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Abstract: 

 

Background - Common chromosome 9p21 SNPs increase coronary heart disease (CHD) risk, 

independent of “traditional lipid risk factors”.  However, lipids comprise large numbers of 

structurally related molecules not measured in traditional risk measurements, and many have 

inflammatory bioactivities.  Here we applied lipidomic and genomic approaches to three model 

systems, to characterize lipid metabolic changes in common Chr9p21 SNPs which confer ~30% 

elevated CHD risk associated with altered expression of ANRIL, a long ncRNA. 

Methods - Untargeted and targeted lipidomics was applied to plasma from Northwick Park 

Heart Study II (NPHSII) homozygotes for AA or GG in rs10757274, followed by correlation and 

network analysis. To identify candidate genes, transcriptomic data from shRNA downregulation 

of ANRIL in HEK293 cells was mined. Transcriptional data from vascular smooth muscle cells 

differentiated from iPSCs of individuals with/without Chr9p21 risk, non-risk alleles, and 

corresponding knockout isogenic lines were next examined.  Last, an in-silico analysis of 

miRNAs was conducted to identify how ANRIL might control lysoPL/lysoPA genes.  

Results - Elevated risk GG correlated with reduced lysophosphospholipids (lysoPLs), 

lysophosphatidic acids (lysoPA) and autotaxin (ATX). Five other risk SNPs did not show this 

phenotype.  LysoPL-lysoPA interconversion was uncoupled from ATX in GG plasma, 

suggesting metabolic dysregulation.  Significantly altered expression of several lysoPL/lysoPA 

metabolising enzymes was found in HEK cells lacking ANRIL. In the VSMC dataset, the 

presence of risk alleles associated with altered expression of several lysoPL/lysoPA enzymes.  

Deletion of the risk locus reversed expression of several lysoPL/lysoPA genes to non-risk 

haplotype levels. Genes that were altered across both cell datasets were DGKA, MBOAT2, 

PLPP1 and LPL. The in-silico analysis identified four ANRIL-regulated miRNAs that control 

lysoPL genes as miR-186-3p, miR-34a-3p, miR-122-5p, miR-34a-5p.  

Conclusions - A Chr9p21 risk SNP associates with complex alterations in immune-bioactive 

phospholipids and their metabolism. Lipid metabolites and genomic pathways associated with 

CHD pathogenesis in Chr9p21 and ANRIL-associated disease are demonstrated.   

 
 
 
Key words: lipids; atherosclerosis; mass spectrometry; phospholipids 
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Nonstandard Abbreviations and Acronyms 

coronary heart disease (CHD) 

Northwick Park Heart Study II (NPHSII) 

lysophosphospholipids (lysoPLs)  

lysophosphatidic acids (lysoPA) 

autotaxin (ATX) 

cholesteryl esters (CE) 

triglycerides (TG) 

sequential goodness of fit metatest (SGoF) 

risk haplotypes (RRWT) 

controls (NNWT) 

non-risk (NN) 

G protein-coupled receptor (GPCR) 

platelet activating factor (PAF) 

phospholipase A2 (PLA2) 
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Introduction 

The association of altered plasma “lipids” with coronary heart disease (CHD) risk has been 

known for decades, however for some CHD-risk SNPs, there is no association with “traditional 

lipid measurements”, such as lipoproteins (HDL or LDL) or their constituents: cholesteryl esters 

(CE) and triglycerides (TG) 1.  As a prominent example, the relatively common 

CDKN2A/2B (rs10757274, A>G) (minor allele frequency = 0.48) SNP on chromosome 9p21 

confers ~30% elevated risk of CHD, but acts independently of traditional lipid risk factors 1. 

Chr9p21 SNPs, including rs10757274, are believed to alter disease risk through modulation of 

the long non-coding (lnc)RNA, ANRIL, although both up and downregulation has been 

associated with risk (see discussion for more detail) 2, 3. ANRIL isoforms are detected in 

peripheral blood cells, aortic smooth muscle, endothelial cells and heart, and SNPs in Chr9p21 

are associated not only with CHD but also numerous cancers 2, 4-6.  Cellular studies show that 

ANRIL lncRNA down-regulates the tumour suppressors CDKN2A/2B by epigenetic regulation, 

modulating expression of pathways involved in differentiation, apoptosis, matrix remodelling, 

proliferation, apoptosis, senescence and inflammation 5, 7. Whether or how the entire CHD risk 

region or ANRIL regulates bioactive lipids is currently unknown. 

Lipids represent thousands of diverse molecules.  However, CHD clinical risk algorithms 

such as Framingham or QRISK include circulating lipoproteins only 8, 9. Importantly, bioactive 

lipids that regulate vascular inflammation/proliferation in line with the function of ANRIL and 

thus maybe directly relevant to Chr9p21-mediated CHD are not included in these measures. 

Indeed, whether ANRIL mediates its effects via an impact on bioactive lipid signalling has not 

been examined and was studied herein using lipidomics.  
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Here, plasma from a prospective cohort (Northwick Park Heart Study II, NPHSII) which 

recruited ~3,000 men aged 50 - 64 years clinically free of CHD in 1990-1991, was analysed 

using targeted and untargeted lipidomics, followed by validation, metabolic correlation and 

network analysis 10, 11.  Then, gene transcription for lipid metabolic enzymes was mined in data 

from a cellular ANRIL knockdown study, and from vascular smooth muscle cells differentiated 

from iPSCs obtained from individuals with/without Chr9p21 risk, non-risk alleles and 

corresponding isogenic lines deleted of the entire CHD locus 12, 13. Database mining for potential 

candidate miRNAs linking ANRIL with gene expression was conducted.  The study reveals 

novel insights into the potential role of key bioactive signalling lipids in this common but poorly 

understood form of CHD. 

