
Supplementary Materials:

Circuits with broken fibration symmetries perform core logic computations in biological networks

Ian Leifer, Flaviano Morone, Saulo D. S. Reis, José S. Andrade Jr., Mariano Sigman, and Hernán A. Makse

CONTENTS

I. Feed-forward loop: FFL 3

A. FFL discrete time model 3

B. FFL ODE 4

C. FFL with OR gate 6

II. Satisfied Feed-Forward Fiber: SAT-FFF 7

A. SAT-FFF discrete time model 7

B. SAT-FFF ODE 9

III. Unsatisfied Feed-Forward Fiber: UNSAT-FFF 11

A. UNSAT-FFF ODE 11

B. Period-amplitude relationship 15

C. UNSAT-FFF clock functionality 16

IV. Examples of symmetry and broken symmetry circuits 17

A. Symmetry circuits (fibers) from [24] 17

1. Repressor regulator link (stub) 17

2. Repressor AR loop: |1, 0〉 17

3. UNSAT-FFF: |1, 1〉 18

4. Fibonacci Fiber: |1.6180..., 0〉 18

5. n = 2 Fiber: |2, 0〉 18

B. Symmetry breaking circuits 19

1. AR symmetry breaking circuit: SR flip-flop 19

2. FFF symmetry breaking circuit: Clocked SR flip-flop 20

3. Fibonacci symmetry breaking circuit: JK flip-flop 20

V. Description of datasets 21

1

VI. Algorithm to find fibers 21

VII. Algorithm to find broken symmetry circuits 24

References 27

2

I. FEED-FORWARD LOOP: FFL

X

Z

Y

In what follows, we analyze in detail the FFL. First, we present the analytical solution for

the discrete time model of the FFL, where we show that the FFL does not synchronize nor

oscillates. After that, we reach the same conclusion by using a continuous variable approach.

Finally, we show the discrete time solution with the OR gate. Solutions for the FFL have

been considered in the literature. Here we adapt those results to the particular models used

in our studies to perform consistent comparisons with the solutions of the fiber dynamics

obtained through the paper.

A. FFL discrete time model

Starting from Eq. (1) in the main text, we define rescaled variables ψt = yt/ky and

ζt = zt/ky, we rewrite Eq. (1) as

ψt+1 = βψt + αηθ(xt − kx),

ζt+1 = βζt + αλθ(xt − kx)θ(ψt − 1),
(1)

where we set β = (1− α), η = γx/αky, and λ = γxγy/αky. Equation (1) defines an iterative

map ψt+1 = f(ψt) which provides a solution

ψt = f(ψt−1) = f 2(ψt−2) = . . . = f t(ψ0). (2)

A closed form for ψt depends on the value of x. For the sake of simplicity, consider xt = x

constant in time. If x < kx, the solution is simple, and always decays as ψt = ψ0e
−t/τ ,

where we choose to write βt = e−t/τ such as τ−1 = − log(1 − α). On the other hand, if

x > kx, the iterative map is f(ψt) = βψt + η, leading to a solution that converges to η as

ψt = ψ0e
−t/τ + η

(
1− e−t/τ

)
. Therefore, the solution to ψt is given by:

ψt = ψ0e
−t/τ + η(1− e−t/τ)θ(xt − kx). (3)

3

Similarly, the solution for ζt depends on x, but it also depends on ψ0 and η. For x < kx,

it always decays to zero as ζt = ζ0e
−t/τ . When x > kx, the variable ζt follows different

behaviors.

For ψ0 < 1, we also find a solution that decays as ζt = ζ0e
−t/τ . However, if η > 1,

this solution ceases to be valid at a given time t∗ such that ψt∗ > 1, which is given by

t∗ = dτ log((η − ψ0)/(η − 1))e. Here, dxe denotes the smallest integer larger than x, e.g.,

d1.5e = 2. For t > t∗, as ψt saturates to η, the rescaled variable ζt converges to λ as

ζt = ζ0e
−(t−t∗)/τ + λ

(
1− e−(t−t∗)/τ

)
.

Next, we consider the case ψ0 > 1. In this case, the solution for ζt is given by ζt =

ζ0e
−t/τ + λ(1 − e−t/τ), for η > 1. In contrast, when η < 1, this solution is valid only up to

t∗ = dτ log((ψ0 − η)/(1− η))e, such that ψt < 1. As ψt saturates to η, the rescaled variable

ζt exponentially decays as ζt = ζ0e
−(t−t∗)/τ .

To summarize, the possible solutions for ζt depending on ψ0 and η are:

ψ0 > 1, η > 1 → ζt = ζ0e
−t/τ + λ(1− e−t/τ),

ψ0 > 1, η < 1 → ζt = ζ0e
−t/τ + λ(1− e−t/τ) for t ∈

{
0, 1, . . . , t1 =

⌈
τ log

ψ0 − η
1− η

⌉}
,

ζt = ζ1e
−(t−t1)/τ for t > t1,

ψ0 < 1, η > 1 → ζt = ζ0e
−t/τ for t ∈

{
0, 1, . . . , t1 =

⌈
τ log

η − ψ0

η − 1

⌉}
,

ζt = ζ1e
−(t−t1)/τ + λ

(
1− e−(t−t1)/τ

)
for t > t1,

ψ0 < 1, η < 1 → ζt = ζ0e
−t/τ .

(4)

Here, ζ1 = ζt=t1 .

From this discussion, we find that the rescaled variables ψt and ζt do not synchronize.

That is, they do not reach the same value at their fixed points: ψt 6= ζt when t→∞, unless

we use a specific set of parameters. Moreover, ψt and ζt also do not reach oscillatory states.

The same conclusion is extended to the original variables yt and zt.

B. FFL ODE

In order to show that our results presented in the main text are consistent with a contin-

uous variable approach, now we focus our attention on the modelling of the FFL [4, 20, 21]

by using ordinary differential equations (ODE). First, we write the ODE governing the

4

dynamics of expression levels y(t) and z(t):

ẏ(t) = −αy(t) + γxθ(x(t)− kx),

ż(t) = −αz(t) + γxθ(x(t)− kx)× γyθ(y(t)− ky).
(5)

For the sake of simplicity, we consider x(t) = x constant in time.

By using the rescaled functions ψ(t) = y(t)/ky and ζ(t) = ky, we rewrite Eq. (5) as the

following set of ODEs:

ψ̇(t) + αψ(t) = αηθ(xt − kx),

ζ̇(t) + αζ(t) = αλθ(xt − kx)θ(ψt − 1),
(6)

where η = γx/αky and λ = γxγy/αky.

For the case of x < kx, Eqs. (6) become a set of homogeneous ODEs with solutions that

decay exponentially:

ψ(t)x<kx = ψ0e
−αt,

ζ(t)x<kx = ζ0e
−αt.

(7)

Where, ψ0 and ζ0 are the initial conditions for the rescaled functions.

When x > kx, we find

ψ(t)x>kx = ψ0e
−αt + η

(
1− e−αt

)
. (8)

Therefore, the solution for ψ(t) converges to η as t → ∞, similar to the solution of the

discrete time equation presented in the main text.

