSMUSG0000004748.5	Mtfp1	0.652291	0.00025	0.0107239	Up	Rescued
ENSMUSG0000011837.4	Snapc2	0.990624	0.00025	0.0107239	Up	Rescued
ENSMUSG0000014603.2	Alx3	1.41475	0.00025	0.0107239	Up	Rescued
ENSMUSG0000024317.14	Rnf138	-0.899807	0.00025	0.0107239	Down	Rescued
ENSMUSG0000025898.6	Cwf19I2	-1.00959	0.00025	0.0107239	Down	Rescued
ENSMUSG0000026656.15	Fcgr2b	-1.53813	0.00025	0.0107239	Down	Rescued
ENSMUSG0000027495.4	Fam210b	0.720206	0.00025	0.0107239	Up	Rescued
ENSMUSG0000030929.17	Eri2	-1.6194	0.00025	0.0107239	Down	Rescued
ENSMUSG0000032849.14	Abcc4	-1.62588	0.00025	0.0107239	Down	Rescued
ENSMUSG0000034560.6	RP23-233B6.2	-0.870328	0.00025	0.0107239	Down	Rescued
ENSMUSG0000037593.11	RP23-185A18.11	-1.41877	0.00025	0.0107239	Down	Rescued
ENSMUSG0000037833.14	Sh2d4b	-1.41827	0.00025	0.0107239	Down	Rescued
ENSMUSG0000044254.6	Pcsk9	1.14381	0.00025	0.0107239	Up	Up
ENSMUSG0000046351.11	Zfp322a	-1.04089	0.00025	0.0107239	Down	Rescued
ENSMUSG0000046470.5	Sox18	1.12009	0.00025	0.0107239	Up	Rescued
ENSMUSG0000023089.12	Ndufa5	-0.811123	0.00015	0.0111048	Down	Rescued
ENSMUSG0000041935.10	RP23-37209.2	-1.19123	0.00015	0.0111048	Down	Rescued
ENSMUSG0000044018.3	Mrpl50	-0.788737	0.00015	0.0111048	Down	Rescued
ENSMUSG0000046008.7	Pnlip	4.5071	0.00015	0.0111048	Up	Rescued
ENSMUSG0000073471.3	Rsph3a	1.8202	0.00015	0.0111048	Up	Rescued
ENSMUSG0000015656.17	Hspa8	1.01214	0.0003	0.012203	Up	Rescued
ENSMUSG0000020275.9	Rel	-0.958676	0.0003	0.012203	Down	Rescued
ENSMUSG0000022858.16	Tra2b	-0.921797	0.0003	0.012203	Down	Rescued
ENSMUSG0000030660.9	Pik3c2a	-1.02936	0.0003	0.012203	Down	Rescued
ENSMUSG0000033382.14	Trappc8	-0.9795	0.0003	0.012203	Down	Rescued
ENSMUSG0000033439.12	Trmt13	-2.0238	0.0003	0.012203	Down	Rescued
ENSMUSG0000033735.9	Spr	0.815988	0.0003	0.012203	Up	Rescued
ENSMUSG0000036902.11	Neto2	-0.782823	0.0003	0.012203	Down	Rescued
ENSMUSG0000037857.16	Nufip2	-0.726122	0.0003	0.012203	Down	Rescued
ENSMUSG0000039680.10	Mrps6	1.03013	0.0003	0.012203	Up	Rescued
ENSMUSG0000040648.14	Ppip5k2	-0.880972	0.0003	0.012203	Down	Rescued

ENSMUSG0000040706.4	Agmat	-1.08083	0.0003	0.012203	Down	Rescued
ENSMUSG0000041837.4	Pdcd7	0.744993	0.0003	0.012203	Up	Rescued
ENSMUSG0000043241.14	Upf2	-0.780613	0.0003	0.012203	Down	Rescued
ENSMUSG0000047844.3	Bex4	0.821667	0.0003	0.012203	Up	Down
ENSMUSG0000054178.1	Gm9938	-0.946944	0.0003	0.012203	Down	Rescued
ENSMUSG0000056592.14	Zfp658	-0.942166	0.0003	0.012203	Down	Rescued
ENSMUSG0000056673.14	Kdm5d	-0.811517	0.0003	0.012203	Down	Down
ENSMUSG0000059970.7	Hspa2	0.790537	0.0003	0.012203	Up	Rescued
ENSMUSG0000078853.8	lgtp	2.10172	0.0003	0.012203	Up	Rescued
ENSMUSG0000078862.10	RP24-87L14.1	-1.16468	0.0003	0.012203	Down	Rescued
ENSMUSG0000079108.6	Srp54c	-0.944357	0.0003	0.012203	Down	Rescued
ENSMUSG0000004044.9	Ptrf	0.829187	0.0002	0.0135725	Up	Rescued
ENSMUSG0000019737.14	Syne4	-1.98017	0.0002	0.0135725	Down	Rescued
ENSMUSG0000024142.14	MIst8	0.676842	0.0002	0.0135725	Up	Rescued
ENSMUSG0000026424.8	Gpr37l1	0.708886	0.0002	0.0135725	Up	Rescued
ENSMUSG0000046312.4	RP23-100C7.2	0.785998	0.0002	0.0135725	Up	Rescued
ENSMUSG0000051048.17	P4ha3	1.91291	0.0002	0.0135725	Up	Up
ENSMUSG0000008200.14	Fnbp4	-1.29249	0.00035	0.0137337	Down	Rescued
ENSMUSG0000011263.16	Exoc3l2	-1.45036	0.00035	0.0137337	Down	Rescued
ENSMUSG0000020385.16	Clk4	-0.991758	0.00035	0.0137337	Down	Rescued
ENSMUSG0000022540.16	Rogdi	0.668294	0.00035	0.0137337	Up	Rescued
ENSMUSG0000023809.10	Rps6ka2	1.00041	0.00035	0.0137337	Up	Up
ENSMUSG0000025019.15	Lcor	-0.725554	0.00035	0.0137337	Down	Rescued
ENSMUSG0000028572.13	Hook1	-1.25838	0.00035	0.0137337	Down	Rescued
ENSMUSG0000029422.15	Rsrc2	-0.899065	0.00035	0.0137337	Down	Rescued
ENSMUSG0000036572.16	Upf3b	-0.834036	0.00035	0.0137337	Down	Rescued
ENSMUSG0000039233.12	Tbce	-1.09206	0.00035	0.0137337	Down	Rescued
ENSMUSG0000041607.16	Mbp	0.733715	0.00035	0.0137337	Up	Down
ENSMUSG0000042109.8	Csdc2	0.678679	0.00035	0.0137337	Up	Down
ENSMUSG0000063810.7	Alms1	-1.13818	0.00035	0.0137337	Down	Rescued
ENSMUSG00000109588.1	Lnp1	2.07554	0.00035	0.0137337	Up	Rescued
ENSMUSG0000004207.14	Psap	0.705273	0.0004	0.0150992	Up	Up
ENSMUSG0000004665.10	Cnn2	1.23084	0.0004	0.0150992	Up	Rescued
ENSMUSG0000022337.7	Emc2	-0.676363	0.0004	0.0150992	Down	Rescued
ENSMUSG0000022947.8	Cbr3	0.790755	0.0004	0.0150992	Up	Rescued
ENSMUSG0000025791.18	Pgm2	0.756379	0.0004	0.0150992	Up	Rescued
ENSMUSG0000031659.13	Adcy7	-1.20329	0.0004	0.0150992	Down	Rescued
ENSMUSG0000031698.14	Mylk3	2.23258	0.0004	0.0150992	Up	Rescued
ENSMUSG0000043964.14	Orai3	-0.755766	0.0004	0.0150992	Down	Rescued
ENSMUSG0000051483.9	Cbr1	0.734507	0.0004	0.0150992	Up	Rescued
ENSMUSG0000058355.8	Abce1	-0.733604	0.0004	0.0150992	Down	Rescued
ENSMUSG0000061371.7	Zfp873	-1.14666	0.0004	0.0150992	Down	Rescued
ENSMUSG00000068617.5	Efcab1	-0.98477	0.0004	0.0150992	Down	Rescued
ENSMUSG00000110105.1	RP24-77E13.10	4.40623	0.0004	0.0150992	Up	Rescued
ENSMUSG00000001473.6	Tubb6	1.05012	0.00025	0.015782	Up	Rescued
ENSMUSG00000020432.12	Tcn2	0.885122	0.00025	0.015782	Up	Rescued
ENSMUSG00000022674.15	Ube2v2	-1.10352	0.00025	0.015782	Down	Rescued
ENSMUSG00000023992.14	Trem2	1.42059	0.00025	0.015782	Up	Rescued