 

Methods  

The authors declare that all supporting data are available within the article [and its 

supplementary files]. Ethical approval for use of NPHSII samples was provided by the National 

Hospital for Neurology and Neurosurgery and the Institute of Neurology Joint Research Ethics 

Committee, and Joint UCL/UCLH Committee of Human Research, Committees A and Alpha, 

and all samples were obtained with informed consent.  Full methods are provided in 

Supplementary Materials 

 

Results 

Global lipidomics demonstrates that lysoPLs are reduced in GG plasma versus AA  

To capture all lipids (knowns/unknowns), high resolution Orbitrap MS data from long 

chromatographic separations was analysed using XCMS, then processed for cleanup/assignment 
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to LIPID MAPS categories, using LipidFinder (Figure 1 A,B) 14. Plasma quality was checked 

through careful comparison with fresh plasma, detailed in Supplemental Material. Most lipid 

categories were unchanged, however oxidized phospholipids and lysoPCs had elevated 

somewhat in storage (Supplementary Figures 1-3). This is not unexpected, and we include a full 

discussion of this phenomenon in Supplemental Material.  To assess the impact of the 

rs10757274, A>G SNP, we compared AA (n = 39) with the risk genotype GG (n = 33). Data was 

analysed first using a Mann Whitney U test, then chromatograms for all features with p<0.075 

were manually checked for quality. LipidFinder detected 1878 lipids, with 872 assigned to a 

category (Figure 1 B).  Next, quantile normalization was applied followed by Mann Whitney U 

test, and then a p-value adjustment using sequential goodness of fit metatest (SGoF) to each 

subclass15. The SGoF has been shown as especially well-suited to small sample sizes when the 

number of tests is large. This data is shown in volcano plots in Figure 1 C-J, and the p-values are 

in column M (Supplementary Data.xls, tabs 1,2). Those most affected by genotype were GPLs 

and unknowns (Figure 1 C-J, Table 1).  Following p-value adjustment the number of 

significantly different lipids was 17, with 7 putatively identified as lysoPC ions and adducts 

(supplementary data.xlsx, tab 1,2). An additional group of 8 had p-values close to significance at 

0.05-0.08. All were reduced in GG plasma. As this method is used as for hypothesis generation 

only, we next validated our results using gold-standard quantitative targeted methods.  

Quantitative targeted lipidomics confirms decreased lysoPLs in the GG samples.   

The same plasmas were analysed using a targeted fully-quantitative assay for 15 lysoPLs. Of 

these several lysoPCs significantly decreased, with both lysoPC and lysoPEs all trending towards 

lower levels in GG (Supplementary Figure 4 A). This was replicated using new samples from 

NPHSII (n = 47: AA, 49: GG) (Supplementary Figure 4 B).  When both datasets were combined 
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(n = 82 – 86/group), all 8 lysoPCs were significantly lower in the GG genotype (Figure 2 A).  

Thus, lysoPLs are overall suppressed in the GG genotype, with a more robust effect on lysoPCs 

than lysoPEs. 

Significantly altered lysoPLs are not detected in five additional CHD risk-altering SNPs.  

LipidFinder data was analysed for additional SNPs from the NPHSII cohort, comparing subjects 

homozygous for the common alleles with subjects homozygous for rare protective alleles 

for SORT1, LDLR or APOE E2/E2, or rare risk alleles APOA5 or APOE4/E4 (Supplementary 

Table 1).  For most lysoPLs, levels were not significantly altered, with the exception of one for 

APOA5 (upregulated, lysoPE(18:1), and one for LDLR (downregulated, lysoPC(18:2)) (Figure 2 

B).  This indicates that lysoPLs are consistently reduced only in the GG risk SNP rs10757274.  

The plasma lysophosphatidic acids(lysoPA)/autotaxin (ATX) axis is dysregulated in the GG 

group.  

Next, lysoPL-related metabolites/enzymes were measured. Metabolism of lysoPL to lysoPA in 

healthy plasma can be mediated by ATX16.  Here, we used a targeted LC/MS/MS assay for 

lysoPAs, and an immunoenzymatic assay for ATX. ATX was significantly decreased (p = 

0.026). Based on power calculations (Supplemental Material), an additional set of plasmas was 

included to increase sample numbers to 95-100 per group for lysoPAs.  LC/MS/MS 

demonstrated overall small reductions, but with several being significantly lower (Figure 2 C,D). 

Taken with the lysoPL data, this indicates a global suppression of lysoPL/lysoPA/ATX 

metabolic pathway in the GG group.    

Next, correlation analysis was undertaken to examine the contribution of ATX in 

metabolizing lysoPL to lysoPA.  In AA plasmas, ATX showed very weak positive or negative 

correlations with total lysoPL or lysoPA, respectively (Figure 3 A,B).  This agrees with reports 
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that ATX contributes to lysoPL conversion to lysoPA in healthy subjects 16.   In contrast, in GG 

plasmas, these weak trends were somewhat reversed (Figure 3 C,D).  To look in more depth, we 

correlated substrates with products (Figure 3 E-H).  In the AA group, significant positive 

correlations were seen for total lysoPA with lysoPL (p = 0.034).  Comparing lipids with the same 

fatty acyl, significant correlation was seen between lysoPA(18:2) and lysoPL(18:2) (p = 0.023) 

(Figure 3 E,F).  This indicates that as the pool of lysoPL increases, the level of lysoPA increases 

in parallel, and this would be consistent with conversion by ATX.  This relationship was fully 

reversed in the GG group, where total lysoPL, lysoPL(18:2) or lysoPL(20:4) were negatively 

correlated with their corresponding lysoPAs (p = 0.019, 0.054, 0.019 respectively) (Figure 3 G-

I). We next analysed correlation slopes for AA versus GG, comparing either lysoPL:lysoPA 

(Figure 3 E versus G), or lysoPL(18:2):lysoPA(18:2) (Figure 3 F versus H).  Both these 

comparisons revealed significant differences (p = 0.0264 and 0.0029 respectively) 17.  These data 

confirm altered metabolism of lysoPL and lysoPA lipids between genotypes.  Specifically, 

conversion of lysoPL to lysoPA appears to be suppressed in the GG homozygotes.    

