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(a) Protocol steps for sScCATAC-seq in droplets. (b) Genome tracks showing the comparison of aggregate scATAC-seq profiles from A20
B lymphocytes (top panel). SCATAC-seq profiles were obtained from four independent experiments, as indicated. The bottom panel
shows accessibility profiles of 100 random single A20 cells from two cell mixing experiments. Each pixel represents a 100bp region. (c)
Left plot: Pearson correlation heatmaps of log-normalized reads in bulk GM12878 Omni-ATAC-seq peaks in aggregate scCATAC-seq
profiles generated from varying numbers of single cells, or from published Omni-ATAC profiles5 (n=100,000 ATAC-seq peaks). Right
plot: Pearson correlation heatmaps of log-normalized reads in aggregate scATAC-seq profiles from A20 cells (n=100,000 ATAC-seq
peaks, identified in an aggregate profile from all cells). Numbers in parentheses indicate the cell loading concentration. (d) Peak
recovery analysis with subsampled cells and unique fragments as determined by x-axis and colors, respectively. SCATAC-seq cells
were subsampled to the indicated unique fragments, and the proportion of peaks recovered from the aggregate profile was calculated
as a function of number of cells analyzed. GM12878 cells generated a median of 29,451 unique nuclear fragments per cell (top level of
down-sampling was 25,000) while A20 cells generated a median of 20,809 unique nuclear fragments per cell (top level of down-
sampling was 20,000). The center line represents the Loess fit, and shaded regions indicate 95% confidence interval (n=16 sub-
sampled profiles at each read depth). (e) Pearson correlation analysis with subsampled cells and unique fragments as determined by x-
axis and colors, respectively. SCATAC-seq profiles were subsampled to the indicated unique fragments, and Pearson correlation to the
aggregate profile was calculated as a function of number of cells analyzed (n=16 sub-sampled profiles at each read depth). (f) Analysis
workflow for sScATAC-seq data in this study.
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Supplementary Figure 2

SCATAC-seq performance in frozen cells and synthetic cell mixtures.



(a) Synthetic immune cell mixture quality control experiments. Sorted human monocytes or T cells were mixed at the indicated ratio and
analyzed with scATAC-seq. Plots show the UMAP of scATAC-seq profiles (top), and gene scores for monocyte- or T cell-associated
cardinal genes (see Methods) in each single cell (middle and bottom). Dashed circles indicate monocyte and T cell identity of single
cells as determined by ATAC-seq profiles. Colors indicate cluster identity defined de novo. (b) Sorted human monocytes or T cells were
mixed at the indicated ratios and analyzed with scCATAC-seq and analyzed as described in (a). (¢) Comparison of data quality from
fresh and frozen PBMCs, and frozen PBMCs sorted for live cells. Representative ATAC-seq data quality control filters by sample
source. Shown are the number of unique ATAC-seq nuclear fragments in each single cell (each dot) compared to TSS enrichment of all
fragments in that cell. Dashed lines represent the filters for high-quality single-cell data (1,000 unique nuclear fragments and TSS score
greater than or equal to 8). (d) One-to-one plots of log-normalized reads in aggregated scATAC-seq in profiles generated from the
indicated cell source (fresh, frozen, or frozen sorted PBMCs). Peaks were defined in fresh samples. Numbers indicate Pearson
correlation value. (e) ROC (top) and Precision-vs-Recall (bottom) curves showing recovery of fresh PBMC peaks with frozen or frozen
sorted cells. True positive peaks were defined as those identified in fresh PBMC scATAC-seq profiles. (f) Integrated UMAP of all
SCATAC-seq profiles from monocyte/T cell mixing experiments in (a-b). This indicates that strong clustering batch effects are not seen
between experiments. (g) UMAP and PCA analysis of of sScATAC-seq profiles (left) and clusters (right) identified in fresh, frozen, or
frozen-sorted PBMCs using fresh PBMC peaks.
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(a) UMAP projection of 63,882 scATAC-seq profiles of bone marrow and peripheral blood immune cell types. Dots represent individual
cells, and colors indicate the experimental source of each cluster, as labeled on the right of the plot (see Methods). (b) Bar plots
indicate the number of scATAC-seq profiles obtained from each experimental source of cells (left), and the median number of unique
nuclear fragments in single cells (right). (c) UMAP projection of 63,882 scATAC-seq profiles of bone marrow and peripheral blood
immune cell types. Colors represent the logl0 number of unique nuclear fragments per single cell. (d) Representative scATAC-seq
data quality control filters by sample source. Shown are the number of unique ATAC-seq nuclear fragments in each single cell (each
dot) compared to TSS enrichment of all fragments in that cell. Dashed lines represent the filters for high-quality single-cell data (1,000
unique nuclear fragments and TSS score greater than or equal to 8). (e) Sin%Ie-ceII ATAC-seq data quality control filters in profiles
generated using the C1 microfluidic system11 (Fluidigm; left) or sci-ATAC-seq1 (middle and right panels). (f) Peak recovery analysis
with subsampled cells and unique fragments as determined by x-axis and colors, respectively. SCATAC-seq cells were subsampled to
the indicated unique fragments, and the proportion of peaks recovered from the aggregate profile was calculated as a function of
number of cells analyzed. The center line represents the Loess fit, and shaded regions indicate 95% confidence interval (n=10 sub-
sampled profiles at each read depth).
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Cis-regulatory elements in hematopoiesis and co-accessibility validation.