On the other hand, the solution for ζ(t) also depends the values of ψ0 and η. By carrying

on a calculation similar to the one presented on the main text for the discrete time case,

one finds:

ψ0 > 1, η > 1 → ζ(t)x>kx = ζ0e
−αt + λ(1− e−αt),

ψ0 > 1, η < 1 → ζ(t)x>kx = ζ0e
−αt + λ(1− e−αt) for t ∈

{
0, 1, . . . , t1 =

1

α
log

(
ψ0 − η
1− η

)}
,

ζ(t)x>kx = ζ1e
−α(t−t1) for t > t1,

ψ0 < 1, η > 1 → ζ(t)x>kx = ζ0e
−αt for t ∈

{
0, 1, . . . , t1 =

1

α
log

(
η − ψ0

η − 1

)}
,

ζ(t)x>kx = ζ1e
−α(t−t1) + λ

(
1− e−α(t−t1)

)
for t > t1,

ψ0 < 1, η < 1 → ζ(t)x>kx = ζ0e
−αt.

(9)

5

Here, ζ1 = ζ(t)|t=t1 .

Clearly, from the above solutions, the expression levels from genes Y and X do not

synchronize, since y(t) 6= z(t) as t → ∞. In addition, y(t) and z(t) also do not reach

oscillatory states, in accordance with the results of the discrete time model.

C. FFL with OR gate

We present the solution for the FFL [4, 20, 21] with an OR gate. We consider the coherent

version cFFL where all regulations are activators. The discrete-time dynamics of expression

levels yt and zt of genes Y and Z in the cFFL with a Boolean OR gate are given by the

following pair of difference equations:

yt+1 = (1− α)yt + γxθ(xt − kx),

zt+1 = (1− α)zt + γxθ(xt − kx) + γyθ(yt − ky),
(10)

where α, γy, and γz have the same definition as in the main text. By adopting the same

rescaled variables, ψt = yt/ky and ζt = zt/ky, we rewrite Eq. (10) as:

ψt+1 = βψt + αηθ(xt − kx),

ζt+1 = βζt + αλxθ(xt − kx) + αλxθ(ψt − 1),
(11)

where we have β = (1 − α), η = γx/αky, λx = γx/αky, and λy = γy/αky. Again, without

lack of generality, we consider xt = x constant in time. Clearly, the solution for ψt is not

affected by the OR gate, therefore, it depends only on the value of x and is given by:

ψt = ψ0e
−t/τ + η(1− e−t/τ)θ(xt − kx). (12)

Again, τ = − log(1− α). Thus, if x < kx, ψt exponentially decays to zero. On the contrary,

if x > kx, ψt converges to η. The solution for ζt displays different solutions, depending on

the combination of x and the initial value ψ0.

First, consider the case of x < kx. For ψ0 < 1, we find a solution that always decays as ζt =

ζ0e
−t/τ . When ψ0 > 1, the solution for ζt is given by ζt = ζ0e

−t/τ + λy
(
1− e−t/τ

)
. However,

since x < kx and ψt exponentially decays, this solution is valid only until t∗ = dτ logψ0e,

the instant that ψt∗ < 1. As ψt decays, ζt also decays as ζt = ζt∗e
−(t−t∗)/τ .

We consider next the case of x > kx. In this case, ψt always converges to η. Therefore,

the solution for ζt depends not only on ψ0, but also on η. For ψ0 < 1 and η < 1, we find

6

that ζt converges to λx as ζt = ζ0e
−t/τ + λx

(
1− e−t/τ

)
. However, if η > 1, this solution is

not valid after t∗ = dτ log (ψ0 − η) / (1− η)e, when ψt > 1. In this case, as ψt saturates to

η, ζt converges to λx + λy as ζt = ζt∗e
−(t−t∗)/τ + (λx + λy)

(
1− e−(t−t∗)/τ

)
.

For the case of ψ0 > 1 and η > 1, the rescaled variable ζt always converges to λx +

λy as ζt = ζ0e
−t/τ + (λx + λy)

(
1− e−t/τ

)
. However, if η < 1, this solution ceases to be

valid at t∗ = dτ log ((η − ψ0) / (η − 1))e. Therefore, for this case ζt converges to λx as

ζt = ζt∗e
−(t−t∗)/τ + λx

(
1− e−(t−t∗)/τ

)
.

From the discussion above, it is clear that the rescaled variables ψt and ζt neither synchro-

nize nor oscillate. Extending this results to the original variables yt and zt, we conclude that

the expression levels of the genes Y and Z also do not synchronize: yt 6= zt when t→∞.

II. SATISFIED FEED-FORWARD FIBER: SAT-FFF

X

Z

Y

Below, we describe the solutions of the SAT FFF circuit in the discrete time continuous

variable model and in the ODE model.

A. SAT-FFF discrete time model

The SAT-FFF is a Feed-Forward Fiber with activator autoregulation where all inter-

actions are satisfied. That is, it does not present the phenomenon of frustration and the

dynamics converges to a fixed point. This can be simply seen by considering gene X high,

which makes also gene Y high and Z high too. Finally, the configuration satisfies the AR

loop, so all bonds are satisfied. The SAT-FFF is constructed on top of the cFFL by the

addition of an autoregulator loop on the Y gene, as depicted in Fig. 1E (main text) and S1

Fig. 1A. The discrete time dynamics of the SAT-FFF with a logic interaction term is given

7

by:

yt+1 = (1− α)yt + γxθ(xt − kx)× γyθ(yt − ky),

zt+1 = (1− α)zt + γxθ(xt − kx)× γyθ(yt − ky).
(13)

Note that the Heaviside function θ(yt−ky) represents the activator feedback on the autoreg-

ulation of the Y gene. We consider an AND gate for the interactions [4]. Analogous results

can be obtained for OR gates or with an first-order ODE model. Writing down the set of

equations for the rescaled variables ψt = yt/ky and ζt = zt/ky, we get:

ψt+1 = βψt + αλθ(xt − kx)θ(ψt − 1),

ζt+1 = βζt + αλθ(xt − kx)θ(ψt − 1).
(14)

Here, we made use of λ = γxγy/αky and β = (1 − α). We note that, since the second

term on the right-hand side of both equations are equal, the dynamical variables ψt and ζt

must synchronize, as well as yt and zt. Again, considering xt = x constant, for x < kx, the

solutions for ψt and ζt are trivial: both variables decay exponentially as ψt = ψ0e
−t/τ and

ζt = ζ0e
−t/τ , where τ−1 = − log(1 − α). This behavior is shown by the red solid line in S1

Fig. S1B with ψ0 = 0.9.

In terms of the iterative map, the dynamics of the SAT-FFF for the rescaled variable ψt

with x > kx is:

ψt+1 = βψt + αλθ(ψt − 1) ≡ f(ψt), (15)

so we find

f t(ψ) = f t−1(βψ)θ(1− ψ) + f t−1(βψ + λ)θ(ψ − 1). (16)

This iterative map ψt = f(ψt) provides different solutions depending on ψ0. Similar to the

case of x < kx, if ψ0 < 1, the solution decays to zero as ψt = ψ0e
−t/τ . However, if ψ0 > 1,

there are two possibilities, depending on the values of λ = γxγy/αky.

First, if λ > 1, the solution for both rescaled variables converges to λ as ψt = ψ0e
−t/τ +

λ(1−e−t/τ) and ζt = ζ0e
−t/τ +λ(1−e−t/τ), such that ψt→∞ → λ and ζt→∞ → λ, as presented

by the blue dash-dotted line in S1 Fig. S1B. For this case, we use ψ0 = 1.1 and λ = 2.