The direct contribution of ATX to metabolizing lysoPL to lysoPA was next examined by 

correlating normalized ratios of lysoPC(18:2):lysoPA(18:2) with ATX.  In this comparison, we 

expect that as ATX increases, the ratio of substrate:product would reduce due to their 

interconversion.  For AA plasma, a weak negative correlation was seen (Figure 3 J).  In contrast, 

a significant positive correlation was observed for GG plasma (Figure 3 K).  Thus, as ATX 

increases, a higher ratio of substrate:product was seen in GG, suggesting a decoupling of ATX 

from metabolizing lysoPL to lysoPA. Comparing the slopes for AA versus GG revealed 

significant differences based on genotype (p = 0.0157). This further underscores the 

dysregulation of the lysoPL metabolic pathway in the GG group, and suggests that non-ATX 



9 

pathways may mediate lysoPL to lysoPA conversion. Last, the relative ratios of all lysoPL and 

lysoPA molecular species were unchanged in the GG versus AA groups (Figure 3 L).  Thus, 

while metabolism of lysoPL/lysoPA by ATX is altered, there was no influence of genotype on 

molecular composition overall. Notably, ATX preferentially metabolises unsaturated lysoPCs18. 

Overall, despite the correlations only showing associations, when taken with our observations 

that plasma from GG subjects has significantly less ATX protein, and that all lysoPC molecular 

species are similarly affected, our data strongly evidence that there is less involvement of ATX 

in metabolising these lipids in GG plasmas.    

Next, a Pearson correlation analysis looking at relationships between individual lipids and 

ATX was next undertaken using Cytoscape.  For thresholds, the classification system of Schober 

was used 19.  Here, we see that there are moderate (r = 0.40-0.69, green) or strong (r = 0.70-1.00 

grey) correlations between lipids of the same class, while there are weak (r = 0.10-0.39, red) 

correlations between different lipid classes (Figure 4 A).  Importantly, the key difference in the 

dataset is that the weak correlations between classes are positive for the AA group, while they 

are negative for the GG group (Figure 4 A). Overall, this indicates that these lipids behave 

similarly within AA subjects. In contrast, in GG plasma, while lipid classes still positively 

correlate within their groups (e.g. lysoPCs correlate strongly with each other), the links between 

lysoPL and lysoPA are lost.  Instead correlations were weakly negative between lysoPE and 

lysoPA (Figure 4 A). As in Figure 4, ATX weakly positively correlates with lysoPA in the AA 

group, but instead with lysoPL in the GG group.  This analysis reinforces our findings of altered 

metabolism for lysoPL/lysoPA, but here at the level of individual lipid species.  
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ANRIL knockdown significantly alters lipid and lysoPL metabolism gene expression  

Chr9p21 risk SNPs are believed to act via altering expression of ANRIL, which regulates cell 

proliferation/senescence in vitro 2, 4, 5.  To examine for a functional link with lysoPL/lysoPA 

metabolism, we analysed the effect of shRNA downregulation of the proximal ANRIL transcripts 

EU741058 and DQ485454 in HEK 293 cells at 48 hrs and 96 hrs 12. A GO analysis found 

significant alterations of several lipid pathways by ANRIL, including Regulation of Lipid 

Metabolic Processes (GO: 0019216), Phospholipid Metabolic Processes (GO:0006644), 

Cellular Lipid Metabolic Process (GO:0044255) and Lipid Biosynthetic Processes 

(GO:0008610), for example, Regulation of Lipid Metabolic Processes was 1.9 or 1.88 fold-

enriched (FDR < 0.05, Benjamini-Hochberg) respectively at 48 and 96-hrs respectively (Table 2, 

Supplementary Data.xlsx, tabs 3,4).  Thus, large numbers of lipid-associated genes were 

significantly differentially regulated (Supplementary Data.xls, tabs 5,6).  

We next examined the effect of ANRIL knockdown on 49 candidate lysoPL metabolism 

genes (Supplementary Data.xlsx, tab 7). Of these, 9 were significantly changed at both 

timepoints, and another 6 at a single timepoint (Table 3). Several were consistent with lowered 

lysoPL/lysoPA including reduced PNPLA2, PLA2G4C, increased LPCAT2, MBOAT2, ACSL6, 

PLBD1, PLPP1, PLPP2 and PLPPR2 (Table 3, Figure 4 B,C).  Additional relevant genes were 

regulated, but in the opposing direction, including decreased LPCAT1 and LPCAT3 and 

increased LPL, PLA2G7, and DGKA (Table 3). ENPP2 (the gene encoding ATX) was 

significantly increased by ANRIL suppression (Table 3, Figure 4 B).  This data is displayed in 

volcano plots of the full Affymetrix dataset (Figure 4 B,C, Supplementary Figure 5).  Genes in 

red represent significantly different lysoPL metabolizing genes from the lipid GO pathways.   
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VSMCs generated from iPSCs from Chr9p21 risk haplotypes show altered expression of 

lysoPL metabolism genes and correlation of expression with ANRIL isoform expression.  

VSMCs generated by differentiation of iPSCs from humans homozygous for risk haplotypes in 

Chr9p21 show globally altered transcriptional networks, dysregulated adhesion, contraction and 

proliferation, with deletion of the risk haplotype rescuing the phenotype 13. Here, we interrogated 

an RNAseq dataset of mature iPSC-derived VSMCs for expression of the 49 lysoPL metabolism 

genes (Supplementary Data.xls, tab 8). Examination of individual genes revealed 14 that were 

significantly different between RRWT and other lines, and where removal of the risk locus in RR 

led to partial or complete rescue: ACSL3, DGKA, PLA2G2A, LPCAT2, LPL, PLA2G3, 

PLPPR2/LPPR2, PLA2G12A, PLPP1/PPAP2A, LCAT, PLA2G6, ACSL1, MBOAT2, PNPLA3  

(Figure 5 A, Supplementary Figure 6).  Of these, DGKA, PLA2G12A and LCAT were regulated 

in line with reduced lysoPC/lysoPA. 