ENSMUSG0000026308.8	Klhl30	1.48145	0.00025	0.015782	Up	Rescued
ENSMUSG0000029304.14	Spp1	1.39525	0.00025	0.015782	Up	Rescued
ENSMUSG0000037152.11	Ndufc1	-1.15039	0.00025	0.015782	Down	Rescued
ENSMUSG0000074892.9	B3galt5	0.975232	0.00025	0.015782	Up	Rescued
ENSMUSG0000003198.10	Zfp959	-1.54742	0.00045	0.0163963	Down	Rescued
ENSMUSG0000024045.5	Akap8	-0.683415	0.00045	0.0163963	Down	Rescued
ENSMUSG0000028223.8	Decr1	0.86184	0.00045	0.0163963	Up	Rescued
ENSMUSG0000046994.9	Mars2	-0.713233	0.00045	0.0163963	Down	Rescued
ENSMUSG0000047485.6	Klhl34	-0.715258	0.00045	0.0163963	Down	Rescued
ENSMUSG0000058748.9	Zfp958	-1.26662	0.00045	0.0163963	Down	Rescued
ENSMUSG0000069300.3	Hist1h2bj	1.20839	0.00045	0.0163963	Up	Rescued
ENSMUSG0000078117.2	Gm16485	-0.77539	0.00045	0.0163963	Down	Rescued
ENSMUSG0000094441.1	Zfp955a	-1.18379	0.00045	0.0163963	Down	Rescued
ENSMUSG0000004655.5	Aqp1	3.48245	0.0003	0.0179636	Up	Rescued
ENSMUSG0000008822.15	Acyp1	-0.804276	0.0003	0.0179636	Down	Rescued
ENSMUSG0000020473.13	Aebp1	0.902517	0.0003	0.0179636	Up	Rescued
ENSMUSG0000026021.15	Sumo1	-1.00261	0.0003	0.0179636	Down	Rescued
ENSMUSG0000042712.10	Tceal9	-0.756243	0.0003	0.0179636	Down	Rescued
ENSMUSG0000003541.6	ler3	0.807772	0.0005	0.0180095	Up	Rescued
ENSMUSG0000027881.14	Prpf38b	-1.03909	0.0005	0.0180095	Down	Rescued
ENSMUSG00000029014.14	Dnajc2	-0.846379	0.0005	0.0180095	Down	Rescued
ENSMUSG0000064288.4	Hist1h4k	0.730686	0.0005	0.0180095	Up	Rescued
ENSMUSG0000027313.3	Chac1	0.833963	0.00055	0.019367	Up	Rescued
ENSMUSG0000032212.10	Sltm	-0.823381	0.00055	0.019367	Down	Rescued
ENSMUSG0000035270.15	Impg2	-3.4357	0.00055	0.019367	Down	Rescued
ENSMUSG00000041153.9	Osgin2	-0.987659	0.00055	0.019367	Down	Rescued
ENSMUSG0000042672.15	Dcst1	-0.84495	0.00055	0.019367	Down	Rescued
ENSMUSG0000051627.3	Hist1h1e	0.721142	0.00055	0.019367	Up	Down
ENSMUSG0000057894.10	Zfp329	-0.836416	0.00055	0.019367	Down	Rescued
ENSMUSG00000113061.1	RP23-371K8.1	-2.09432	0.00055	0.019367	Down	Down
ENSMUSG00000017550.14	Atad5	-1.39361	0.00035	0.0202144	Down	Rescued
ENSMUSG0000025290.17	Rps24	-0.82761	0.00035	0.0202144	Down	Rescued
ENSMUSG0000053898.12	Ech1	0.824836	0.00035	0.0202144	Up	Rescued
ENSMUSG0000014496.8	Ankrd28	-0.961482	0.0006	0.0205898	Down	Rescued
ENSMUSG0000027550.14	Lrrcc1	-1.22203	0.0006	0.0205898	Down	Rescued
ENSMUSG00000029086.15	Prom1	-1.68518	0.0006	0.0205898	Down	Rescued
ENSMUSG0000029676.15	Pot1a	-1.091	0.0006	0.0205898	Down	Rescued
ENSMUSG00000040212.12	Emp3	1.44689	0.0006	0.0205898	Up	Rescued
ENSMUSG0000051285.17	Pcmtd1	-0.83612	0.0006	0.0205898	Down	Rescued
ENSMUSG0000073371.3	Gm6594	-2.78058	0.0006	0.0205898	Down	Rescued
ENSMUSG0000091636.1	Akain1	0.810101	0.0006	0.0205898	Up	Rescued
ENSMUSG0000018042.18	Cyb5r3	0.669521	0.00065	0.0216751	Up	Rescued
ENSMUSG00000021706.14	Zfyve16	-1.37187	0.00065	0.0216751	Down	Rescued
ENSMUSG00000027397.14	Slc20a1	-0.857474	0.00065	0.0216751	Down	Rescued
ENSMUSG00000027935.14	Rab13	1.04924	0.00065	0.0216751	Up	Rescued
ENSMUSG00000034007.10	Scaper	-0.777121	0.00065	0.0216751	Down	Rescued
ENSMUSG00000036733.16	Rbm42	0.64177	0.00065	0.0216751	Up	Rescued
ENSMUSG0000036905.8	C1qb	0.847949	0.00065	0.0216751	Up	Rescued

ENSMUSG0000037475.15	Thoc2	-1.40264	0.00065	0.0216751	Down	Rescued
ENSMUSG00000041268.17	Dmxl2	-0.797954	0.00065	0.0216751	Down	Rescued
ENSMUSG0000062077.14	Trim54	-1.30047	0.00065	0.0216751	Down	Rescued
ENSMUSG0000069308.7	Hist1h2bp	-1.30487	0.00065	0.0216751	Down	Rescued
ENSMUSG0000090129.10	Olfr287	4.10032	0.00065	0.0216751	Up	Rescued
ENSMUSG0000026238.14	Ptma	-0.770074	0.0004	0.0220841	Down	Rescued
ENSMUSG0000030108.14	Slc6a13	1.05738	0.0004	0.0220841	Up	Rescued
ENSMUSG0000036856.4	Wnt4	-0.886864	0.0004	0.0220841	Down	Rescued
ENSMUSG0000039246.8	Lyplal1	-1.13649	0.0004	0.0220841	Down	Rescued
ENSMUSG0000052681.8	Rap1b	-0.75148	0.0004	0.0220841	Down	Rescued
ENSMUSG0000063011.6	MsIn	1.66449	0.0004	0.0220841	Up	Rescued
ENSMUSG0000069045.11	Ddx3y	-0.697502	0.0004	0.0220841	Down	Rescued
ENSMUSG0000018199.9	Trove2	-0.740872	0.0007	0.0230171	Down	Rescued
ENSMUSG0000030757.13	Zkscan2	-1.20017	0.0007	0.0230171	Down	Rescued
ENSMUSG0000050029.7	Rap2c	-0.673883	0.0007	0.0230171	Down	Rescued
ENSMUSG0000079003.2	Samd1	0.704437	0.0007	0.0230171	Up	Rescued
ENSMUSG0000020362.13	Cnot6	-0.764125	0.00075	0.0240331	Down	Rescued
ENSMUSG0000027366.12	Sppl2a	-0.763328	0.00075	0.0240331	Down	Rescued
ENSMUSG0000028779.16	Pef1	0.6236	0.00075	0.0240331	Up	Rescued
ENSMUSG0000031327.10	Chic1	-0.628632	0.00075	0.0240331	Down	Rescued
ENSMUSG0000037608.16	Bclaf1	-0.84798	0.00075	0.0240331	Down	Rescued
ENSMUSG0000043410.16	Hfm1	-2.0671	0.00075	0.0240331	Down	Rescued
ENSMUSG0000051951.5	Xkr4	-0.692068	0.00075	0.0240331	Down	Rescued
ENSMUSG0000062995.12	lca1	0.958778	0.00075	0.0240331	Up	Rescued
ENSMUSG0000064354.1	mt-Co2	-2.56109	0.00075	0.0240331	Down	Rescued
ENSMUSG0000070695.4	Cntnap5a	-0.625484	0.00075	0.0240331	Down	Rescued
ENSMUSG0000095217.1	Hist1h2bn	1.42916	0.00075	0.0240331	Up	Rescued
ENSMUSG0000031226.13	Pbdc1	-0.993927	0.00045	0.0245122	Down	Rescued
ENSMUSG0000036390.8	Gadd45a	-1.14648	0.00045	0.0245122	Down	Rescued
ENSMUSG0000062929.8	Cfl2	-0.833209	0.00045	0.0245122	Down	Rescued
ENSMUSG00000021065.16	Fut8	-0.658599	0.0008	0.0250817	Down	Rescued
ENSMUSG0000024793.14	Tnfrsf25	-3.3438	0.0008	0.0250817	Down	Rescued
ENSMUSG0000025588.4	Nat1	-1.79466	0.0008	0.0250817	Down	Rescued
ENSMUSG0000028080.16	Lrba	-0.683874	0.0008	0.0250817	Down	Rescued
ENSMUSG0000034891.13	Sncb	0.757024	0.0008	0.0250817	Up	Rescued
ENSMUSG0000036860.14	Mrpl55	0.738055	0.0008	0.0250817	Up	Down
ENSMUSG0000038784.13	Cnot4	-0.693937	0.0008	0.0250817	Down	Rescued
ENSMUSG00000044229.9	Nxpe4	-0.860917	0.0008	0.0250817	Down	Rescued
ENSMUSG0000021936.14	Mapk8	-0.736888	0.00085	0.0260015	Down	Rescued
ENSMUSG0000024614.6	Tmx3	-0.723485	0.00085	0.0260015	Down	Rescued
ENSMUSG0000027086.16	Fastkd1	-0.73927	0.00085	0.0260015	Down	Rescued
ENSMUSG0000028832.11	Stmn1	0.821289	0.00085	0.0260015	Up	Down
ENSMUSG0000030357.10	Fkbp4	0.789521	0.00085	0.0260015	Up	Rescued
ENSMUSG0000036790.5	Slitrk2	-0.719732	0.00085	0.0260015	Down	Rescued
ENSMUSG00000041079.12	Rwdd2b	0.758846	0.00085	0.0260015	Up	Rescued
ENSMUSG0000041548.4	Hspb8	0.928112	0.00085	0.0260015	Up	Rescued
ENSMUSG0000052726.15	Kcnt2	-0.776957	0.00085	0.0260015	Down	Rescued
ENSMUSG0000053398.11	Phgdh	1.37609	0.00085	0.0260015	Up	Rescued