For λ < 1, ψt approaches 1 at a time t∗ given by

t∗ =

⌈
1

log(1− α)
log

(
1− λ
ψ0 − λ

)⌉
. (17)

Then, for t > t∗, the solutions decay to zero as ψt = e−(t−t
∗)/τ and ζt = ζt∗e

1(t−t∗)/τ . This

behavior is presented on S1 Fig. S1B by the dashed green line, where we use ψ0 = 2 and

8

X Y

Z

A B

FIG. 1. SAT-FFF. a, Network representation of the SAT-FFF. All regulations are activators. b,

Different behaviors for the analytical solutions of ψt depending on ψ0 and λ, as discussed in the

text.

λ = 0.9. The rescaled variables ψt and ζt always synchronize, so do yt and zt. This can be

proved by finding the difference εt = ψt − ζt. For all the cases discussed above, εt decays

exponentially fast as εt = (ψ0 − ζ0) e−t/τ .

Now, we can use the solution with xt constant to qualitatively understand the SAT-FFF

in general. An example of the SAT-FFF with non-constant xt is depicted on Fig. 1F in the

main text. As shown, variable yt and zt do synchronize but with no internal oscillations. We

feed an external oscillatory pattern of xt as a square wave. For xt < kx, both yt an zt decay

exponentially. When xt > kx, they tend to saturate at γxγy/α. The SAT-FFF synchronizes

at a fixed point.

B. SAT-FFF ODE

Here, we consider the ODE model of SAT-FFF to confirm results presented in Section

II A. The dynamics of gene X is driven by outside sources, so we only consider the dynamics

of genes Y and Z which are described by equations:

ẏ = −αy(t) + γxθ(x(t)− kx)× γyθ(y(t)− ky),

ż = −αz(t) + γxθ(x(t)− kx)× γyθ(y(t)− ky).
(18)

9

Taking ψ(t) = y(t)/ky, ζ(t) = z(t)/ky and δ = γxγy/ky we transform Eq. (18) to:

ψ̇ = −αψ(t) + δ θ(x(t)− kx)× θ(ψ(t)− 1),

ζ̇ = −αζ(t) + δ θ(x(t)− kx)× θ(ψ(t)− 1).
(19)

Without loss of generality, we consider the case of x(t) = x constant in time. If x < kx,

then the solution of Eq. (19) is given by:

ψ(t)x<kx = ψ0e
−αt,

ζ(t)x<kx = ζ0e
−αt,

(20)

where ψ0 and ζ0 are the initial conditions. Now, let’s consider the case x > kx. Equation

(19) then transforms into:

ψ̇ = −αψ(t) + δ θ(ψ(t)− 1)

ζ̇ = −αζ(t) + δ θ(ψ(t)− 1)
(21)

Due to the existence of isomorphic input trees between both genes, ψ(t) and ζ(t) syn-

chronize and therefore y(t) and z(t) synchronize also, so we only consider dynamics of the

first equation:

ψ̇ = −αψ(t) + δ θ(ψ(t)− 1). (22)

It’s easy to see that for ψ0 < 1, Eq. (20) will be the solution of Eq. (22). When ψ0 > 1

and δ/α > 1, the solution is given by:

ψ(t) = δ/α + (ψ0 − δ/α)e−αt. (23)

In the case ψ0 > 1 and δ/α < 1, the dynamics of ψ is split into two parts. One part

before ψ decays to 1 and the other one after ψ crossed 1. The time when ψ(t) crosses 1 is

equal to:

tc =
1

α
ln(

ψ0 − δ/α
1− δ/α

), (24)

and the dynamics can be written as:

10

t ∈ [0, tc] ψ(t) = δ/α + (ψ0 − δ/α)e−αt,

t ∈ [tc,∞] ψ(t) = ψ0−δ/α
1−δ/α e

−αt.
(25)

To summarize, the solution is:

ψ0 < 1 ψ(t) = ψ0e
−αt

ψ0 > 1, δ
α
> 1 ψ(t) = δ/α + (ψ0 − δ/α)e−αt

ψ0 > 1, δ
α
< 1

t ∈ [0, tc] ψ(t) = δ/α + (ψ0 − δ/α)e−αt

t ∈ [tc,∞] ψ(t) = ψ0−δ/α
1−δ/α e

−αt.

(26)

This solution is analogous to the one obtained for the discrete time model in Section II A.

III. UNSATISFIED FEED-FORWARD FIBER: UNSAT-FFF

X

Z

Y

Now, we turn our attention to the UNSAT-FFF. The solution of this circuit is developed

in the main text using a discrete-time difference equation with a logistic interaction. Below

we elaborate on the solution of the ODE continuum model and on the conditions on the

period-amplitude relation and the clock functionality.

A. UNSAT-FFF ODE

The UNSAT-FFF circuit can be reduced to study the base of the circuit since both genes

Y and Z synchronize their behaviour as shown in the main text. The base of this circuit is

a negative autorregulation loop (Fig. 3) plus an external regulator given by X. This circuit

has been synthetically implemented by Stricker et al. in Ref. [18] using a promoter that

drives the expression in the absence of LacI (and acts as a negative feedback loop) or in the

11

presence of IPTG, which acts as an activator. It was shown experimentally that this circuit

leads to oscillatory behaviour in the expression profiles. This result was corroborated with

a dynamical ODE model in [18] which here we adapt to study the case of the UNSAT-FFF

with ODE. See also the review paper [53] for further reading.

Following the same approach as above, we consider gene x(t) = x constant in time and

larger than x > kx, and rescale the expression of genes y(t) and z(t) as ψ(t) = y(t)/ky and

ζ(t) = z(t)/kz. Since genes y(t) and z(t) synchronize their activities, then only one equation

needs to be considered, ψ(t).

The key to observe oscillations in a first-order ODE is to consider the delay in the signal

propagation in the circuit. Without delay the dynamics converge to a fixed point; no oscil-

latory solution exist in a first-order ODE continuum-time model. The situation is different

in the discrete-time model considered in the text. In this case, a discrete time plus a logic

approximation lead to oscillations.

Negative feedback loop circuits with delays have been widely investigated in the dynam-

ical systems literature. Here, we adapt the negative feedback loop model with delay of

Stricker et al. (see Eq. (6) in Supplementary Information in Ref. [18]). We consider delays

in the negative feedback loop which is the key feature to explain the experimentally observed

robust oscillation in this circuit [18].

Delays in a biological circuit arise from the combined processes of intermediate steps

like transcription, translation, folding, multimerization and binding to DNA. This series of

biological processes are lumped into a single arrow between two genes in the network rep-

resentation of the circuit. In reality this arrow represents processes that should be modeled

in detail. These biological processes can be approximately taken into account by a delay

in the interaction term in the dynamical equations. The interaction term can be written

as δ θ(1 − ψ(t − τ)), where τ represents the delay caused by the fact that the process of

self-repression is not instant. Therefore, the dynamics of ψ(t) are described by a first-order

delay-differential equation (DDE) [18] of the form:

ψ̇ = −αψ(t) + δ θ(1− ψ(t− τ)), (27)

where τ represents the delay caused by expression process.

