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Thermal analysis of the TRT stamp under the absorbed laser power of Si ink

An axisymmetric finite element model is established in COMSOL Multiphysics to investigate the
temperature distribution of the TRT stamp under the absorbed laser power of silicon pellet. The
schematic geometry model, as illustrated in fig. S4A, consists of a block of PDMS as the temporary
receiver substrate, a Si pellet as the ink and the TRT stamp. The thermal conductivity, density and heat
capacity are 0.15 Wm™'K™!, 970 kg/m? and 1460 Jkg'K"! for PDMS (24), 150 Wm™'K™!, 2300 kg/m?
and 708 Jkg'K! for Si (24) and 0.16185 Wm™'K™!, 12.736 kg/m? and 1352 Jkg'K"! for the TRT stamp
from experimental measurements. The ambient temperature is 25°C and convection coefficient is set

as 7 Wm™K. The power is applied via a heat source to the upper surface of the Si ink.

Bending deformation analysis of the Si pellets on TRT stamp

A three-dimensional finite element model is established in ABAQUS to simulate the bending
deformation of the Si pellet array adhered on the TRT stamp. The schematic geometry model is
illustrated in fig. S4C, where the Si pellets are attached on the TRT stamp consisting of the adhesive
layer and backing layer. The Young’s modulus and Poisson’s ratio are 130 GPa and 0.3 for the Si
pellet, 21 MPa and 0.49 for the adhesive layer of the TRT stamp, and 350 MPa and 0.42 for the backing
layer of the TRT stamp, respectively. The thickness is 3 um for the Si pellet, 50 um for the adhesion
layer, and 100 um for the backing layer of TRT, respectively. The C3D8 element is used to discretize

the structures.

Evaluation of the relation between the applied laser power from the laser system and the
absorbed laser power of Si pellet

During thermal analysis in FEA, we assume that the laser energy from the programmable laser
system can directly transmit the PDMS receiver substrate and be absorbed completely by the Si pellet
to heat the TRT stamp into weak adhesion state. Thus, the Si pellet is modeled as the heat source and
the laser power is applied to the upper surface of Si pellet in FEA. In practical applications, due to the
optical reflectivity and transmission loss of the Si pellet and PDMS receiver substrate, the applied laser
power from the programmable laser system is required a relatively higher than the absorbed laser
power of the Si pellet. Here, the relation between applied laser power P, of the programmable laser
system and the absorbed laser power P; of the Si pellet is obtained based on a simple theoretical

evaluation by following the previous work (24) and reads as

Pa(l_gsi)(l_lsi)7:Ps5 (1

where ¢, and y, are the reflectivity and transmission of the Si pellet, R and a are the diameter of

the laser spot and in-plane size of the square Si pellet, respectively. The reflectivity and absorption



loss of the PDMS is neglected here. The transmission y of a3 um thick silicon nanomembrane under

the given laser wavelength of 808 nm (coefficient of absorption, 7.75x10% cm™!) can be calculated as
0.793. With the reflectivity 0.328 for polished silicon (24), diameter of the laser spot 350 pm, and in-
plane size of the Si pellet 350 umx350 um. The required applied laser power is around 0.137 W for
the absorbed laser power of the Si pellet of 15mW, which is consistent to the applied laser power