(a) Genome tracks of aggregate scATAC-seq data, clustered as indicated in Figure 2b
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of intragenic or distal enhancers in each gene locus. (b) MetaV4C plot of H3K27ac HiChIP data demonstrating HiChIP signal at Cicero-
identified co-accessible cis-elements (linked to promoter elements). Each plot shows the aggregate HiChIP signal (from 3 T cell types,
n=2 biologically independent HiChIP profiles per cell type) between linked cis-elements identified in SCATAC-seq data. Each link is
scaled so that the 0% position indicates the promoter site and the 100% position indicates the linked cis-element site. The peak
indicates an enrichment of HiChlIP signal at the linked peaks compared to surrounding genomic regions. Biased links are identified by
differential peak analysis in the indicated scATAC-seq clusters. The center line represents the Loess fit, and shaded regions indicate
95% confidence interval. (c) Support for Cicero-identified co-accessible cis-elements by GTEX eQTL data. Shown is the mean
enrichment of eQTL signal (determined in the indicated tissue type, bars indicate standard deviation from n=250 simulations) in co-
accessible sites linked to promoter elements described in GTEX vs 250 permutations of ATAC-seq peak to genes. Greater enrichment
is observed in immune tissues because scATAC-seq data profiled the relevant cell types. (d) Heatmap of log-normalized gene scores
for the indicated genes. (e) UMAP projection colored by log normalized gene scores demonstrating the accessibility of cis-regulatory
elements linked (using Cicero) to the indicated gene.
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(a) Example TF footprints and motifs in the indicated scATAC-seq clusters identified in Fig 2b. The Tn5 insertion bias track is shown
below. (b) UMAP projection of SCATAC-seq profiles colored by chromVAR TF motif bias-corrected deviations for the indicated factors.
(c) Analysis workflow for GWAS enrichment scores using Cicero co-accessibility. (d) Heatmap showing GWAS deviation scores for
PICS SNPs associated with the indicated diseases. PICS SNPs were identified previously?*. (€) Example of increased ATAC-seq signal
in a GWAS-containing cis-element in NK and T cell scATAC-seq clusters. The HiChIP plot (top) demonstrates increased H3K27ac
HIiChIP signal between the STAT4 promoter and the highlighted cis-elements. The center line represents the Loess fit, and shaded
regions indicate 95% confidence interval (n=2 biologically independent HiChIP profiles per cell type).
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Supplementary Figure 6

Sample descriptions and quality control of SCATAC-seq profiles of the BCC TME.