We derive analytical solutions to this equation following a procedure outlined in [54]

(Chapter V). We start by noting that initial conditions used to solve a DDE are not given

12

by the value of the function at one point, but rather by a set of values of the function on an

interval of length τ . The solution of a DDE can’t be thought of as a sequence of values of

ψ(t) as in an ODE, but rather as a set of functions {f0(t), f1(t), f2(t), . . . , }, defined over a

set of contiguous time intervals {[−τ, 0], [0, τ], [τ, 2τ], . . . , }.

Let’s consider Eq. (27) with initial function f0(t) for t ∈ [−τ, 0]. Then for t ∈ [0, τ] Eq.

(27) looks like:

ψ̇ = −αψ(t) + δ θ(1− f0(t− τ)). (28)

Moving the degradation term to the left and multiplying by eαt we get:

ψ̇eαt + αψ(t)eαt = δ eαtθ(1− f0(t− τ)). (29)

Re-writing the left part, we obtain:

d(ψeαt)

dt
= δ eαtθ(1− f0(t− τ)), (30)

and integrating on the interval
∫ t
0
, we get:

ψeαt − ψ(0) = δ

∫ t

0

eαt
′
θ(1− f0(t′ − τ))dt . (31)

Considering that ψ is continuous at 0 (ψ(0) = f0(0)) and ψ(t) for t ∈ [0, τ] is given by

f1(t):

f1(t) = f0(0)e−αt + δ

∫ t

0

eα(t
′−t)θ(1− f0(t′ − τ))dt, (32)

then, following the same procedure, we can derive the general formula for finding the solution

ψ(t) on the interval [kτ, (k+ 1)τ], assuming that the solution on the previous interval [(k−

1)τ, kτ] is given by fk−1(t). We then need to solve the following iterative equation:

ψ̇ = −αψ(t) + δ θ(1− fk−1(t− τ)). (33)

The solution of this equation can be found by applying the integrating factor method

integrating on
∫ t
kτ

. We obtain:

ψ(t) = ψ(kτ) ∗ eα(kτ−t) + δ

∫ t

kτ

eα(t
′−t)θ(1− fk−1(t′ − τ))dt′ . (34)

13

A B

FIG. 2. UNSAT-FFF delay ODE model. A, Solution of Eq. (27) using recursive Eq. (34) on

t ∈ [−τ, 30τ] for f0 = 2, α = 0.2, δ = 1 and τ = 1. B, One period of the oscillation of solution in

(A) consisting of two exponential pieces.

Using Eq. (34) we can recursively find functions {f0(t), f1(t), f2(t), . . . , } on the interval

of interest, which provide the solution to Eq. (27). Using Wolfram Mathematica we find

functions on the interval t ∈ [−τ, 30τ] for f0 = 2, α = 0.2, δ = 1 and τ = 1 and put them

together to find the solution plotted in S1 Fig. S2A.

We note from Eq. (34) that all functions fk are written as the sum of an exponential

function and a constant. By looking at Eq. (27), we see that when the Heaviside function

is equal to zero, we get a solution that decays exponentially to zero. Likewise, when the

Heaviside function is equal to 1, we get a solution that exponentially grows to δ
α

. In other

words, the solution will grow until θ(1− ψ(t− τ)) changes to zero (i.e., when ψ(t− τ) > 1)

and will decay until θ(1 − ψ(t − τ)) changes to one (i.e., when ψ(t − τ) will cross 1 again,

but from different side). Therefore, we get oscillations consisting of two exponential pieces.

One period of the oscillation is shown in S1 Fig. S2B. The solution on this interval is given

by:

t ∈ [4.47, 5.69] ψ(t) = 5− 10.2 ∗ e−0.2t

t ∈ [5.69, 9.42] ψ(t) = 5.4 ∗ e−0.2t,
(35)

which is the predicted behavior. Additionally, we note that this circuit functions as a

capacitor charging and discharging in an RC circuit.

14

B. Period-amplitude relationship

As shown in the main text, the solution of the discrete-time Boolean interaction model

for λ > 1 oscillates in time, as well as the DDE considered in the previous section. Next,

we show that this oscillation has a characteristic amplitude and period. First, to compute

the amplitude of oscillations Aψ for the rescaled variable ψt, we recall that the iterative map

ψ = f(ψ) satisfies the recursive equation:

f t(ψ) = f t−1(βψ)θ(ψ − 1) + f t−1(βψ + αλ)θ(1− ψ). (36)

Thus, the amplitude of oscillations Aψ is given by

Aψ = lim
ψ→1−

f(ψ)− lim
ψ→1+

f(ψ) = αλ, (37)

which implies that

Aψ =
γxγy
ky

. (38)

To find the period T of the oscillations, we recall from Eq. (6) in the main text that the

solution for the minimum value of ψ, ψmin < 1, evolves to its maximum value ψmax in T − 1

iterations as ψmax = e−(T−1)/τψmin +λ
(
1− e−(T−1)/τ

)
. Since ψmin = (1−α)ψmax, due to the

fact that ψmax > 1, we find

T =

⌈
1 + τ log

(
1 +

α

λ− 1

)⌉
, (39)

where we used ψmax = 1. For example, using α = 0.2 and λ = 1.01, we find Aψ = 2.02 and

T = 15, which agrees with the numerical simulation presented in S1 Fig. S3A.

Equation (39) allows to define a rescaled amplitude A = (λ−1)/α, and a reduced period

T = (T − 1)/τ such that

T = log

(
1 +

1

A

)
, (40)

which corresponds to the period-amplitude relationship of the UNSAT-FFF. A plot of

this relationship is shown in S1 Fig. S3B, where we plot (T − 1)/τ as a function of

[(γxγy/αky)− 1] /α.

Coming back to the original variable yt = kyψt, we have that the amplitude of oscillations

of yt, A = kyAψ, is given by:

A = γxγy, (41)

15

A B CPeriod-Amplitude relation

0.05

0.60

0.20

FIG. 3. Period-amplitude relationship. a, Solutions for α = 0.2 and λ = 1.01. The values for

Aψ = 0.202 and T = 15 obtained with the use of Eq. (37) and Eq. (39) perfectly agree with the

ones found by numerical simulations. b, Period-amplitude relationship in terms of the original set

of parameters α, ky, γx, and γy. c, Period of oscillations as a function of λ for different values of

α.

and from Eq. (39), we can write the period of oscillations as a function of the original set of

parameters as

T = 1− 1

log(1− α)
log

(
1 +

α

(γxγy/αky)− 1

)
. (42)

S1 Figure S3C shows the period of oscillations T as a function λ for α = 0.60, α = 0.20,

and α = 0.05.

C. UNSAT-FFF clock functionality

The clock functionality of the UNSAT-FFF can be understood by analyzing its response

function, i.e. the relation between oscillations at the input and at the output of the circuit.

The amplitude Ay, and period T of the oscillations are not independent like in the harmonic

oscillator, but are related through a ‘period-amplitude’ relation expressed by Eq. (40) and

S1 Fig. S3B. From Eq. (42), for α sufficiently small,

T − 1 ∼ ky
γxγy

=
1

A
, (43)

which constrains the ‘clock’ (T) of the circuit to the power (Ay). As a consequence, Ay

and T cannot be controlled arbitrarily, and this (A-T) constraint helps to stabilize the

UNSAT-FFF response against disturbance in the input X. For example, for a given available

power supply, the system is constrained to dissipate this power, and when the UNSAT-FFF

16

oscillates, it is automatically set to operate on an extended time window (T large) at low

amplitude A when a small expression level is required (A small) and vice-versa. Results

for the clock functionality of the Fibonacci Fiber and n = 2 Fiber can be carried out in a

similar manner. The idea is that Fibonacci fibers with longer and longer loops can carry

more robust oscillatory patterns than simple autoregulation negative feedback loops.