Multivariate analysis using PCA for expression of these 14 genes shows clear separation 

of VSMC lines containing the risk haplotypes (RRWT) from controls (NNWT) in PC1 (Figure 5 

B).  When the risk locus was deleted, the resulting RRKO cell lines instead clustered closer to 

NNWT and NNKO in PC1 (Figure 5 B). This analysis indicates that expression of several 

lysoPL metabolizing genes is different in risk haplotype cells, but reverts closer to non-risk (NN) 

on removal of the 9p21 locus.   

Next, correlations of genes that metabolise lysoPLs with ANRIL isoforms (exons 6-7 and 

18-19) were performed. Deletion of the Chr9p21 locus in the KO VSMC lines starts around exon 

9 and runs downstream to the end of the CAD region13.  Analysis of ANRIL was performed by 

qPCR detection of ANRIL isoforms containing exons 6-7 (present in long and short isoforms) 

and exons 18-19 (in long isoforms only). The analysis showed a significant increase of isoforms 
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containing exons 6-7 in RRWT cells, compared to NNWT cells (Supplementary Figure 7), as 

previously described13. ANRIL expression was minimal in NNWT, with levels comparable to a 

residual expression of ANRIL detected in both KO lines, possibly due to transcription of 

truncated transcripts. ANRIL analysis performed using detection of exons 18-19 showed no 

significant differences between RRWT and NNWT cells. No transcript expression was detected 

in KO lines as expected, since the deletion encompasses the last 10 exons of the ANRIL gene. 

These analyses confirmed that ANRIL short isoforms containing exons 6-7 but not 18-19 are 

upregulated in RRWT VSMCs.  To evaluate possible correlations between LysoPLs-related 

genes and ANRIL expression, all samples were used for ANRIL (exons 6-7) analysis, while for 

correlations with ANRIL (exons 18-19), only WT (RR and NN) were tested.  Circular ANRIL 

isoforms have not been detected in these cells.     

(i) ANRIL (exons 6-7) 

Several genes correlated significantly, either in a positive or a negative direction with these 

ANRIL isoforms (Supplementary Figure 8). RRWT samples (in red) clustered together as groups, 

separated from all other samples which were seen to express PL metabolism genes similarly.  

This was somewhat expected since these PL-metabolism genes were differently expressed in 

RRWT versus RRKO, NNWT, NNKO, as shown for ANRIL (6-7) expression (Figure 5 B, 

Supplementary Figure 7).  However, the significant Pearson correlations between ANRIL (exons 

6-7), and the individual genes show a direct association between this form of these ANRIL 

isoforms and some lysoPL genes.    

(ii) ANRIL (exons 18-19) 

 Here, correlations were tested using RRWT or NNWT clones separately, and then compared.  

Five genes were identified where a significant negative correlation between ANRIL (18-19) and 
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lysoPL gene expression was seen (PNPLA3, DGKA, ENPP2, LPCAT3, PLA2G4C) in the RR 

clones.  In contrast, correlations in NN samples were weaker, and not significant (Supplementary 

Figure 9).  This suggests an impact of ANRIL (18-19) isoforms on gene expression, that is 

absent/reduced in NN.  One NN clone displayed higher levels of ANRIL (18-19) compared to 

others, and as an outlier had a large impact on the correlation, reducing statistical power.     

In silico analysis of miRNA databases suggests potential candidates for ANRIL regulation 

of lysoPL gene expression.   

ANRIL displays sponge activity towards miRNAs20.  To examine whether this could 

mechanistically link ANRIL with lysoPL gene expression, we undertook an in-silico analysis 

using two databases (including one that is experimentally validated: TarBase v8 

(http://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=tarbasev8%2Findex) and 

TargetScan (*http://www.targetscan.org/vert_72/).  We searched whether miRNAs known to be 

inhibited by ANRIL interact with PL-metabolising genes that are altered in HEK or VSMC 

datasets.   Here, the expected outcome is that target genes should be regulated in the same 

direction as ANRIL.  Some hits were found, including two that were conserved across both 

datasets.   In the HEK data, the miRNAs that interact with down-regulated genes were miR-186-

3p, miR-34a-3p (LPCAT1) and miR-122-5p, miR-34a-5p (LPCAT3).  In the VSMC dataset, 

where ANRIL (exons 6-7) is significantly upregulated in RR, we focused on genes that were 

elevated in RR and reduced when the locus was deleted.  Here, we found miR-34a-5p (PLA2G6) 

and miR-122-5p (PNPLA3). These hits were all from the experimentally validated database 

(Tarbase) and differences in the target genes impacted may be due to the different cell types 

used. 

 

https://eur03.safelinks.protection.outlook.com/?url=http%3A%2F%2Fcarolina.imis.athena-innovation.gr%2Fdiana_tools%2Fweb%2Findex.php%3Fr%3Dtarbasev8%252Findex&data=01%7C01%7CO-DonnellVB%40cardiff.ac.uk%7C599659f145f542a279bc08d7728a048f%7Cbdb74b3095684856bdbf06759778fcbc%7C1&sdata=PDvmWLbSva3g55OGnvG4PdoDHy4W8kE2k4BH%2FOhmicA%3D&reserved=0
https://eur03.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.targetscan.org%2Fvert_72%2F&data=01%7C01%7CO-DonnellVB%40cardiff.ac.uk%7C599659f145f542a279bc08d7728a048f%7Cbdb74b3095684856bdbf06759778fcbc%7C1&sdata=T15D%2FuK1kj40pYpbyWp%2F52Cto%2FB0ey47%2FhkMvfb30EM%3D&reserved=0


14 

Discussion 

Lipidomics MS is increasingly applied to prospective CHD cohorts that contain no genetic 

information, while conversely GWAS studies have examined associations with traditional “lipid” 

measures only (e.g. total cholesterol or triglycerides) 21-35. Cohorts are only now starting to 

examine the association of individual lipid molecular species with specific risk SNPs, and little 

information on this is yet available.  Cohort lipidomics is an area that is increasing in popularity, 

however there are some serious pitfalls with using only untargeted methods.  Including a high 

degree of validation, we show that a common Chr9p21 (rs10757274, A>G) CHD-risk SNP is 

associated with metabolic alterations to the lysoPL/lysoPA/ATX axis in human plasma (Figures 

1-4). This revealed a genotype-specific change that was absent in five other GWAS-proven 

CHD-risk SNPs. Since the action of rs10757274 GG is independent from “traditional lipid” 

measurements, it may represent a different component of the disease, characterized in part by 

changes to bioactive signalling phospholipids (PL), rather than storage/energy lipid pools 1.  