ENSMUSG0000064061.13	Dzip3	-0.926387	0.00085	0.0260015	Down	Rescued
ENSMUSG0000096916.7	Zfp850	-1.10542	0.00085	0.0260015	Down	Rescued
ENSMUSG0000021619.6	Atg10	-0.774328	0.0009	0.0270057	Down	Down
ENSMUSG0000034848.17	Ttc21b	-0.882499	0.0009	0.0270057	Down	Rescued
ENSMUSG0000037465.10	Klf10	-1.05141	0.0009	0.0270057	Down	Rescued
ENSMUSG0000038418.7	Egr1	-0.595364	0.0009	0.0270057	Down	Down
ENSMUSG0000058503.11	Fam133b	-0.770342	0.0009	0.0270057	Down	Rescued
ENSMUSG0000060227.15	Casc4	-0.764919	0.0009	0.0270057	Down	Rescued
ENSMUSG0000036896.5	C1qc	0.781356	0.00095	0.0281923	Up	Rescued
ENSMUSG0000042599.8	Kdm7a	-0.666703	0.00095	0.0281923	Down	Rescued
ENSMUSG0000062456.3	RpI9-ps6	-1.15866	0.00095	0.0281923	Down	Down
ENSMUSG0000063021.3	Hist1h2ak	0.894767	0.00095	0.0281923	Up	Rescued
ENSMUSG0000091811.2	Inafm1	0.648927	0.00095	0.0281923	Up	Rescued
ENSMUSG0000027889.17	Ampd2	0.603885	0.00055	0.0288034	Up	Rescued
ENSMUSG0000030672.12	Mylpf	-3.80356	0.00055	0.0288034	Down	Rescued
ENSMUSG0000056216.9	Cebpg	-0.889526	0.00055	0.0288034	Down	Rescued
ENSMUSG0000057561.9	Eif1a	-0.728498	0.00055	0.0288034	Down	Rescued
ENSMUSG0000057604.9	Lmcd1	0.865045	0.00055	0.0288034	Up	Rescued
ENSMUSG0000098132.1	Rassf10	-1.31718	0.00055	0.0288034	Down	Rescued
ENSMUSG00000020153.14	Ndufs7	0.589742	0.001	0.0293075	Up	Down
ENSMUSG0000031197.11	Vbp1	-0.702634	0.001	0.0293075	Down	Rescued
ENSMUSG0000031337.16	Mtm1	-1.06644	0.001	0.0293075	Down	Rescued
ENSMUSG0000035964.8	Tmem59l	0.663609	0.001	0.0293075	Up	Rescued
ENSMUSG0000037355.14	Uvssa	-0.844933	0.001	0.0293075	Down	Rescued
ENSMUSG0000037977.6	RP23-115A1.5	0.840538	0.001	0.0293075	Up	Rescued
ENSMUSG0000059474.13	Mbtd1	-1.09496	0.001	0.0293075	Down	Rescued
ENSMUSG0000004892.13	Bcan	0.622881	0.0006	0.0301611	Up	Rescued
ENSMUSG0000019773.7	Fbxo5	-2.80976	0.0006	0.0301611	Down	Rescued
ENSMUSG0000019837.8	Gtf3c6	-1.19116	0.0006	0.0301611	Down	Rescued
ENSMUSG0000023043.7	Krt18	3.00051	0.0006	0.0301611	Up	Rescued
ENSMUSG0000025017.9	Pik3ap1	1.02307	0.0006	0.0301611	Up	Rescued
ENSMUSG0000026502.13	Desi2	-0.979212	0.0006	0.0301611	Down	Rescued
ENSMUSG0000031848.15	Lsm4	-0.890414	0.0006	0.0301611	Down	Rescued
ENSMUSG0000057841.5	Rpl32	-0.785884	0.0006	0.0301611	Down	Rescued
ENSMUSG0000069874.7	Irgm2	1.90074	0.0006	0.0301611	Up	Rescued
ENSMUSG0000021327.19	Zkscan3	-0.842877	0.00105	0.0303952	Down	Rescued
ENSMUSG0000021569.10	Trip13	-2.25882	0.00105	0.0303952	Down	Down
ENSMUSG0000024383.8	Map3k2	-0.634948	0.00105	0.0303952	Down	Rescued
ENSMUSG00000041058.15	Wwp1	-0.654249	0.00105	0.0303952	Down	Rescued
ENSMUSG0000067071.8	Hes6	0.672708	0.00105	0.0303952	Up	Rescued
ENSMUSG00000070047.14	Fat1	-0.964963	0.00105	0.0303952	Down	Rescued
ENSMUSG0000000530.16	Acvrl1	2.37087	0.0011	0.0311733	Up	Rescued
ENSMUSG0000001128.7	Cfp	-1.03258	0.0011	0.0311733	Down	Rescued
ENSMUSG00000002718.14	Cse1	-0.864707	0.0011	0.0311733	Down	Rescued
ENSMUSG0000025199.16	Chuk	-1.05794	0.0011	0.0311733	Down	Rescued
ENSMUSG00000029238.11	Clock	-0.687187	0.0011	0.0311733	Down	Rescued
ENSMUSG0000030647.8	Ndufc2	0.622656	0.0011	0.0311733	Up	Down
ENSMUSG0000033488.11	AC161108.3	1.21283	0.0011	0.0311733	Up	Rescued