IV. EXAMPLES OF SYMMETRY AND BROKEN SYMMETRY CIRCUITS

A. Symmetry circuits (fibers) from [24]

Our findings show that simple sub-graphs ubiquitous on gene regulatory networks are

analogous to symmetric electronic circuits which can work as clocks, revealing a hierarchy of

symmetry circuits. Here, we describe these symmetric circuits in more detail following [24].

Supplementary File 1 presents the full list of circuits found across the regulatory networks

of A. thaliana, M. tuberculosis, B. subtilis, E. coli, salmonella, yeast, mouse and humans.

Below we enumerate the set of symmetric fibers found in Ref. [24] in the genetic networks

of these species.

1. Repressor regulator link (stub)

We start by an isolate repressor link. As depicted in Fig. 3A, this repressor regulator

alone does not form an input tree, neither it forms a base. Since it works as a transistor, its

logic representation is a NOT gate.

2. Repressor AR loop: |1, 0〉

In Fig. 3B, we show the repressor autoregulation loop. When a repressor link is found

as an AR loop, we have a genetic network with one single loop (n = 1) and no external

regulator (` = 0), which we denote symbolically by |1, 0〉. Such simple network has an

input tree that feeds its own expression levels. Also, it is equivalent to its own base. By

the analysis of the corresponding logical circuit, one can observe that it naturally oscillates,

since it is a NOT gate that feeds itself.

17

3. UNSAT-FFF: |1, 1〉

The repressor autoregulation loop introduces a symmetry between Y and Z that allows the

expression levels yt and zt to synchronize and oscillate. The increase of external regulators

does not affect the complexity of UNSAT-FFF, since its dynamics remains restricted to the

sole loop on the network. This can be verified in the corresponding input tree and in its

base. The collapse of Z into Y forms a base with n = 1 autoregulator and ` = 1 external

regulator. Because of the repressor feedback, the oscillation and synchronization of Y and

Z are again evident in its logic circuit. In Fig. 3C, we use the NAND gate for representing

gene Y and an AND gate for gene Z, but other gates (such as an OR logic gate) would result

in similar conclusions.

4. Fibonacci Fiber: |1.6180..., 0〉

The Fibonacci Fiber shown in Fig. 3D is characterized by the addition of a second feed-

back loop. This regulatory network have a Fibonacci sequence Qt = Qt−1 + Qt−2 as an

input tree. The branching structure of the input tree implies that the Fibonacci Fiber can

store memory dynamically by the interaction with its past states, although it is continually

erased in time. As shown in the logic circuit of Fibonacci Fiber, its structure can oscillate

and synchronize, but is unable to store static information. This situation changes as soon as

we allow symmetries to break, which leads to a number of genetic circuits, as those depicted

in Fig. 4. In Fig. 3D, we show examples of the Fibonacci Fiber on regulatory networks of

various species. Note the presence of its base in the network representation for B. subtilis

(genes tnrA and glnR), E. coli (genes uxuR and exuR), M. tuberculosis (genes Rv0182c and

Rv3286c), Salmonella (genes marA and soxS), Yeast (genes Tec1 and Ste12), and in two net-

works from human genetic network (the pair genes PAX5 and TP53, for the first example,

and gene FOS and CREM, for the second).

5. n = 2 Fiber: |2, 0〉

Starting from a Fibonacci Fiber, the addition of a second autoregulation on gene X results

in a symmetric input tree. Besides, the genetic network of the n = 2 Fiber collapses into

a base with a single gene with two autoregulations (Fig. 3E). From the corresponding logic

18

circuit, one can conclude that it is possible to achieve synchronization between genes X, Y

and Z. In Fig. 3E we show examples of the n = 2 Fiber from the regulatory networks of B.

subtilis (the first with the pair of genes lexA and rocR, and the second with genes hprT, tilS

and ftsH).

B. Symmetry breaking circuits

Figure 4 shows the procedure to generate broken symmetry circuits. As we discuss in

the main text, this process starts by a replica symmetry operation where the base from a

given symmetry circuit is duplicated. The symmetry is broken by the addition of two input

genes as regulators of the circuit. The resulting broken symmetry circuits are analogous to

flip-flops circuits from digital electronics. Such circuits are able to store memory statically,

playing a central role in the design of microprocessors. In what follows, we describe the

AR, FFF, and Fibonacci broken symmetry circuits and their analogous electronic circuits

in detail. Supplementary File 1 presents the full list of circuits found across the regulatory

networks of A. thaliana, M. tuberculosis, B. subtilis, E. coli, salmonella, yeast, mouse and

humans.

1. AR symmetry breaking circuit: SR flip-flop

Through a replica symmetry duplication, gene Y ‘opens-up’ its AR loop into two mutually

regulated genes Y and Y’. We break the symmetry relation between Y and Y’ by the inclusion

of different inputs S and R as depicted in Fig. 4 (replica symmetry breaking), such that

S 6= R.

The SR flip-flop does not provide synchronized outputs. After the input signals arrive at

the logic gates, each gate provides its output without waiting for the output of the other.

This results in fast oscillations which, in the particular application to integrated circuits in

digital electronics, are undesired. Then, in digital electronics, the input S = 0 and R = 0 is

said to be forbidden, since the NAND gates set both Q = 1 and Q = 1, which violates the

logical state Q = not Q. In Fig. 4, we use the NAND gates, but the use of a NOR gates

leads to similar conclusions.

Two biological realizations of the AR symmetry breaking class are shown in Fig. 4,

19

both from human regulatory networks with genes NFKB1 and HOXA9 (upper), and the

regulatory network of genes IRF4 and BCL6 (bottom). Gene NFKB1 further regulates two

genes, BST1 and HAX1 as its outputs, but this regulation does not affect the functionality

of the flip-flop.

2. FFF symmetry breaking circuit: Clocked SR flip-flop

Following the same strategy, we start with the base of the UNSAT-FFF and symmetrize

it through a replica symmetry duplication. Note that the replica symmetry of FFF adds a

second level of NAND logic gates to the SR flip-flop via gene X. In order to have consistent

logic operations, we add an input clock gene CLK which symbolizes the activation of gene

X, since gene X needs to receive input for its activation. The resulting circuit is analogous to

the Clocked SR flip-flop after the addition of the input genes S and R. The second level flip-

flop inverts the outputs of the previous SR flip-flop logic circuit, meaning that when S = 1

and R = 0 (S = 0 and R = 1), the circuit outputs Q = 1 and Q = 0 (Q = 0 and Q = 1).

The input S = 0 and R = 0 results in an unchanged state. When the input of gene CLK

is low, CLK = 0, the output of the second level of both NAND gates outputs high signals,

independently of the values of S and R, assuring that the outputsQ andQ remain unchanged.

However, when the clock input is CLK = 1, it allows the first level of NAND gates to change

the outputs for S 6= R. The clocked SR flip-flop also has a forbidden state when S = 1

and R = 1 in digital electronics. In Fig. 4, we show two biological realizations of the

FFF broken symmetry breaking circuit, the set of genes {CLOCK, NR0B2, NR3C1, E2F1

and TP53} and the set {CEBPB, DDIT3, PRDM1, CEBPA and MYC}, both examples

are from human regulatory genetic networks. The outputs of the flip-flops, like E2F1 and

TP53, further regulate a set of genes each as indicated by the red genes in the figure. These

regulatory interactions do not affect the functionality of the flip-flops since they are outgoing

links.