(@) UMAP projection of 37,818 scATAC-seq profiles of BCC TME cell types. Dots represent individual cells, and colors indicate the
experimental source of each cluster, as labeled on the right of the plot (see Methods). ‘Total' samples were sorted as all live cells in a
single BCC biopsy. ‘T cell’ samples were sorted as CD45'CD3" cells in the biopsy. ‘lmmune’ samples were sorted as CD45'CD3" cells
in the biopsy. ‘Stromal’ samples were sorted as CD45 CD3’ cells in the biopsy. (b) Bar plots indicate the number of SCATAC-seq profiles
obtained from each experimental source of cells (left), and the median number of unique nuclear fragments in single cells (right). (c)
UMAP projection of 37,818 scATAC-seq TME profiles. Colors represent the log10 number of unique nuclear reads per single cell. (d)
Representative ATAC-seq data quality control filters by sample source. Shown are the number of unigue ATAC-seq nuclear fragments
in each single cell (each dot) compared to TSS enrichment of all fragments in that cell. Dashed lines represent the filters for high-quality
single-cell data (1,000 unique nuclear fragments and TSS score greater than or equal to 8). (e) Genome tracks of aggregate scATAC-
seq data, clustered as indicated in Figure 4b. Arrows indicate the position and distance (in kb) of intragenic or distal enhancers in each
gene locus. (f) Bar plots indicating the relative proportion of cells from each patient detected in each cluster (top) and the relative
proportion of cells from each cluster detected in each patient (bottom).
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Supplementary Figure 7
TF motif accessibility in the BCC TME.

(a) Example TF footprints and motifs in the indicated scATAC-seq clusters identified in Fig 4b. The Tn5 insertion bias track is shown
below. (e) UMAP projection of scATAC-seq profiles colored by chromVAR TF motif bias-corrected deviations for the indicated factors.
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Supplementary Figure 8

Regulatory landscapes of tumor-infiltrating T cell subsets.




(@) UMAP projection of intratumoral T cell sScCATAC-seq data colored by log normalized gene scores, demonstrating the accessibility of
cis-regulatory elements linked (using Cicero) to the indicated CD8" T cell signature genes. (b) UMAP projection of intratumoral T cell
SCATAC-seq data colored by log normalized gene scores, demonstrating the accessibility of cis-regulatory elements linked (using
Cicero) to the indicated CD4" T cell signature genes. (c) Genome tracks of Tfh signature genes in aggregate scATAC-seq data,
clustered as indicated in Figure 5a. Arrows indicate the position and distance (in kb) of intragenic or distal enhancers in each gene
locus. (d) Heatmap of Z-scores of 35,147 cis-regulatory elements in scATAC-seq clusters derived from (b). Labels indicate cell type-
specific accessibility of regulatory elements. (€) Genome tracks of CD8" TEx signature genes in aggregate ScATAC-seq data,
demonstrating the overlap of TEx and Tfh regulatory elements. Arrows indicate the position and distance (in kb) of intragenic or distal
enhancers in each gene locus. Selected TF binding motifs present in the +5kb enhancer of PDCD1 are shown (bottom). Lines indicate
the binding motif location. (f) Heatmap representation of ATAC-seq chromVAR bias-corrected deviations in the 250 most variable TFs
across all intratumoral T cell sSCATAC-seq clusters, as identified in Figure 5a. Cluster identities are indicated at the bottom of the plot.
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Supplementary Figure 9
T cell cluster dynamics pre- and post-therapy according to clinical outcome.
(a) Shown is the pre- and post-therapy frequency (left) and cell number (right) for each T cell cluster identified in Figure 5. Each plot is

generated from all responder patient samples aggregated together. (b) Pre- and post-therapy frequency (left) and cell number (right) for
each T cell cluster in non-responder patients.