ENSMUSG0000034341.17	Wbp2	0.624569	0.0011	0.0311733	Up	Rescued
ENSMUSG0000039194.16	Rlbp1	1.12041	0.0011	0.0311733	Up	Rescued
ENSMUSG0000053181.1	RP24-270A10.2	1.67213	0.0011	0.0311733	Up	Rescued
ENSMUSG0000063953.3	Amd2	-1.22169	0.0011	0.0311733	Down	Rescued
ENSMUSG0000068882.13	Ssb	-0.920228	0.0011	0.0311733	Down	Rescued
ENSMUSG0000001827.12	Folr1	-2.60982	0.00065	0.0320805	Down	Rescued
ENSMUSG0000038507.6	Parp12	0.847545	0.00065	0.0320805	Up	Rescued
ENSMUSG0000036192.15	Rorb	-0.722439	0.00115	0.0322993	Down	Rescued
ENSMUSG0000043411.15	Usp48	-0.878233	0.00115	0.0322993	Down	Rescued
ENSMUSG0000063065.13	Mapk3	0.788528	0.00115	0.0322993	Up	Rescued
ENSMUSG0000063364.10	RP23-91K11.3	-1.14521	0.00115	0.0322993	Down	Rescued
ENSMUSG0000000983.13	Wfdc18	1.93955	0.0012	0.0333561	Up	Rescued
ENSMUSG0000019841.15	Rev3l	-1.183	0.0012	0.0333561	Down	Rescued
ENSMUSG0000020514.8	Mrpl22	0.722818	0.0012	0.0333561	Up	Rescued
ENSMUSG0000041377.12	Ninj2	1.68113	0.0012	0.0333561	Up	Rescued
ENSMUSG0000044966.4	Fbxo48	-1.34849	0.0012	0.0333561	Down	Rescued
ENSMUSG0000053560.4	ler2	-0.801117	0.0012	0.0333561	Down	Down
ENSMUSG0000010797.6	Wnt2	1.20374	0.0007	0.033631	Up	Rescued
ENSMUSG0000023953.8	Polh	0.908237	0.0007	0.033631	Up	Rescued
ENSMUSG0000024352.11	Spata24	-1.47985	0.0007	0.033631	Down	Rescued
ENSMUSG0000034639.7	Setmar	-0.986316	0.0007	0.033631	Down	Rescued
ENSMUSG0000045288.10	Ush1g	1.33719	0.0007	0.033631	Up	Rescued
ENSMUSG0000032582.14	Rbm6	-0.925698	0.00125	0.034492	Down	Rescued
ENSMUSG0000041702.7	Btbd7	-0.663993	0.00125	0.034492	Down	Rescued
ENSMUSG0000068011.4	Mkrn2os	-1.27159	0.00125	0.034492	Down	Rescued
ENSMUSG0000094724.8	Rnaset2b	1.30145	0.00125	0.034492	Up	Rescued
ENSMUSG0000015733.13	Capza2	-0.796075	0.00075	0.0353042	Down	Rescued
ENSMUSG0000022322.8	Shcbp1	-1.8068	0.00075	0.0353042	Down	Rescued
ENSMUSG0000028270.12	Gbp2	1.93919	0.00075	0.0353042	Up	Rescued
ENSMUSG0000030417.15	Pdcd5	-1.36506	0.00075	0.0353042	Down	Down
ENSMUSG0000031410.14	Nxf7	-1.59372	0.00075	0.0353042	Down	Rescued
ENSMUSG0000020952.10	Scfd1	-0.822892	0.0013	0.0354058	Down	Rescued
ENSMUSG0000024007.14	Ppil1	0.70316	0.0013	0.0354058	Up	Rescued
ENSMUSG0000028771.13	Ptpn12	-1.06774	0.0013	0.0354058	Down	Rescued
ENSMUSG0000029468.17	P2rx7	-1.51499	0.0013	0.0354058	Down	Rescued
ENSMUSG0000030905.5	Crym	0.607588	0.0013	0.0354058	Up	Rescued
ENSMUSG0000032264.9	Zw10	-0.872583	0.0013	0.0354058	Down	Rescued
ENSMUSG0000039967.14	Zfp292	-0.656127	0.0013	0.0354058	Down	Rescued
ENSMUSG0000054519.8	Zfp867	-0.776177	0.0013	0.0354058	Down	Rescued
ENSMUSG0000021709.14	Erbb2ip	-0.624166	0.00135	0.0359378	Down	Rescued
ENSMUSG0000025525.12	Apool	-0.990174	0.00135	0.0359378	Down	Rescued
ENSMUSG00000028150.14	Rorc	1.48673	0.00135	0.0359378	Up	Rescued
ENSMUSG00000028478.18	Clta	0.562431	0.00135	0.0359378	Up	Rescued
ENSMUSG0000037808.13	Fam76b	-1.31382	0.00135	0.0359378	Down	Rescued
ENSMUSG0000038242.12	Aox4	-2.43293	0.00135	0.0359378	Down	Rescued
ENSMUSG0000053985.10	Zfp14	-0.830054	0.00135	0.0359378	Down	Rescued
ENSMUSG0000057411.8	Fam173a	0.608723	0.00135	0.0359378	Up	Rescued
ENSMUSG00000058093.13	Zfp729b	-1.75812	0.00135	0.0359378	Down	Rescued

ENSMUSG0000060427.15	Zfp868	-1.15132	0.00135	0.0359378	Down	Rescued
ENSMUSG0000067424.12	Zfp563	-0.979838	0.00135	0.0359378	Down	Rescued
ENSMUSG0000075486.10	Commd6	-0.802351	0.00135	0.0359378	Down	Rescued
ENSMUSG0000003477.5	Inmt	2.99147	0.0008	0.0364975	Up	Rescued
ENSMUSG0000005233.16	Spc25	-2.11376	0.0008	0.0364975	Down	Rescued
ENSMUSG0000008384.8	Sertad1	-0.685555	0.0008	0.0364975	Down	Down
ENSMUSG0000018593.13	Sparc	0.869434	0.0008	0.0364975	Up	Up
ENSMUSG0000020919.11	Stat5b	0.621017	0.0008	0.0364975	Up	Rescued
ENSMUSG0000052566.8	Hook2	0.808401	0.0008	0.0364975	Up	Rescued
ENSMUSG0000071267.11	Zfp942	-1.3288	0.0008	0.0364975	Down	Rescued
ENSMUSG0000026516.8	Nvl	-1.081	0.0014	0.0370078	Down	Rescued
ENSMUSG0000027770.5	Dhx36	-0.653441	0.0014	0.0370078	Down	Rescued
ENSMUSG0000052565.7	Hist1h1d	0.60475	0.0014	0.0370078	Up	Down
ENSMUSG0000068479.5	Mfap1a	-0.785226	0.0014	0.0370078	Down	Rescued
ENSMUSG0000029484.12	Anxa3	1.44348	0.00085	0.0376194	Up	Rescued
ENSMUSG0000075232.5	Amd1	-0.82067	0.00085	0.0376194	Down	Rescued
ENSMUSG0000001260.10	Gabrg1	-0.843778	0.00145	0.037748	Down	Rescued
ENSMUSG0000026187.8	Xrcc5	-0.674351	0.00145	0.037748	Down	Rescued
ENSMUSG0000027829.15	Ccnl1	-1.29341	0.00145	0.037748	Down	Rescued
ENSMUSG0000028813.2	RP23-183D18.1	1.03024	0.00145	0.037748	Up	Rescued
ENSMUSG0000029208.16	Guf1	-0.998403	0.00145	0.037748	Down	Rescued
ENSMUSG0000031139.15	Mcf2	-0.928355	0.00145	0.037748	Down	Rescued
ENSMUSG0000031389.17	Arhgap4	-2.55873	0.00145	0.037748	Down	Rescued
ENSMUSG00000040044.11	Orc3	-0.860838	0.00145	0.037748	Down	Rescued
ENSMUSG00000049538.14	Adamts16	-1.04809	0.00145	0.037748	Down	Rescued
ENSMUSG0000022861.17	Dgkg	0.593879	0.0015	0.0386235	Up	Rescued
ENSMUSG0000024146.9	Cript	-0.623526	0.0015	0.0386235	Down	Rescued
ENSMUSG0000050668.9	Gpatch11	-0.61616	0.0015	0.0386235	Down	Rescued
ENSMUSG0000056071.12	S100a9	3.21112	0.0015	0.0386235	Up	Rescued
ENSMUSG0000059518.14	Znhit1	0.69197	0.0015	0.0386235	Up	Rescued
ENSMUSG0000076441.9	Ass1	0.65639	0.0015	0.0386235	Up	Rescued
ENSMUSG0000021177.16	Tdp1	0.995572	0.0009	0.0387786	Up	Rescued
ENSMUSG0000021719.9	Rgs7bp	-0.557704	0.0009	0.0387786	Down	Rescued
ENSMUSG0000023913.17	Pla2g7	0.846733	0.0009	0.0387786	Up	Rescued
ENSMUSG0000030137.8	Tuba8	0.656162	0.0009	0.0387786	Up	Rescued
ENSMUSG0000060284.7	Sp7	1.01008	0.0009	0.0387786	Up	Rescued
ENSMUSG0000074968.11	Ano3	-0.738046	0.0009	0.0387786	Down	Rescued
ENSMUSG0000022951.16	Rcan1	1.07097	0.00155	0.0391629	Up	Rescued
ENSMUSG0000023484.14	Prph	-1.43316	0.00155	0.0391629	Down	Rescued
ENSMUSG0000024006.16	Stk38	-1.01319	0.00155	0.0391629	Down	Rescued
ENSMUSG0000048482.14	Bdnf	-0.701181	0.00155	0.0391629	Down	Rescued
ENSMUSG00000049932.3	H2afx	0.571002	0.00155	0.0391629	Up	Down
ENSMUSG0000058927.5	Gm10053	-1.2049	0.00155	0.0391629	Down	Down
ENSMUSG0000020766.4	Galk1	0.743098	0.0016	0.0397871	Up	Rescued
ENSMUSG00000021384.14	Susd3	2.24049	0.0016	0.0397871	Up	Up
ENSMUSG0000034160.13	Ogt	-0.719275	0.0016	0.0397871	Down	Rescued
ENSMUSG0000037058.14	Paip2	-0.605042	0.0016	0.0397871	Down	Down
ENSMUSG0000050549.8	RP23-173N16.6	0.962025	0.0016	0.0397871	Up	Rescued