3. Fibonacci symmetry breaking circuit: JK flip-flop

The replica symmetry duplication of the Fibonacci Fiber results in a logic circuit similar

to the FFF broken symmetry breaking circuit. However, the regulation links Y → X ′ and

20

Y ′ → X yields a different logic circuit, which is analogous to the Clocked JK flip-flop, where

the input genes are now J and K. The additional links solve the unpredictable output for

the J = 1 and K = 1 case by commuting the values stored in Q and Q. Two examples of

the Fibonacci broken symmetry circuits are shown in Fig. 4 for the sets of genes {PITX1,

JUN, NKX3-1, TP53 and ESR1} and {FLI1, HDAC1, EPS300, AR and RELA}, both from

human genetic networks. We also show the set of genes regulated by these flip-flops.

V. DESCRIPTION OF DATASETS

Datasets are described in S1 Table 1. We use a set of datasets of transcriptional regulatory

networks found in the literature. All datasets are freely available from online sources. In

Supplementary File 1 we present a plot of all found circuits. In the case of symmetric circuits,

same colored nodes indicate the genes in the fiber. The external regulators are colored

with different colors. We also present all the symmetry broken circuits across all species as

indicated in the file. The statistics, count and Z-scores of the circuits are presented in Table 1

and 2 in the main text. The file with all circuits can be found at https://bit.ly/2YM5x3H.

VI. ALGORITHM TO FIND FIBERS

To obtain the set of nodes in the graph that belong to a fiber, we use the algorithm

described in detail by Kamei and Cock [41] and developed in Ref. [24] to obtain the ‘minimal

balanced coloring’ of the graph (referred as balanced coloring for simplicity), where we color

the network by assigning a different color to each fiber.

To understand what balanced coloring means in the context of graph theory, we need to

define the concept of input set (which is a part of the input tree). In a directed graph, the

input set of a given node is the set of nodes with edges pointing into that node. Thus, the

input set is the first layer of the input tree. Next, we define the Input Set Color Vector

(ISCV) of a node as a vector of length equal to the number of colors in the graph, that is

the number of fibers. Each entry of the ISCV of a given node counts how many nodes of

each color are in the input set of this node. The balanced coloring is achieved by iteration

by increasing the number of colors (length of ISCV) until all nodes of the same color have

the same ISCVs. At this point, each color identifies each fiber in the graph.

21

Species Database Additional information

Arabidopsis Thaliana ATRM [32] We use high-confidence functionally confirmed transcriptional regulatory

interactions from the ATRM database of the broadly used model plant

Arabidopsis. http://atrm.cbi.pku.edu.cn/

Micobacterium Tuberculosis Research article [33] Supplementary Information of Ref. [33] https://www.ncbi.nlm.nih.

gov/pmc/articles/PMC2600667/bin/msb200863-s2.xls

Bacillus subtilis SubtiWiki [34] We download the database from SubtiWiki website and consider all re-

pressor and activation links as “Repression” and “Activation”. This

database is considered the primary source of information for Bacillus.

http://subtiwiki.uni-goettingen.de/

Escherichia coli RegulonDB [35] We use the TF - operon interaction network from [35]. RegulonDB

combines transcriptional regulator interactions obtained by curating lit-

erature and using NLP high-quality data and partially confirmed ex-

perimentally and computationally predicted data. http://regulondb.

ccg.unam.mx/

Salmonella SL1344 SalmoNet [36] We use the regulatory layer of the strain Salmonella Typhimurium

SL1344. SalmoNet consists of manually curated low-throughput and

high-throughput experiments and predictions based on experimentally

verified binding sites and TF-gene binding site data from RegulonDB.

http://salmonet.org/

Yeast YTRP [38] We use the TF-gene regulatory and TF-gene binding networks. Results

of the TFPEs (Transcription Factor Perturbation Experiments) identify

the regulatory targets of TFs. This is further refined by using literature-

curated data. http://cosbi3.ee.ncku.edu.tw/YTRP/Home

Mouse TRRUST [39] Downloaded from TRRUST website. TRRUST is constructed using

sentence-based text mining of more than 20 million abstracts from re-

search articles, refined by manual curation. https://www.grnpedia.

org/trrust/

Human TRRUST [39] Downloaded from TRRUST website.

TRRUST 2 [39] Downloaded from TRRUST website and curated.

KEGG [40] We use KEGG API to download all pathways of Human gene regulatory

network. After that, all networks are put together and duplicates are

removed. https://www.genome.jp/kegg/pathway.html

TABLE 1. Description of dataset acquisition. All data are gathered from publicly available

sources [32–40].

Finding graph balanced coloring is equivalent to finding node sets with isomorphic input

trees. A brief explanation of that is the following. If two nodes have the same ISCVs,

22

nodes of their input sets have same colors. Thus these nodes are said to belong to the same

equivalence class [41]. Inductively, the same can be said of the input set of the nodes in the

input set. This recurrent relation implies that two nodes that have the same input sets will

have isomorphic input trees and will belong to the same fiber (for rigorous proof see chapter

4 in [42]).

The algorithm to find balanced coloring was described in detail by Kamei and Cock [41].

In their algorithm, all nodes of the graph have the same initial color and, through a series of

operations, they are recolored until balanced coloring is reached. The detailed description

of the algorithm is as follows:

1. Initially, all nodes are assigned the same color.

2. Each node is assigned with the N-dimensional vector (ISCV), where N is current

number of colors at the current iteration of the algorithm. Each entry of this vector is

the number of nodes of certain color with ingoing link to the respective node. In the

first iteration, N = 1 and each entry is the in-degree of the node.

3. If vectors for all nodes of the same color are equal, the balanced coloring is achieved

and the algorithm stops.

4. Otherwise, if coloring is unbalanced, each unique vector is assigned a new color and

the graph is recolored accordingly.

5. Steps 2-4 are repeated until condition in Step 3 is satisfied.

For example consider the FFF graph in S1 Fig. S4A. Initially, we assign the same color,

white, to all nodes. Then, we assign a 1-dimensional vector to each node which counts the

in-degree of each node (S1 Fig. S4B). Since ISCVs of X and Y (which have the same color)

are different, ISCV(X) = 0 and ISCV(Y) = 2, where the entry refers to the number of inputs

of white color, then the condition in Step 3 is not satisfied. There are two unique ISCVs,

thus only two new colors are necessary. Thus, a 2-dimensional vector is assigned to each

node: ISCV(X) = (0, 0), ISCV(Y) = (1, 1), and ISCV(Z) = (1, 1). Here, the first entry refers

to the number of inputs of green color and the second entry of red color. Thus, each entry

of this vector is related to a new color, for example, red and green (see S1 Fig. S4D). Then,

the network is recolored accordingly, as depicted in S1 Fig. S4C. At this step, ISCV(Y)

23

and ISCV(Z) are the same, and different from the ISCV(X), and both have the same color,

also different from the color of X, therefore balanced coloring is reached and the algorithm

stops. We provide an implementation of this algorithm at https://github.com/makselab/

fiberCodes.