LysoPLs have an emerging role in cardiovascular disease that is not yet understood.  In 

vitro, they mediate G protein-coupled receptor (GPCR) signalling that causes immune cell 

migration and apoptosis.  This has led them to be proposed as “pro-inflammatory” 36-40. 

However, this is disputed since most lysoPL is bound to albumin, immunoglobulins and other 

plasma carrier systems, and levels are already higher than required for mediating GPCR 

activation 41-43.  Importantly, recent cohort studies have shown that plasma lysoPC is inversely 

related to incidence of an event.  These include Malmö, Bruneck, TwinGene, ULSAM and 

PIVUS, which showed correlations of lower lysoPC with incident CHD risk, using untargeted 

lipidomics 31, 44, 45. Also, patients on haemodialysis show higher risk of a CHD event and 

elevated mortality with lower lysoPC43.  Lower lysoPCs are also associated with CHD factors 
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such as visceral obesity, although since lysoPA cannot be measured using shotgun or untargeted 

methods, we have not found other cohort data that includes this lipid as yet 27, 31, 32. In the 

Bruneck cohort, inclusion of lysoPCs in classifiers improved power for CHD risk prediction, 

indicating that although the reduction is rather modest, it is clinically significant31. Furthermore, 

the Malmö cohort reported that CHD development is preceded by reduced levels of lysoPCs, 

around 8 % similar to our data 44.  In Malmö and Bruneck, the lipidomics was limited to 

untargeted and shotgun methods without further validation, thus our new data provides stronger 

analytical confidence while linking their findings to a specific risk locus. Given the prevalence of 

rs10757274 GG in the general population (~23%), our data may at least in part explain the 

findings in other cohorts with lower lysoPLs now associating with a sub-group with a common 

SNP.   In contrast, it is also known that elevations in long chain unsaturated lysoPA maybe a 

feature of an acute cardiac event, where a sudden plaque rupture results in generation/release, 

likely via activation of platelet phospholipases18.  

In addition to lipid class-specific changes in phospholipids, many significantly decreased 

“unknowns” were found, which are currently absent in databases (Figure 1). The plasma 

lipidome contains large numbers of such species and a significant challenge lies in their 

structural and biological characterization. The comprehensive list of all lipids detected with fold-

change and significance levels is provided (Supplementary data.xlsx, tab 1) as a resource for 

further mining.  

We next searched for potential mechanisms to explain the lipid changes using datasets 

from two cell models of ANRIL modulation, since there is increasing evidence that this long non-

coding RNA plays a central role in Chr9p21-linked CVD.   ANRIL is expressed by exons 

contained within Chr9p21, and there are many isoforms including long, short and circular, 
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resulting from alternative splicing across several exons.  Both increases and decreases of various 

ANRIL transcripts have been reported to be associated with CVD.  For example, compared to AA 

individuals, GG and several other Chr9p12 risk SNPs have almost 50% lower ANRIL (exon 2) in 

peripheral blood cells2.  This agrees with the finding that multiple risk alleles are associated with 

a decrease in ANRIL (exons 1-2) in PBMCs5.  However, others showed various ANRIL 

transcripts are increased in carriers of risk alleles, including from exons 1-5, 7-13 and 18-19, 

with no change at exons 7b or 10-13b3.  Elsewhere, expression of short variants (exons 1-2, 

ending with alternative 13, and exons 1,5-7+13) were increased while long variants (coded by 

exons 1-12+14-20) were decreased in risk allele carriers6.  In the VSMC dataset used in our 

study, lines carrying risk haplotypes (which were also GG for rs10757274) expressed higher 

levels of ANRIL transcripts (exon 6-7) compared to NNWT, which have a minimal expression, 

similar to a residual expression detected in KO lines13. In contrast, the HEK inducible 

knockdown targeted proximal alternatively spliced ANRIL transcripts EU741058 (exons 1,5-

7,13) and DQ485454 (exons 1-12 and alternative exon 13).  Thus, while they both model human 

CVD they differ significantly in terms of their impact on ANRIL.   

While it is known that ANRIL gene products regulate metabolic genes in cultured cells 

and stimulate VSMC proliferation while reducing adhesion and contraction, the impact of ANRIL 

on lysoPL/lysoPA metabolism is not characterised 12, 13.  Here, we showed in both HEK and 

VSMC datasets that there was a significant impact on a large number of lysoPL/lysoPA 

metabolism genes, with GO term analysis identifying a large number of lipid terms being 

significantly altered in HEK cells.  In the case of VSMCs, removal of the risk locus indicated 

that several affected genes were directly influenced by the Chr9p21 locus (Figure 5 A,B). Our in-

silico screen also identified four miRNAs across the cell types with two candidates identified 
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from both HEK and VSMC lysoPL gene regulation: miR-34a-5p (LPCAT3, PLA2G6), miR-122-

5p (LPCAT3, PNPLA3). Collectively, this suggests that Chr9p21 risk alleles may alter 

lysoPL/lysoPA in humans via ANRIL regulation, providing novel insights into the biology of this 

important cause of CHD.  