ENSMUSG0000056267.14	Cep70	-1.31853	0.0016	0.0397871	Down	Rescued
ENSMUSG0000073565.4	Prr16	-0.717613	0.0016	0.0397871	Down	Rescued
ENSMUSG0000016206.6	H2-M3	1.47613	0.00095	0.039981	Up	Rescued
ENSMUSG0000032215.15	Rsl24d1	-0.69174	0.00095	0.039981	Down	Rescued
ENSMUSG0000042043.6	Tbca	-0.734785	0.00095	0.039981	Down	Rescued
ENSMUSG0000031431.13	Tsc22d3	0.595879	0.00165	0.0408153	Up	Down
ENSMUSG0000047797.14	Gjb1	0.704981	0.00165	0.0408153	Up	Rescued
ENSMUSG0000048602.8	Morc2b	-0.946607	0.00165	0.0408153	Down	Rescued
ENSMUSG0000060512.7	RP23-192C21.1	1.25963	0.00165	0.0408153	Up	Rescued
ENSMUSG0000018648.15	Dusp14	-0.599401	0.001	0.0410252	Down	Rescued
ENSMUSG0000042363.14	Lgalsl	-0.739289	0.001	0.0410252	Down	Rescued
ENSMUSG0000043061.10	Tmem18	-0.880807	0.001	0.0410252	Down	Rescued
ENSMUSG0000028610.16	Dmrtb1	1.43043	0.0017	0.0416699	Up	Rescued
ENSMUSG0000032688.8	Malt1	-1.17882	0.0017	0.0416699	Down	Rescued
ENSMUSG0000039361.11	Picalm	-0.813203	0.0017	0.0416699	Down	Rescued
ENSMUSG0000048647.9	Exd1	-1.90633	0.0017	0.0416699	Down	Rescued
ENSMUSG0000070583.1	Fv1	-0.836588	0.0017	0.0416699	Down	Rescued
ENSMUSG0000022323.11	Hrsp12	-1.23591	0.00105	0.0423301	Down	Rescued
ENSMUSG0000047821.16	Trim16	2.27626	0.00105	0.0423301	Up	Rescued
ENSMUSG0000051154.11	Commd3	-0.67402	0.00105	0.0423301	Down	Rescued
ENSMUSG0000004895.9	Prcc	0.586278	0.00175	0.0423455	Up	Rescued
ENSMUSG0000024411.9	Aqp4	-0.655314	0.00175	0.0423455	Down	Rescued
ENSMUSG0000026994.9	Galnt3	-2.5494	0.00175	0.0423455	Down	Rescued
ENSMUSG0000027474.12	Ccm2l	1.97743	0.00175	0.0423455	Up	Rescued
ENSMUSG0000034297.14	Med13	-0.683481	0.00175	0.0423455	Down	Rescued
ENSMUSG0000043190.14	Rfesd	-0.769319	0.00175	0.0423455	Down	Rescued
ENSMUSG0000047213.14	Ythdf3	-0.598909	0.00175	0.0423455	Down	Rescued
ENSMUSG0000057409.6	Zfp53	-0.999949	0.00175	0.0423455	Down	Rescued
ENSMUSG0000094475.7	RP23-294G7.1	#VALUE!	0.00175	0.0423455	Down	Down
ENSMUSG0000025591.6	Tma16	-0.846226	0.0018	0.0428414	Down	Rescued
ENSMUSG0000057497.8	Fam136a	-0.605231	0.0018	0.0428414	Down	Down
ENSMUSG0000071337.11	Tia1	-0.942762	0.0018	0.0428414	Down	Rescued
ENSMUSG0000074457.10	S100a16	0.591394	0.0018	0.0428414	Up	Rescued
ENSMUSG0000078578.9	Ube2d3	0.86848	0.0018	0.0428414	Up	Rescued
ENSMUSG0000078779.4	Zfp59	-1.02363	0.0018	0.0428414	Down	Rescued
ENSMUSG0000078870.9	RP23-360A2.8	-0.787013	0.0018	0.0428414	Down	Down
ENSMUSG0000000600.15	Krit1	-0.768549	0.00185	0.0434831	Down	Rescued
ENSMUSG0000019102.10	Aldh3a1	-1.24703	0.00185	0.0434831	Down	Rescued
ENSMUSG0000020520.14	Galnt10	0.750112	0.00185	0.0434831	Up	Rescued
ENSMUSG0000028444.17	Cntfr	0.686836	0.00185	0.0434831	Up	Rescued
ENSMUSG0000031672.8	Got2	0.718104	0.00185	0.0434831	Up	Rescued
ENSMUSG00000057182.14	Scn3a	-0.946695	0.00185	0.0434831	Down	Rescued
ENSMUSG00000034993.7	Vat1	0.637932	0.0011	0.043911	Up	Rescued
ENSMUSG00000024843.15	Chka	-1.15055	0.0019	0.0443271	Down	Rescued
ENSMUSG00000038274.12	Fau	0.597192	0.0019	0.0443271	Up	Down
ENSMUSG00000050855.16	Zfp940	-2.06014	0.0019	0.0443271	Down	Rescued
ENSMUSG0000064368.1	mt-Nd6	-1.4656	0.0019	0.0443271	Down	Up
ENSMUSG0000023873.12	RP23-67C3.2	1.80072	0.00115	0.0451327	Up	Rescued

ENSMUSG0000044881.7	Coa4	-1.33589	0.00115	0.0451327	Down	Rescued
ENSMUSG0000057858.7	Fam204a	-0.756714	0.00115	0.0451327	Down	Rescued
ENSMUSG0000030235.17	Slco1c1	-0.779404	0.00195	0.0452697	Down	Rescued
ENSMUSG0000032673.5	Prorsd1	-1.00975	0.00195	0.0452697	Down	Rescued
ENSMUSG0000035413.8	Tmem98	0.753473	0.00195	0.0452697	Up	Rescued
ENSMUSG0000034206.15	Polq	-1.32195	0.002	0.0460904	Down	Rescued
ENSMUSG0000051403.9	Ppp1r37	0.634769	0.002	0.0460904	Up	Rescued
ENSMUSG0000055044.12	Pdlim1	1.01992	0.002	0.0460904	Up	Rescued
ENSMUSG0000056537.11	Rlim	-0.59313	0.002	0.0460904	Down	Rescued
ENSMUSG0000059708.12	Akap17b	-0.729664	0.002	0.0460904	Down	Rescued
ENSMUSG0000063838.6	Cdc42ep5	1.17425	0.002	0.0460904	Up	Rescued
ENSMUSG0000023868.16	Pde10a	0.718198	0.0012	0.0465343	Up	Rescued
ENSMUSG0000037447.16	Arid5a	-1.15575	0.0012	0.0465343	Down	Rescued
ENSMUSG0000015090.13	Ptgds	0.615419	0.00205	0.0466165	Up	Rescued
ENSMUSG0000028576.12	lft74	-0.749237	0.00205	0.0466165	Down	Rescued
ENSMUSG0000038446.8	Cdc40	-0.651935	0.00205	0.0466165	Down	Rescued
ENSMUSG0000039831.16	Arhgap29	-0.796542	0.00205	0.0466165	Down	Rescued
ENSMUSG00000049625.6	Tifab	0.999837	0.00205	0.0466165	Up	Rescued
ENSMUSG0000091511.2	Vmn2r87	-1.47207	0.00205	0.0466165	Down	Rescued
ENSMUSG0000027599.9	Armc1	-0.545795	0.0021	0.0474108	Down	Down
ENSMUSG0000027620.16	Rbm39	-0.805734	0.0021	0.0474108	Down	Rescued
ENSMUSG0000060475.12	Wtap	-1.06382	0.0021	0.0474108	Down	Rescued
ENSMUSG0000005892.4	Trh	0.954513	0.00215	0.0479658	Up	Rescued
ENSMUSG0000027130.15	Slc12a6	-0.899054	0.00215	0.0479658	Down	Rescued
ENSMUSG0000029070.9	Mxra8	-1.24829	0.00215	0.0479658	Down	Rescued
ENSMUSG0000030512.13	Snrpa1	-0.795559	0.00215	0.0479658	Down	Rescued
ENSMUSG0000032254.10	Kif23	-1.79001	0.00215	0.0479658	Down	Rescued
ENSMUSG0000033392.16	Clasp2	-0.594594	0.00215	0.0479658	Down	Rescued
ENSMUSG0000036437.6	Npy1r	-0.686297	0.00215	0.0479658	Down	Rescued
ENSMUSG0000042104.18	Uggt2	-1.34931	0.00215	0.0479658	Down	Rescued
ENSMUSG00000049791.4	Fzd4	-0.8156	0.00215	0.0479658	Down	Rescued
ENSMUSG0000032359.14	Ctsh	1.17525	0.00125	0.0482435	Up	Rescued
ENSMUSG0000033111.16	RP24-315N18.1	-1.40713	0.00125	0.0482435	Down	Rescued
ENSMUSG0000026205.8	Slc23a3	-1.32353	0.0022	0.0488504	Down	Rescued
ENSMUSG0000054453.11	SytI5	-0.840329	0.0022	0.0488504	Down	Rescued
ENSMUSG0000059713.12	Rcan3	0.808563	0.0022	0.0488504	Up	Rescued
ENSMUSG0000001158.13	Snrnp27	-0.666634	0.0013	0.0493545	Down	Rescued
ENSMUSG0000024479.3	Mal 2	-0.624738	0.0013	0.0493545	Down	Rescued
ENSMUSG0000025571.13	Tnrc6c	-0.704826	0.0013	0.0493545	Down	Rescued
ENSMUSG0000050944.14	Efcab5	-2.86293	0.0013	0.0493545	Down	Rescued
ENSMUSG0000023892.8	Zfp51	-1.11106	0.00225	0.0496104	Down	Rescued
ENSMUSG0000026042.16	Col5a2	-2.9273	0.00225	0.0496104	Down	Rescued
ENSMUSG0000026349.14	Ccnt2	-0.80626	0.00225	0.0496104	Down	Rescued