X Y

Z

X Y

Z

A B

C D

ISCV(X)

0 1 1

0 11

ISCV(Y) ISCV(Z)

New
color

0 2 2

ISCV(X) ISCV(Y) ISCV(Z)

FIG. 4. Illustration of the balanced coloring algorithm to find fibers.

VII. ALGORITHM TO FIND BROKEN SYMMETRY CIRCUITS

To count the number of occurrences of broken symmetry circuits in a given graph we count

the number of appearances of induced subgraphs as defined in Refs. [43–45]. Subgraphs

and induced subgraphs are graph-theoretical concepts introduced in the social and computer

sciences as applications to graph matching and pattern recognition [44]. We allow symmetry

breaking to come from any gene in the circuit. Let’s consider a graph G = {V,E}, where V is

the set of nodes and E is the set of links. For instance in S1 Fig. S5A V = {A,B,C,D, Y, Y ′}

and E = {A→ Y, Y → B, Y → Y ′, Y ′ → Y, Y ′ → C,D → Y ′}. A subgraph G′ = {V ′, E ′} of

a graph G = {V,E} is a graph such that V ′ ⊂ V and E ′ ⊂ E [43]. For example S1 Fig. S5B

is a subgraph of the graph in S1 Fig. S5A with V ′ = {Y, Y ′} ⊂ V and E ′ = {Y ′ → Y } ⊂ E.

An induced subgraph G′ = {V ′, E ′} of a graph G = {V,E} is a subgraph with a set of nodes

V ′ ⊂ V and all links E ′ ⊂ E such that their heads and tails are in V ′. For example the

subgraph of S1 Fig. S5B is not induced graph of G since it is missing the link {Y → Y ′}.

That is, S1 Fig. S5B is not an induced subgraph (but it is just a subgraph of G), because one

24

of the links {Y → Y ′} with endpoints in V ′ is missing. However the graph of S1 Fig. S5C

is an induced subgraph of G since V ′ = {Y, Y ′} and E ′ = {Y → Y ′, Y ′ → Y } are included,

but links {A → Y, Y → B, Y ′ → C,D → Y ′} don’t belong to G′. The problem of finding

broken symmetry circuits consists on three steps: (1) identify a base and create a replica

symmetry circuit, (2) find subgraphs isomorphic to the replica symmetry circuit, and (3)

remove subgraphs that are not induced.

The first step is to find subgraphs isomorphic to the replica symmetry circuit. Let’s

consider an example. The matrix in S1 Fig. S5D represents the adjacency matrix A of the

symmetric part of the SR flip-flop (i.e., a toggle switch). That is, A is the replica symmetry

part (Fig. 4, third row) of the broken symmetry circuit. Similarly, S1 Fig. S5G,H show

the adjacency matrices of clocked SR flip-flop and JK flip-flop circuits. The general idea

is to choose a subgraph and check if it is isomorphic to the circuit and continue doing

this for all possible subgraphs in the entire network. However, this task is computationally

expensive. Even for circuits with 5 nodes, the computational time is N5, where N is the

total number of nodes in G, which means that for big enough graphs the algorithm can

take very long computational time. Different approaches to this problem have been widely

studied and are nicely reviewed in Ref. [46]. Time costs can be cut if unprofitable paths are

identified and skipped in the search space. One of the recent works in the field is the VF2

algorithm developed by Cordella et al. [47]. It is designed to deal with large graphs and uses

state of the art techniques in order to reduce computational time. We use the algorithm

implemented in a popular R package igraph [48] as a function subgraph isomorphisms(...).

We provide the analysis and plotting scripts allowing to reproduce our results at https:

//github.com/makselab/CircuitFinder.

The second step is to remove all the subgraphs that are not induced or, simply speaking,

have extra links between the genes in the broken symmetry circuit. We follow this procedure:

take a node set identified above, find the induced subgraph of the complete graph with this

node set and compare the adjacency matrix of the induced subgraph with the adjacency

matrix of the circuit. If the matrices are different, then the circuit is removed. All remaining

circuits are the broken symmetry flip-flops that we are looking for. Multi-links and self-loops

are removed from the network prior to consideration.

By applying the steps described above we get the full list of induced subgraphs that are

isomorphic to the given circuit.

25

A B C

Y'

Y

Graph = G Subgraph
of G

Induced
subgraph of G

D
SR flip-flop
adjacency matrix

10
01

A =

0 0 0 0 0
1 0 0 0 0
1 0 0 0 0
0 1 0 0 1
0 0 1 1 0

0 0 0 0 0
1 0 0 0 1
1 0 0 1 0
0 1 0 0 1
0 0 1 1 0

G H
Clocked SR flip-flop
adjacency matrix

JK flip-flop
adjacency matrix

Y'

Y

BA

C D

Y'

Y

5

42

3

1

5

42

3

1

E FClocked SR flip-flop JK flip-flop

FIG. 5. Definition of the induced subgraph used to obtain the broken symmetry circuits. A, Graph

G. B, Subgraph of G. C, Induced Subgraph of G. D, Adjacency matrix of SR flip-flop. E, Clocked

SR flip-flop. F, JK flip-flop. G, Adjacency matrix of Clocked SR flip-flop. H, Adjacency matrix

of JK flip-flop.

26

[1] Hartwell LH, Hopfield JJ, Leibler S, Murray AW. From molecular to modular cell biology.

Nature. 1999;402: C47-C52.

[2] Milo R, Shen-Orr SS, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network motifs: simple

building blocks of complex networks. Science. 2002;298: 824-827.

[3] Shen-Orr SS, Milo R, Mangan S, Alon U. Network motifs in the transcriptional regulation

network of Escherichia coli. Nature Genet. 2002;31: 64-68.

[4] Alon U. An Introduction to Systems Biology: Design Principles of Biological Circuits. Boca

Raton: CRC Press; 2006.

[5] Klipp E, Liebermeister W, Wierling C, Kowald A, Herwig R. Systems Biology: a textbook.

Weinheim: Wiley-VCH; 2016.

[6] Tyson JJ, Chen KC, Novak B. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory

and signaling pathways in the cell. Curr Opin Cell Biol. 2003;15(2): 221-31.

[7] Monod J, Jacob F. General conclusions: teleonomic mechanisms in cellular metabolism,

growth and differentiation. Cold Spring Harb Symp Quant Biol. 1961;26: 389-401.

[8] Teo JY, Woo SS, Sarpeshkar R. Synthetic Biology: A Unifying View and Review Using Analog

Circuits. IEEE Trans. on Biomed. Circuits and Syst. 2015;9: 453-474.

[9] Dalchau N, Szé G, Hernansaiz-Ballesteros R, Barnes CP, Cardelli L, Phillips A, et al. Com-

puting with biological switches and clocks. Natural Computing. 2018;17: 761-779.

[10] Atkinson MR, Savageau MA, Myers JT, Ninfa AJ. Development of genetic circuitry exhibiting

toggle switch or oscillatory behavior in Escherichia coli. Cell. 2003;113: 597-607.

[11] Gardner TS, Cantor CR, Collins JJ. Construction of a genetic toggle switch in Escherichia

coli. Nature. 2000;403: 339-342.

[12] Kramer BP, Fussenegger M. Hysteresis in a synthetic mammalian gene network. Proc Natl

Acad Sci USA. 2005;102: 9517-9522.