Many of the candidate genes are expressed in leukocytes, platelets, erythrocytes, heart, 

adipose tissue and plasma, thus measuring them in plasma is not possible.  However, we could 

measure ATX (ENPP2), a plasma enzyme that converts primarily unsaturated lysoPC to lysoPA 

in healthy subjects 18. ATX protein was reduced and furthermore, correlation analysis was 

consistent with lower ATX activity (Figure 2 C, 3 A-K), providing a potential explanation for 

lower lysoPAs in the GG group. In line with this, ENPP2 expression negatively correlated with 

ANRIL (exons 18-19) in VSMC from the risk group, suggesting an association between this gene 

and a risk form of ANRIL (Supplementary Figure 9).  Also, ENPP2 was elevated in HEK cells 

which lack ANRIL transcripts that contain exons 6,7.  Furthermore, it has been reported that 

inflammatory cytokine induction of ENPP2 is suppressed by 50% in primary human monocyte 

derived macrophages that carry the Chr9p21 risk haplotype allele46. The contribution of ATX to 

CHD is not understood and may vary with underlying genetic cause47.  Indeed, while it 

metabolizes lysoPL to lysoPA in health, in acute coronary syndromes other pathways appear to 

predominate 18. This mirrors our suggestion that ATX might be less involved in plasmas with 

elevated CVD risk, with other uncharacterised pathways being relevant.  Here, significant 

downregulation of ATX in GG plasma from middle-aged men who are otherwise healthy and 

without clinically detectable CHD was seen indicating it precedes cardiovascular events in this 

group (Figure 2 C).  While we suggest that reduced lysoPA maybe at least in part relate to 

reduced levels of plasma ATX, additional candidates were identified through transcriptional 
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analysis including PLPP1, PLPP2, PLPPR2 (all induced in HEK cells) or DGKA (reduced in 

RRWT VSMC cell lines).   

In healthy subjects, lysoPLs, particularly lysoPC, circulate at relatively high 

concentrations, where they could be generated by (i) lipases bound to the cell surface of 

endothelial cells in liver, heart and adipose tissues (LPL, LIPC, LIPG), (ii) Land’s cycle enzymes 

in circulating blood cells/platelets 16, (iii) lecithin-cholesterol acyl transferase (LCAT) trans-

esterification in the liver, or (iv) by remodelling pathways for platelet activating factor (PAF) 

removal (Figure 6).  In healthy tissue, lipases predominate, but during vascular inflammation the 

balance may alter but this is not well characterised.  The Land’s cycle involves phospholipase A2 

(PLA2) hydrolysis, although the isoforms controlling blood levels are not fully known. 

Candidates include stromal isoforms and cellular or secreted PLA2s from circulating cells and 

platelets, that may become relevant during inflammation.  Also, a role for circulating/platelet 

PLA1 from platelets in lysoPL formation has been proposed 40. The reduction in lysoPCs is 

consistent with significantly different genes identified in the datasets, for example: ACSL6, 

MBOAT2, LPCAT2, PLBD1 (all induced in HEK cells), PNPLA2 and PLA2G4C (downregulated 

in HEK cells), and PLA2G12A and LCAT (reduced in RRWT VSMC cell lines).  Notably, the 

transcriptional datasets showed complex and largely different changes in lysoPL gene 

expression, which may relate to them being from different cell types, and with different 

manipulations to ANRIL isoform expression.  However, four genes were significantly altered 

across both datasets: MBOAT2 and LPL (always upregulated) and DGKA, PLPP1 (increased in 

HEK, decreased in VSMC).  A detailed discussion of the known expression patterns and roles of 

all these genes is provided in Supplemental Material. 
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Notably, many of the genes found to be altered in the transcriptional data are genes with 

known SNPs that correlate with traditional lipid measures.  For many of these genes, it is not 

clear how or even if they regulate lipid levels directly or are simply associated with altered levels 

(in the case of traditional lipids).  Cardiovascular disease is complex with different forms, 

however in the case of Chr9p21 linked CHD, a strong phenotype of coronary artery disease is 

noted48.  Similarly, traditional lipid levels are also strongly associated with a strong phenotype of 

coronary artery disease.  This indicates that clinical outcomes are similar despite the different 

genetic origins and for this to be the case, some convergence in biochemical or cellular pathways 

downstream of genetics would be expected.  A potential explanation for our findings is that 

downstream of ANRIL, some of the same genes that are already known to be genetically 

associated with CHD are subtly altered at their gene expression levels through transcriptional 

mechanisms, such as proposed here (e.g. miRNA sponge activities of ANRIL), and that this then 

goes on to impact inflammation.  This would promote development of coronary artery disease, 

through some common mechanisms, independent of the biology of traditional lipoprotein 

measures.  While several genes were found to be altered in either the HEK or VCMC datasets, 

more research is required to link gene expression changes with lysoPC/lysoPA levels, including 

protein and enzyme activity measurements from carriers of Chr9p21 risk SNPs. LysoPCs and 

lysoPAs are metabolised in a complex manner, with many gene products in the vasculature 

expected to play a contributing role.  It is also the case that “standard lipids” are metabolised in a 

complex manner, and that changes in one relevant gene could be compensated by changes in 

others, that overall lead to standard lipids such as TGs and CEs being overall unchanged in these 

subjects.   
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We also note that many genes in the HEK or VSMC analysis changed in directions that on 

their own could be considered to predict increases in lysoPC/lysoPA.  However, overall it is the 

combination/balance of several enzymatic activities that will determine the flux of lipids through 

this pathway, and thus, their overall levels at steady state. Thus, changes in some could be over-

compensated by changes in others, leading to the observed phenotype of overall reduced levels 

of these lipids.  For further reference, genes with SNPs that have been found to associate with 

standard lipid traits, and were also found to change herein are listed in49, 50. 

A final question relates to how ANRIL and lysoPLs are functionally connected.  PL 

metabolism is finely tuned during cell proliferation, with higher concentrations of lysoPC and 

lysoPE detected at G2/M, which fall dramatically along with concomitant increases in PC/PE 

due to acylation during progression to G1 51.  This provides the PL membranes required to 

complete the cell cycle.  Given ANRIL’s ability to regulate cell proliferation, and observations 

that silencing ANRIL prevents division and promotes senescence, the lower levels of lysoPLs in 

plasma may simply reflect altered rates of cell turnover in the vasculature, but this remains to be 

determined (Figure 5 C,D).  Here, four miRNAs known to be regulated by ANRIL, that also 

suppress expression of selected lysoPL genes across both HEK and VSMC datasets were found 

miR-186-3p, miR-34a-3p, miR-122-5p, miR-34a-5p.  These potential hits can be followed up as 

candidate downstream mediators of ANRIL’s regulation of lysoPL/lysoPA metabolism. Several 

have well known roles in regulating proliferation and notably circulating miR-122-5p associates 

with acute myocardial infarction52. 