References and Notes

- K. Gardiner, Y. Herault, I. T. Lott, S. E. Antonarakis, R. H. Reeves, M. Dierssen, Down syndrome: From understanding the neurobiology to therapy. *J. Neurosci.* 30, 14943– 14945 (2010). doi:10.1523/JNEUROSCI.3728-10.2010 Medline
- 2. C. Rosenberg, J. Knijnenburg, E. Bakker, A. M. Vianna-Morgante, W. Sloos, P. A. Otto, M. Kriek, K. Hansson, A. C. Krepischi-Santos, H. Fiegler, N. P. Carter, E. K. Bijlsma, A. van Haeringen, K. Szuhai, H. J. Tanke, Array-CGH detection of micro rearrangements in mentally retarded individuals: Clinical significance of imbalances present both in affected children and normal parents. *J. Med. Genet.* **43**, 180–186 (2006). doi:10.1136/jmg.2005.032268 Medline
- 3. H. van Bokhoven, Genetic and epigenetic networks in intellectual disabilities. *Annu. Rev. Genet.* **45**, 81–104 (2011). <u>doi:10.1146/annurev-genet-110410-132512</u> <u>Medline</u>
- 4. M. Dierssen, Down syndrome: The brain in trisomic mode. *Nat. Rev. Neurosci.* **13**, 844–858 (2012). doi:10.1038/nrn3314 Medline
- 5. A. Letourneau, F. A. Santoni, X. Bonilla, M. R. Sailani, D. Gonzalez, J. Kind, C. Chevalier, R. Thurman, R. S. Sandstrom, Y. Hibaoui, M. Garieri, K. Popadin, E. Falconnet, M. Gagnebin, C. Gehrig, A. Vannier, M. Guipponi, L. Farinelli, D. Robyr, E. Migliavacca, C. Borel, S. Deutsch, A. Feki, J. A. Stamatoyannopoulos, Y. Herault, B. van Steensel, R. Guigo, S. E. Antonarakis, Domains of genome-wide gene expression dysregulation in Down's syndrome. *Nature* 508, 345–350 (2014). doi:10.1038/nature13200 Medline
- 6. J. L. Olmos-Serrano, H. J. Kang, W. A. Tyler, J. C. Silbereis, F. Cheng, Y. Zhu, M. Pletikos, L. Jankovic-Rapan, N. P. Cramer, Z. Galdzicki, J. Goodliffe, A. Peters, C. Sethares, I. Delalle, J. A. Golden, T. F. Haydar, N. Sestan, Down syndrome developmental brain transcriptome reveals defective oligodendrocyte differentiation and myelination. *Neuron* 89, 1208–1222 (2016). doi:10.1016/j.neuron.2016.01.042 Medline
- 7. S. E. Antonarakis, Down syndrome and the complexity of genome dosage imbalance. *Nat. Rev. Genet.* **18**, 147–163 (2017). <u>doi:10.1038/nrg.2016.154</u> <u>Medline</u>
- 8. T. F. Haydar, R. H. Reeves, Trisomy 21 and early brain development. *Trends Neurosci.* **35**, 81–91 (2012). doi:10.1016/j.tins.2011.11.001 Medline
- 9. H. P. Harding, Y. Zhang, H. Zeng, I. Novoa, P. D. Lu, M. Calfon, N. Sadri, C. Yun, B. Popko, R. Paules, D. F. Stojdl, J. C. Bell, T. Hettmann, J. M. Leiden, D. Ron, An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. *Mol. Cell* **11**, 619–633 (2003). <u>doi:10.1016/S1097-2765(03)00105-9</u> <u>Medline</u>
- 10. A. G. Hinnebusch, I. P. Ivanov, N. Sonenberg, Translational control by 5'-untranslated regions of eukaryotic mRNAs. *Science* 352, 1413–1416 (2016). <u>doi:10.1126/science.aad9868 Medline</u>
- 11. R. H. Reeves, N. G. Irving, T. H. Moran, A. Wohn, C. Kitt, S. S. Sisodia, C. Schmidt, R. T. Bronson, M. T. Davisson, A mouse model for Down syndrome exhibits learning and behaviour deficits. *Nat. Genet.* 11, 177–184 (1995). doi:10.1038/ng1095-177 Medline

- I. Das, R. H. Reeves, The use of mouse models to understand and improve cognitive deficits in Down syndrome. *Dis. Model. Mech.* 4, 596–606 (2011). <u>doi:10.1242/dmm.007716</u> <u>Medline</u>
- M. Inoue, K. Kajiwara, A. Yamaguchi, T. Kiyono, O. Samura, H. Akutsu, H. Sago, A. Okamoto, A. Umezawa, Autonomous trisomic rescue of Down syndrome cells. *Lab. Invest.* 99, 885–897 (2019). doi:10.1038/s41374-019-0230-0 Medline
- J. P. Weick, D. L. Held, G. F. Bonadurer 3rd, M. E. Doers, Y. Liu, C. Maguire, A. Clark, J. A. Knackert, K. Molinarolo, M. Musser, L. Yao, Y. Yin, J. Lu, X. Zhang, S.-C. Zhang, A. Bhattacharyya, Deficits in human trisomy 21 iPSCs and neurons. *Proc. Natl. Acad. Sci. U.S.A.* 110, 9962–9967 (2013). doi:10.1073/pnas.1216575110 Medline
- N. Sonenberg, A. G. Hinnebusch, Regulation of translation initiation in eukaryotes: Mechanisms and biological targets. *Cell* 136, 731–745 (2009). doi:10.1016/j.cell.2009.01.042 Medline
- 16. H. Lavoie, J. J. Li, N. Thevakumaran, M. Therrien, F. Sicheri, Dimerization-induced allostery in protein kinase regulation. *Trends Biochem. Sci.* **39**, 475–486 (2014). <u>doi:10.1016/j.tibs.2014.08.004</u> <u>Medline</u>
- C. Lanzillotta, A. Tramutola, S. Meier, F. Schmitt, E. Barone, M. Perluigi, F. Di Domenico, J. F. Abisambra, Early and selective activation and subsequent alterations to the unfolded protein response in Down syndrome mouse models. *J. Alzheimers Dis.* 62, 347–359 (2018). <u>doi:10.3233/JAD-170617</u> <u>Medline</u>
- 18. S. Aivazidis, C. M. Coughlan, A. K. Rauniyar, H. Jiang, L. A. Liggett, K. N. Maclean, J. R. Roede, The burden of trisomy 21 disrupts the proteostasis network in Down syndrome. *PLOS ONE* **12**, e0176307 (2017). doi:10.1371/journal.pone.0176307 Medline
- F. Fernandez, C. C. Garner, Episodic-like memory in Ts65Dn, a mouse model of Down syndrome. *Behav. Brain Res.* 188, 233–237 (2008). <u>doi:10.1016/j.bbr.2007.09.015</u> <u>Medline</u>
- 20. A. C. Costa, J. J. Scott-McKean, M. R. Stasko, Acute injections of the NMDA receptor antagonist memantine rescue performance deficits of the Ts65Dn mouse model of Down syndrome on a fear conditioning test. *Neuropsychopharmacology* **33**, 1624–1632 (2008). <u>doi:10.1038/sj.npp.1301535</u> <u>Medline</u>
- 21. G. Deidda, M. Parrini, S. Naskar, I. F. Bozarth, A. Contestabile, L. Cancedda, Reversing excitatory GABAAR signaling restores synaptic plasticity and memory in a mouse model of Down syndrome. *Nat. Med.* 21, 318–326 (2015). doi:10.1038/nm.3827 Medline
- 22. P. J. Zhu, W. Huang, D. Kalikulov, J. W. Yoo, A. N. Placzek, L. Stoica, H. Zhou, J. C. Bell, M. J. Friedlander, K. Krnjević, J. L. Noebels, M. Costa-Mattioli, Suppression of PKR promotes network excitability and enhanced cognition by interferon-γ-mediated disinhibition. *Cell* **147**, 1384–1396 (2011). <u>doi:10.1016/j.cell.2011.11.029</u> <u>Medline</u>
- 23. S. D. Vann, M. M. Albasser, Hippocampus and neocortex: Recognition and spatial memory. *Curr. Opin. Neurobiol.* **21**, 440–445 (2011). <u>doi:10.1016/j.conb.2011.02.002</u> <u>Medline</u>