[13] Kramer BP, Viretta AU, Baba MD-E, Aube D, Weber W, Fussenegger M. An engineered

epigenetic transgene switch in mammalian cells. Nature Biotech. 2004;22: 867-870.

[14] Guet CC, Elowitz MB, Hsing W, Leibler S. Combinatorial synthesis of genetic networks.

Science. 2002;296: 1466-1470.

[15] Ajo-Franklin CM, Drubin DA, Eskin JA, Gee EP, Landgraf D, Phillips I, et al. Rational design

27

of memory in eukaryotic cells. Genes Dev. 2007;21: 2271-2276.

[16] Ham TS, Lee SK, Keasling JD, Arkin AP. Design and construction of a double inversion

recombination switch for heritable sequential genetic memory. PLoS One. 2008;3: e2815.

[17] Elowitz MB, Leibler S. A synthetic oscillatory network of transcriptional regulators. Nature.

2000;403: 335-338.

[18] Stricker J, Cookson S, Bennett MR, Mather WH, Tsimring LS, Hasty J. A fast, robust and

tunable synthetic gene oscillator. Nature. 2008;456: 516-519.

[19] Tigges M, Marquez-Lago TT, Stelling J, Fussenegger M. A tunable synthetic mammalian

oscillator. Nature. 2009;457: 309-312.

[20] Mangan S, Alon U. Structure and function of the feed-forward loop network motif. Proc Natl

Acad Sci USA. 2003;100: 11980-11985.

[21] Mangan S, Zaslaver A, Alon U. The coherent feedforward loop serves as a sign-sensitive delay

element in transcription networks. J Mol Biol. 2003;334: 197-204.

[22] Glass L, Kauffman SA. The logical analysis of continuous, non-linear biochemical control

networks. J Theor Biol. 1973;38: 103-129.

[23] Mangan S, Zaslaver A, Alon U. Negative autoregulation increases the input dynamic-range of

the arabinose system of Escherichia coli. BMC Sys Biol. 2011;5: 111.

[24] Morone F, Leifer I, Makse HA. Fibration symmetries uncover the building blocks of biological

networks. Preprint at https://bit.ly/2Z94B6o (2019).

[25] Golubitsky M, Stewart I. Nonlinear dynamics of networks: the groupoid formalism. Bull Am

Math Soc. 2006;43: 305-364.

[26] Boldi P, Vigna S. Fibrations of graphs. Discrete Mathematics. 2001;243: 21-66.

[27] Anderson PW. The concept of frustration in spin glasses. J of the Less-Common Metals.

1978;62: 291-294.

[28] Widlar RJ, Some circuit design techniques for linear integrated circuits. IEEE Trans Circuit

Theory. 1965;4: 586-590. See also Widlar RJ: US Patent Number 3,320,439; Filed May 26,

1965; Granted May 16, 1967: Low-value current source for integrated circuits and Widlar RJ.

Design techniques for monolithic operational amplifiers. IEEE Solid-State Circuits. 1969;4:

184-191.

[29] Horowitz P, Hill W. The Arts of Electronics. 3rd ed. New York:Cambridge University Press;

2015.

28

[30] Weinberg S. The Quantum Theory of Fields. Cambridge: Cambridge University Press; 2005.

[31] Morone F, Makse HA. Symmetry group factorization reveals the structure-function relation

in the Caenorhabditis elegans connectome. Nat Commun. 2019;10: 4961.

[32] Jin J, He K, Tang X, Zhe L, Lv L, Zhao Y, et al. An Arabidopsis transcriptional regulatory

map reveals distinct functional and evolutionary features of novel transcription factors. Mol

Biol Evol. 2015;32: 1767-1773.

[33] Balázsi G, Heath AP, Shi L, Gennaro ML. The temporal response of the Mycobacterium

tuberculosis gene regulatory network during growth arrest. Mol Syst Biol. 2008;4: 225.

[34] Zhu, B. & Stülke J. SubtiWiki in 2018: From genes and proteins to functional network anno-

tation of the model organism Bacillus subtilis. Nucleic Acids Res. 2017;46: D743-D748.

[35] Gama-Castro S, Salgado H, Santos A, Ledezma-Tejeida D, Muñiz-Rascado L, Santiago G-S,

et al. RegulonDB version 9.0: High-level integration of gene regulation, coexpression, motif

clustering and beyond. Nucleic Acids Res. 2015;44: D133-D143.

[36] Métris A, Sudhakar P, Fazekas D, Demeter A, Ari E, Olbei M, et al. SalmoNet, an integrated

network of ten Salmonella enterica strains reveals common and distinct pathways to host

adaptation. NPJ Systems Biology and Applications. 2017;3: 31.

[37] Cherry JM, Hong EL, Amundsen C, Balakrishnan R, Binkley G, Chan E, et al. Saccharomyces

Genome Database: The genomics resource of budding yeast. Nucleic Acids Res. 2011;40:

D700-D705.

[38] Yang T-H, Wang C-C, Wang Y-C, Wu W-S. YTRP: a repository for yeast transcriptional

regulatory pathways. Database 2014;2014: bau014.

[39] Han H, Cho J-W, Lee S, Yun A, Kim H, Bae D, et al. TRRUST v2: An expanded reference

database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res.

2017;46: D380-D386.

[40] Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource

for gene and protein annotation. Nucleic Acids Res. 2015;44: D457-D462.

[41] Kamei H, Cock PJ. A. Computation of balanced equivalence relations and their lattice for a

coupled cell network. SIAM J Appl Dyn Syst. 2013;12: 352-382.

[42] Aldis JW. A polynomial time algorithm to determine maximal balanced equivalence relations.

Int J Bifurc Chaos Appl Sci Eng. 2008;18: 407-427.

[43] Weisstein EW, ”Subgraph”. From MathWorld–A Wolfram Web Resource. http://

29

mathworld.wolfram.com/Subgraph.html

[44] Harary F. Graph Theory. Reading: Addison-Wesley; 1994.

[45] https://en.wikipedia.org/wiki/Induced_subgraph

[46] Conte D, Foggia P, Sansone C, Vento M. Thirty years of graph matching in pattern recognition.

Int J Pattern Recognit Artif Intell. 2004;18: 265-298.

[47] Cordella LP, Foggia P, Sansone C, Vento M. A (sub)graph isomorphism algorithm for matching

large graphs. IEEE Trans Pattern Anal Mach Intell. 2004;26: 1367-1372.

[48] Csardi G, Nepusz T. The Igraph software package for complex network research. Inter Journal,

Complex Systems. 2006;1695: 1-9.

[49] Ingram PJ, Stumpf MP, Stark J. Network motifs: structure does not determine function.

BMC Genomic. 2006;7: 108.

[50] Payne JL, Wagner A. Function does not follow form in gene regulatory circuits. Sci Rep.

2015;5: 13015.

[51] Maćıa J, Widder S, Solé R. Specialized or flexible feed-forward loop motifs: a question of

topology. BMC Syst Biol. 2009;3: 84.

[52] Ahnert SE, Fink TMA. Form and function in gene regulatory networks: the structure of

network motifs determines fundamental properties of their dynamical state space. J Royal

Soc Interface. 2016;13: 20160179.

[53] Purcell O, Savery N, Grierson C, Di Bernardo M. A comparative analysis of synthetic genetic

oscillators. J Royal Soc Interface. 2010;7: 1503-24.

[54] Driver RD. Ordinary and delay differential equations. New York: Springer Verlag; 1977.

30