In summary, we reveal an association of altered PL metabolism with CHD risk in a 

common risk SNP.  The alterations in multiple lysoPL/lysoPA regulatory pathways seen on 

ANRIL silencing, or the presence/removal of the risk locus in vitro, further suggest the 
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involvement of bioactive signaling lipids in this form of vascular disease, and mechanistic 

studies are warranted.  To this end, fresh blood from AA and GG subjects is required to measure 

plasma and cellular levels of all candidate enzymes and relevant lipids, in order to identify how 

lysoPC/lysoPA metabolism is altered by the presence of the risk SNP. It would also be important 

to compare AG with AA and GG subjects (also including women), and also those who go on to 

have events.  However, for this considerably larger sample numbers would be required than we 

have available currently in NPHSII. Furthermore, if heparin is administered to subjects then LPL, 

LIPC, LIPG enzymes would be released and could be measured in plasma.  
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Table 1: Number of detected and identified lipid features in the global lipidomics assay. The number of lipids in each class are 

shown, with the number of significantly different lipids (non-parametric one-tailed Mann–Whitney U test, assuming unequal variance 

with a threshold of p ≤0.05, after SGoF correction), between the SNP group and controls shown in parentheses.   

 

Lipid Class FA GPL GL SL Sterol  Prenol  Unknowns TOTAL  

Detected  
(P<0.05 after SGoF) 51 (0) 220 (0) 401 (13) 166 (2) 27 (1) 7 (0) 1006 (1) 1878 (17) 

FA: Fatty acyl, GPL: glycerophospholipid, GL: glycerolipid, SL: sphingolipid 
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Table 2. Several lipid related Gene Ontology Pathways are significantly regulated by ANRIL silencing in HEK 293 cells.  Results are 

from the PANTHER Over-representation Test, Term enrichment service (pantherdb.org), using default analysis parameters (Fisher’s 

Exact test with False Discovery Rate: FDR P < 0.05, Benjamini-Hochberg).  Fold-enrichment represents the number of observed 

differentially expressed genes with the GO annotation of interest, relative to genome background. The full list of genes significantly 

altered in these GO processes, is provided in Supplementary Data.xlsx, along with a list of all significantly altered GO processes at 

both timepoints.  Note that FDR has no unit, while fold enrichment is a ratio with no unit.  

 GO biological process  

Number of 
significantly 

different genes 
GO term fold 
enrichment P-value FDR 

48 hrs shRNA 
knockdown  

versus control glycosphingolipid metabolic process (GO:0006687) 14 3.05 5.68E-04 3.12E-02 
 regulation of lipid metabolic process (GO:0019216) 46 1.9 1.12E-04 9.22E-03 
 phospholipid metabolic process (GO:0006644) 51 1.85 9.16E-05 7.99E-03 
 cellular lipid metabolic process (GO:0044255) 109 1.68 6.07E-07 1.37E-04 
 lipid metabolic process (GO:0006629) 130 1.61 5.02E-07 1.19E-04 
 response to lipid (GO:0033993) 84 1.53 2.59E-04 1.74E-02 
      

96 hrs shRNA 
knockdown  

versus control regulation of lipid metabolic process (GO:0019216) 74 1.88 2.80E-06 3.38E-04 
 phospholipid metabolic process (GO:0006644) 73 1.63 2.05E-04 1.30E-02 
 lipid biosynthetic process (GO:0008610) 102 1.61 1.54E-05 1.51E-03 
 cellular lipid metabolic process (GO:0044255) 164 1.56 2.74E-07 4.70E-05 
 lipid metabolic process (GO:0006629) 203 1.54 1.61E-08 3.79E-06 
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Table 3. Several LysoPL relevant genes are significantly altered in ANRIL knockdown.  Data were analysed using the oligo and 

limma packages in Bioconductor, see methods.  P-values were corrected for multiple testing using Benjamini-Hochberg (adjusted p-

value cut-off: 0.05), note there are no units for P-values, and log2fold change is a ratio. 

 

Predicted effect 
on lysoPL() 
on lysoPA() 

 48 hr, knockdown vs control 96 hr, knockdown vs control 

Gene name Log2fold change in 
gene expression adjustedPval Log2fold change in 

gene expression adjustedPval 

 ENPP2 1.249 7.50E-3 1.483 4.65E-05 
 LPCAT2 0.212 1.95E-02 NS NS 
 MBOAT2 NS NS 0.289 3.28E-03 
 ACSL6 0.283 0.0017 0.519 5.31E-06 
 PLA2G4C -0.351 0.0266 -0.356 0.016 
 PNPLA2 -0.447 0.000031 -0.666 2.53E-7 
 PLBD1 0.368 0.0263 0.5036 0.00217 
 PLPP1 NS NS 0.1637 0.049 
 PLPP2 0.258 0.00137 0.2940 4.65E-5 
 PLPPR2 0.1136 0.0792 0.124 0.0101 
      
 PLA2G7 0.611 0.000225 0.439 0.0016 
 LPCAT1 -0.257 0.025 NS NS 
 DGKA 0.247 0.00724 0.403 9.98E-5 
 LPL NS NS 0.230 0.0429 
 LPCAT3 NS NS -0.298 0.0013 
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Figure Legends:  

 

Figure 1. Global lipidomics reveals class specific changes in GPLs in rs10757274 GG vs AA.  

Panel A: Scatterplot of features in a plasma sample (≈14,000) after processing high-resolution 

MS data using XCMS.  Analysis was undertaken using parameters provided in Supplemental 

Material.  Panel B. Scatterplot obtained after LipidFinder and manual-data clean-up, as 

described in Methods. Each dot represents a lipid described by m/z value and retention time. 

Putative identification and assignment of category was performed using WebSearch of the 

curated LIPID MAPS database. Panels C-J. Volcano plots show differences in lipid classes with 

genotype. Volcano plots were generated as described in Methods, plotting log2(fold-change) 

versus –log10(p-value) for all (n = 39 AA, 33 GG), following p-value adjustment using 

sequential goodness of fit metatest (SGoF).   