- 24. F. Fernandez, W. Morishita, E. Zuniga, J. Nguyen, M. Blank, R. C. Malenka, C. C. Garner, Pharmacotherapy for cognitive impairment in a mouse model of Down syndrome. *Nat. Neurosci.* 10, 411–413 (2007). doi:10.1038/nn1860 Medline
- 25. G. Neves, S. F. Cooke, T. V. Bliss, Synaptic plasticity, memory and the hippocampus: A neural network approach to causality. *Nat. Rev. Neurosci.* 9, 65–75 (2008). doi:10.1038/nrn2303 Medline
- 26. S. A. Buffington, W. Huang, M. Costa-Mattioli, Translational control in synaptic plasticity and cognitive dysfunction. *Annu. Rev. Neurosci.* **37**, 17–38 (2014). <u>doi:10.1146/annurevneuro-071013-014100 Medline</u>
- 27. C. Sidrauski, D. Acosta-Alvear, A. Khoutorsky, P. Vedantham, B. R. Hearn, H. Li, K. Gamache, C. M. Gallagher, K. K.-H. Ang, C. Wilson, V. Okreglak, A. Ashkenazi, B. Hann, K. Nader, M. R. Arkin, A. R. Renslo, N. Sonenberg, P. Walter, Pharmacological brake-release of mRNA translation enhances cognitive memory. *eLife* 2, e00498 (2013). doi:10.7554/eLife.00498 Medline
- 28. C. Sidrauski, J. C. Tsai, M. Kampmann, B. R. Hearn, P. Vedantham, P. Jaishankar, M. Sokabe, A. S. Mendez, B. W. Newton, E. L. Tang, E. Verschueren, J. R. Johnson, N. J. Krogan, C. S. Fraser, J. S. Weissman, A. R. Renslo, P. Walter, Pharmacological dimerization and activation of the exchange factor eIF2B antagonizes the integrated stress response. *eLife* 4, e07314 (2015). doi:10.7554/eLife.07314 Medline
- 29. Y. Sekine, A. Zyryanova, A. Crespillo-Casado, P. M. Fischer, H. P. Harding, D. Ron, Mutations in a translation initiation factor identify the target of a memory-enhancing compound. *Science* 348, 1027–1030 (2015). <u>doi:10.1126/science.aaa6986 Medline</u>
- 30. A. M. Kleschevnikov, P. V. Belichenko, A. J. Villar, C. J. Epstein, R. C. Malenka, W. C. Mobley, Hippocampal long-term potentiation suppressed by increased inhibition in the Ts65Dn mouse, a genetic model of Down syndrome. *J. Neurosci.* 24, 8153–8160 (2004). doi:10.1523/JNEUROSCI.1766-04.2004 Medline
- 31. A. M. Kleschevnikov, P. V. Belichenko, J. Gall, L. George, R. Nosheny, M. T. Maloney, A. Salehi, W. C. Mobley, Increased efficiency of the GABAA and GABAB receptor-mediated neurotransmission in the Ts65Dn mouse model of Down syndrome. *Neurobiol. Dis.* 45, 683–691 (2012). doi:10.1016/j.nbd.2011.10.009 Medline
- 32. E. R. Kandel, The molecular biology of memory storage: A dialogue between genes and synapses. *Science* **294**, 1030–1038 (2001). <u>doi:10.1126/science.1067020</u> <u>Medline</u>
- 33. M. Costa-Mattioli, W. S. Sossin, E. Klann, N. Sonenberg, Translational control of longlasting synaptic plasticity and memory. *Neuron* 61, 10–26 (2009). <u>doi:10.1016/j.neuron.2008.10.055 Medline</u>
- 34. W. S. Sossin, M. Costa-Mattioli, Translational control in the brain in health and disease. *Cold Spring Harb. Perspect. Biol.* (2018). <u>Medline</u>
- 35. B. Abdulkarim, M. Nicolino, M. Igoillo-Esteve, M. Daures, S. Romero, A. Philippi, V. Senée, M. Lopes, D. A. Cunha, H. P. Harding, C. Derbois, N. Bendelac, A. T. Hattersley, D. L. Eizirik, D. Ron, M. Cnop, C. Julier, A missense mutation in *PPP1R15B* causes a syndrome including diabetes, short stature, and microcephaly. *Diabetes* 64, 3951–3962 (2015). doi:10.2337/db15-0477 Medline

- 36. G. Borck, B.-S. Shin, B. Stiller, A. Mimouni-Bloch, H. Thiele, J.-R. Kim, M. Thakur, C. Skinner, L. Aschenbach, P. Smirin-Yosef, A. Har-Zahav, G. Nürnberg, J. Altmüller, P. Frommolt, K. Hofmann, O. Konen, P. Nürnberg, A. Munnich, C. E. Schwartz, D. Gothelf, L. Colleaux, T. E. Dever, C. Kubisch, L. Basel-Vanagaite, eIF2γ mutation that disrupts eIF2 complex integrity links intellectual disability to impaired translation initiation. *Mol. Cell* **48**, 641–646 (2012). doi:10.1016/j.molcel.2012.09.005 Medline
- 37. K. D. Kernohan, M. Tétreault, U. Liwak-Muir, M. T. Geraghty, W. Qin, S. Venkateswaran, J. Davila, M. Holcik, J. Majewski, J. Richer, K. M. Boycott; Care4Rare Canada Consortium, Homozygous mutation in the eukaryotic translation initiation factor 2alpha phosphatase gene, *PPP1R15B*, is associated with severe microcephaly, short stature and intellectual disability. *Hum. Mol. Genet.* 24, 6293–6300 (2015). doi:10.1093/hmg/ddv337 <u>Medline</u>
- 38. C. L. Hunter, D. Bachman, A. C. Granholm, Minocycline prevents cholinergic loss in a mouse model of Down's syndrome. *Ann. Neurol.* 56, 675–688 (2004). <u>doi:10.1002/ana.20250 Medline</u>
- 39. Y. Choi, H.-S. Kim, K. Y. Shin, E.-M. Kim, M. Kim, H.-S. Kim, C. H. Park, Y. H. Jeong, J. Yoo, J.-P. Lee, K.-A. Chang, S. Kim, Y.-H. Suh, Minocycline attenuates neuronal cell death and improves cognitive impairment in Alzheimer's disease models. *Neuropsychopharmacology* **32**, 2393–2404 (2007). doi:10.1038/sj.npp.1301377 Medline
- 40. P. Bianchi, E. Ciani, S. Guidi, S. Trazzi, D. Felice, G. Grossi, M. Fernandez, A. Giuliani, L. Calzà, R. Bartesaghi, Early pharmacotherapy restores neurogenesis and cognitive performance in the Ts65Dn mouse model for Down syndrome. *J. Neurosci.* **30**, 8769–8779 (2010). doi:10.1523/JNEUROSCI.0534-10.2010 Medline
- R. H. Du, J. Tan, X.-Y. Sun, M. Lu, J.-H. Ding, G. Hu, Fluoxetine inhibits NLRP3 inflammasome activation: Implication in depression. *Int. J. Neuropsychopharmacol.* 19, pyw037 (2016). doi:10.1093/ijnp/pyw037 Medline
- 42. I. Das, J.-M. Park, J. H. Shin, S. K. Jeon, H. Lorenzi, D. J. Linden, P. F. Worley, R. H. Reeves, Hedgehog agonist therapy corrects structural and cognitive deficits in a Down syndrome mouse model. *Sci. Transl. Med.* 5, 201ra120 (2013). doi:10.1126/scitranslmed.3005983 Medline
- M. Jimenez-Sanchez, F. M. Menzies, Y.-Y. Chang, N. Simecek, T. P. Neufeld, D. C. Rubinsztein, The Hedgehog signalling pathway regulates autophagy. *Nat. Commun.* 3, 1200 (2012). <u>doi:10.1038/ncomms2212</u> <u>Medline</u>
- 44. A. Contestabile, B. Greco, D. Ghezzi, V. Tucci, F. Benfenati, L. Gasparini, Lithium rescues synaptic plasticity and memory in Down syndrome mice. J. Clin. Invest. 123, 348–361 (2013). doi:10.1172/JCI64650 Medline
- 45. S. Bertsch, C. H. Lang, T. C. Vary, Inhibition of glycogen synthase kinase 3β activity with lithium in vitro attenuates sepsis-induced changes in muscle protein turnover. *Shock* 35, 266–274 (2011). doi:10.1097/SHK.0b013e3181fd068c Medline
- 46. E. Kida, A. Rabe, M. Walus, G. Albertini, A. A. Golabek, Long-term running alleviates some behavioral and molecular abnormalities in Down syndrome mouse model Ts65Dn. *Exp. Neurol.* 240, 178–189 (2013). doi:10.1016/j.expneurol.2012.11.022 Medline

- 47. J. Xia, B. Li, L. Yin, N. Zhao, Q. Yan, B. Xu, Treadmill exercise decreases β-amyloid burden in APP/PS1 transgenic mice involving regulation of the unfolded protein response. *Neurosci. Lett.* **703**, 125–131 (2019). <u>doi:10.1016/j.neulet.2019.03.035</u> <u>Medline</u>
- 48. M. Parrini, D. Ghezzi, G. Deidda, L. Medrihan, E. Castroflorio, M. Alberti, P. Baldelli, L. Cancedda, A. Contestabile, Aerobic exercise and a BDNF-mimetic therapy rescue learning and memory in a mouse model of Down syndrome. *Sci. Rep.* 7, 16825 (2017). doi:10.1038/s41598-017-17201-8 Medline
- 49. N. Takei, M. Kawamura, K. Hara, K. Yonezawa, H. Nawa, Brain-derived neurotrophic factor enhances neuronal translation by activating multiple initiation processes: Comparison with the effects of insulin. *J. Biol. Chem.* 276, 42818–42825 (2001). doi:10.1074/jbc.M103237200 Medline
- 50. T. Ma, M. A. Trinh, A. J. Wexler, C. Bourbon, E. Gatti, P. Pierre, D. R. Cavener, E. Klann, Suppression of eIF2α kinases alleviates Alzheimer's disease-related plasticity and memory deficits. *Nat. Neurosci.* 16, 1299–1305 (2013). doi:10.1038/nn.3486 Medline
- 51. A. Chou, K. Krukowski, T. Jopson, P. J. Zhu, M. Costa-Mattioli, P. Walter, S. Rosi, Inhibition of the integrated stress response reverses cognitive deficits after traumatic brain injury. *Proc. Natl. Acad. Sci. U.S.A.* **114**, E6420–E6426 (2017). <u>doi:10.1073/pnas.1707661114</u> Medline
- 52. J. A. Moreno, H. Radford, D. Peretti, J. R. Steinert, N. Verity, M. G. Martin, M. Halliday, J. Morgan, D. Dinsdale, C. A. Ortori, D. A. Barrett, P. Tsaytler, A. Bertolotti, A. E. Willis, M. Bushell, G. R. Mallucci, Sustained translational repression by eIF2α-P mediates prion neurodegeneration. *Nature* 485, 507–511 (2012). doi:10.1038/nature11058 Medline
- 53. H. J. Kim, A. R. Raphael, E. S. LaDow, L. McGurk, R. A. Weber, J. Q. Trojanowski, V. M.-Y. Lee, S. Finkbeiner, A. D. Gitler, N. M. Bonini, Therapeutic modulation of eIF2α phosphorylation rescues TDP-43 toxicity in amyotrophic lateral sclerosis disease models. *Nat. Genet.* 46, 152–160 (2014). <u>doi:10.1038/ng.2853</u> <u>Medline</u>
- 54. S. W. Way, B. Popko, Harnessing the integrated stress response for the treatment of multiple sclerosis. *Lancet Neurol.* 15, 434–443 (2016). <u>doi:10.1016/S1474-4422(15)00381-6</u> <u>Medline</u>
- 55. M. Costa-Mattioli, D. Gobert, E. Stern, K. Gamache, R. Colina, C. Cuello, W. Sossin, R. Kaufman, J. Pelletier, K. Rosenblum, K. Krnjević, J.-C. Lacaille, K. Nader, N. Sonenberg, eIF2α phosphorylation bidirectionally regulates the switch from short- to long-term synaptic plasticity and memory. *Cell* **129**, 195–206 (2007). doi:10.1016/j.cell.2007.01.050 Medline
- 56. N. V. Jammi, L. R. Whitby, P. A. Beal, Small molecule inhibitors of the RNA-dependent protein kinase. *Biochem. Biophys. Res. Commun.* **308**, 50–57 (2003). <u>doi:10.1016/S0006-291X(03)01318-4</u> <u>Medline</u>
- 57. C. M. Oslowski, F. Urano, Measuring ER stress and the unfolded protein response using mammalian tissue culture system. *Methods Enzymol.* **490**, 71–92 (2011). doi:10.1016/B978-0-12-385114-7.00004-0 Medline
- 58. N. Fusaki, H. Ban, A. Nishiyama, K. Saeki, M. Hasegawa, Efficient induction of transgenefree human pluripotent stem cells using a vector based on Sendai virus, an RNA virus

that does not integrate into the host genome. *Proc. Jpn. Acad. Ser. B Phys. Biol. Sci.* **85**, 348–362 (2009). doi:10.2183/pjab.85.348 Medline

- 59. K. Takahashi, S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. *Cell* **126**, 663–676 (2006). doi:10.1016/j.cell.2006.07.024 Medline
- 60. G. V. Di Prisco, W. Huang, S. A. Buffington, C.-C. Hsu, P. E. Bonnen, A. N. Placzek, C. Sidrauski, K. Krnjević, R. J. Kaufman, P. Walter, M. Costa-Mattioli, Translational control of mGluR-dependent long-term depression and object-place learning by eIF2α. *Nat. Neurosci.* **17**, 1073–1082 (2014). doi:10.1038/nn.3754 Medline
- 61. A. M. Bolger, M. Lohse, B. Usadel, Trimmomatic: A flexible trimmer for Illumina sequence data. *Bioinformatics* **30**, 2114–2120 (2014). <u>doi:10.1093/bioinformatics/btu170 Medline</u>
- 62. D. Kim, B. Langmead, S. L. Salzberg, HISAT: A fast spliced aligner with low memory requirements. *Nat. Methods* **12**, 357–360 (2015). <u>doi:10.1038/nmeth.3317</u> <u>Medline</u>
- 63. L. Wang, S. Wang, W. Li, RSeQC: Quality control of RNA-seq experiments. *Bioinformatics* 28, 2184–2185 (2012). doi:10.1093/bioinformatics/bts356 Medline
- 64. W. J. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle, A. M. Zahler, D. Haussler, The human genome browser at UCSC. *Genome Res.* **12**, 996–1006 (2002). doi:10.1101/gr.229102 Medline
- 65. C. Trapnell, A. Roberts, L. Goff, G. Pertea, D. Kim, D. R. Kelley, H. Pimentel, S. L. Salzberg, J. L. Rinn, L. Pachter, Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. *Nat. Protoc.* 7, 562–578 (2012). doi:10.1038/nprot.2012.016 Medline
- 66. W. Huang, B. T. Sherman, R. A. Lempicki, Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. *Nucleic Acids Res.* 37, 1–13 (2009). doi:10.1093/nar/gkn923 Medline
- 67. E. K. Schmidt, G. Clavarino, M. Ceppi, P. Pierre, SUnSET, a nonradioactive method to monitor protein synthesis. *Nat. Methods* 6, 275–277 (2009). <u>doi:10.1038/nmeth.1314</u> <u>Medline</u>
- 68. W. Huang, P. J. Zhu, S. Zhang, H. Zhou, L. Stoica, M. Galiano, K. Krnjević, G. Roman, M. Costa-Mattioli, mTORC2 controls actin polymerization required for consolidation of long-term memory. *Nat. Neurosci.* 16, 441–448 (2013). doi:10.1038/nn.3351 Medline