 

Figure 2. LysoPLs are significantly reduced in rs10757274 GG, but not in subjects with 

unrelated SNPs.  Panel A. Several LPCs are lower in GG samples than AA controls, and LPEs 

trend towards lower levels. LysoPLs were determined using LC/MS/MS as described in Methods 

(n = 88 AA, 81 GG). Tukey box plot, * p < 0.05, ** p < 0.01, *** p < 0.005, 2-tailed, unpaired 

Student’s T-test (black) and Mann Whitney U (red). Panel B. Plasma lysoPL are not altered by 

other risk SNPs.  Plasma from the NPHSII cohort containing several risk (up or down) SNPs 

were analysed using LipidFinder, and m/z values corresponding to lysoPL extracted and 

compared.  These are plotted on a volcano plot, to show fold change vs significance, following p-

value adjustment using sequential goodness of fit metatest (SGoF).  Numbers and genotypes are 

shown in Supplementary Table 1. Panel C. ATX is significantly decreased in GG samples 
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compared to AA controls.  Plasma ATX activity was measured as described in Methods (n = 47 

AA, 49 GG).   Panel D.  LysoPAs are significantly decreased in GG plasma compared to AA 

controls.   Plasma lysoPAs were measured as described in Methods, using LC/MS/MS (n = 95 

AA, 100 GG). Tukey box plot, * p < 0.05, ** p < 0.01, *** p < 0.005, 2-tailed, unpaired 

Student’s T-test (black). 

 

Figure 3. The lysoPL/lysoPA/ATX axis is dysregulated in the GG plasmas, while the profile of 

molecular species is unchanged for lysoPL/lysoPA.   Panels A-D. ATX shows altered 

correlations with plasma lysoPL or lysoPA in GG versus AA plasma.  Levels of lysoPL or 

lysoPA quantified by LC/MS/MS in the validation cohort were correlated using Answerminer, to 

determine Pearson’s correlation co-efficient.  A,B: AA control plasma, C,D: GG risk plasma (n = 

47 AA, 49 GG).  Panels E-I. LysoPL and lysoPA are positively correlated for AA plasma, but 

negatively correlated for GG.  The sum of all lysoPAs or lysoPLs in each set were correlated 

using Answerminer, as above (E,G).  Alternatively, lipids containing 18:2, or 20:4 were 

separately correlated (F,H,I).  E,F: AA control plasma, G,H,I: GG risk plasma (n = 47 AA, 49 

GG). Panels J,K.  The lysoPA(18:2)/lysoPL(18:2) ratio positively correlates with ATX in AA 

plasma, but negatively for GG, indicating a block in substrate:product conversion in GG. 

Correlations were performed using Answerminer (n = 47 AA, 49 GG). J: AA plasma, K: GG 

plasma. P<0.05 indicates significant using Pearson’s correlation test.  Panel L. The profile of 

individual lysoPL or lysoPA molecular species is unchanged between GG and AA plasmas.  

Levels of individual lysoPL/lysoPA were compared across both groups, and shown as %.  
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Figure 4. Cytoscape analysis of lipids reveals divergent metabolism in GG versus AA, while 

ANRIL knockdown is associated with significant changes to lysoPL/lysoPA-metabolising genes.  

Panel A. Cytoscape reveals strong links within related families, but a positive-negative switch 

for lysoPL-lysoPA correlations between AA-GG plasmas. Pearson correlation networks were 

generated for the AA and GG validation samples (n = 47 AA, 49 GG), using lipid 

concentrations. Nodes are coloured by lipid sub-category and represent individual molecular 

species, and edges represent the correlation. Edges detail the Pearson correlation coefficients 

between nodes (lipids), where the width of the edge denotes value. Additionally, edges are 

coloured by value: red (r = 0.10-0.39); green (r = 0.40-0.69); grey (r 0.70-1.00). Panels C,D. 

Significant changes in lipid regulatory gene expression are observed with ANRIL knockdown in 

cell culture.  Affymetrix array data generated in 5 was analysed using GO as described in 

Methods. Volcano plot showing differential gene expression of all genes on the Affymetrix 

HuGene1.0 v1, chip.   LysoPL/lysoPA regulating genes that alter in line with decreased levels of 

the lipids in GG plasma are labelled. The horizontal dashed line shows where adj.pvalue < 

0.05  (Benjamini-Hochberg correction) where points (genes) above this line are significantly 

differentially expressed.  LysoPL-regulating genes that alter in line with decreased levels of the 

lipids are labelled in black.  Genes in red are annotated to the GO-term detailed in the plot 

title.  Data are plotted in R using ggplot2.    Panel B: 48-hr shRNA knockdown, Panel C: 96-hr 

shRNA knockdown.    

 

Figure 5. VSMCs from risk haplotypes show differential gene expression of lysoPL 

metabolizing genes, that are rescued by deletion of the Chr9p21 locus.  Panel A. PCA shows that 

the presence of risk haplotypes is associated with differential gene expression of lysoPL genes.  
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iPSCs from peripheral monocytes were obtained and differentiated as described in Supplemental 

Material.  RNAseq data was clustered using lysoPL metabolizing genes by PCA in R.   Non-risk 

haplotype (NNWT), risk haplotype (RRWT) and their genome edited counterparts (NNKO and 

RRKO) are shown.  Panel B. Example datasets for ACSL3 and DGKA, showing that removing 

the risk locus reverts gene expression back to levels in non-risk individuals. * p < 0.05, ** p < 

0.01, *** p < 0.005, Students t-test, n = 9-10 clones per group.  Panels C,D. Schematics showing 

impact of ANRIL silencing or risk haplotypes on relevant lysoPL metabolizing genes.  

 

Figure 6. Metabolic pathway showing lysoPL/lysoPA regulatory genes that are significantly-

altered by ANRIL knockdown in HEK cells.  Genes that metabolise these lipids are shown.  Full 

data on their transcriptional regulation is provided in Table 3, Supplementary data.xls tab 7.  

LCAT was not significantly regulated but is shown for completeness.  
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