during experiment, i.e. 0.15 W.
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Fig. S1. The adhesion strength characterization of TRT stamp. (A) Force versus displacement
curve of TRT stamp with glass slide during 90° peeling test at 1 mm/s constant peeling speed. (B) The
measured energy release rate of TRT stamp with the materials used for devices fabrication, i.e. polished
silicon wafer and PI film. The adhesion force of TRT stamp after heated at 90°C is too small to measure
with the load cell. (C) The measured energy release rate of PDMS slab (1 cmXx10 cm) of 1 mm
thickness with polished silicon wafer at various peeling speed.
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Fig. S2. Fabrication and transfer printing process of ultra-thin Si pellets array. (A) Schematic
fabrication process and (B) optical images of the transfer printing process of ultra-thin Si pellets (200
nm in thickness). Photo Credit: Chengjun Wang, Zhejiang University.
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Fig. S3. Photography of the programmable transfer printing system with the automated
translational stages. The whole system consists of a laser system, an optical system for in-situ
monitoring and the translational stage system for the alignment between the inks and the stamp. The
inset illustrates the magnified view of the laser heating head where the laser is guided by an optical
fiber into a collimator and focusing lens and then reflected onto the target zone by a dichroic mirror.
The dichroic mirror facilitates in-situ monitoring of the heating process. The automated positioning
system (Linear stage PSA200, Zolix Inc, China) and the manual triaxial linear stage (EB-050-M-N/F,
Everbeing Int'l Corp) are used to control the movement and alignment of the stamp with the laser spot.
The placement accuracy for the in-plane movements (the X and Y stages) is 5 um and 0.9 pm,
respectively. Photo Credit: Changhong Linghu, Zhejiang University.
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Fig. S4. FEA models and simulated results of Si pellets. (A) Cross-sectional image of the
axisymmetric FEA model for thermal analysis, where the Si pellet (thickness: 3 um, diameter: 300 pm)
is sandwiched between the TRT stamp and the PDMS receiver substrate. The laser can transmit the
PDMS receiver substrate and be absorbed by the Si pellet and therefore heat the TRT stamp around it.
(B) Simulated temperature increase of the TRT stamp, Si pellet and PDMS receiver substrate at the
given laser power of 15 mW. (C) Top and side view of Si pellets on the TRT stamp and wrapped around
a glass rod to illustrate the FEA geometry model for deformation analysis.
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Fig. S5. The measured surface roughness of Si pellet with 3 pm thickness on an SOI wafer,
TRT stamp and PDMS receiver substrate respectively.
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Fig. S6. Fabrication and transfer printing process of ultra-thin Si photodetector array. (A)

Schematic fabrication process of ultra-thin silicon photodetector array and (B) optical images of
silicon photodetector array on their fabricated SOI wafer and the TRT stamp, respectively. Photo
Credit: Chengjun Wang, Zhejiang University.
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Fig. S7. Programmable transfer printing prototype with scanning laser beam functionality. (A)
Photography of the programmable transfer printing prototype. The whole system consists of a scanning
laser system and a camera for in-situ monitoring. The size of laser spot is around 50 um in diameter
and its in-plane movement accuracy is 10 pum. (B) The magnified view of the laser heating head, where
a dichroic mirror is employed to facilitate the scanning laser beam and in-situ monitoring
simultaneously. (C) Schematic image of the galvanometer mirror based scanning laser beam
functionality. Photo Credit: Chengjun Wang, Zhejiang University.
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Fig. S8. Optical characteristics of PDMS, TRT and black polyester coated TRT. (A) The
measured absorption spectrum of the PDMS, TRT and black polyester coated TRT stamp, respectively.
Optical images of (B) the TRT stamp and (C) the B-TRT stamp. Photo Credit: Chengjun Wang,
Zhejiang University.
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Fig. S9. Schematic fabrication process of the strain sensor array.
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Fig. S10. The transfer efficacy of strain sensor on B-TRT stamp depending on the heating
parameters of the localized laser. (A) The schematic pulse input of the heating power and duration
for one heating cycle of programmable laser system. (B) The transfer efficacy of B-TRT stamp under
various heating power and duration from a 3X3 array of inks. 1) Inadequate heating means that only
part of heated inks was successfully transfer-printed on PDMS receiver substrate. i1) Adequate heating
means that all inks heated were successfully transfer-printed on PDMS receiver substrate. iii)
Excessive heating means that all heated inks and their neighboring inks unheated by the laser were
successfully transfer-printed on PDMS receiver substrate. (C) The recorded transfer efficacy of B-TRT
stamp under various heating cycles. The applied laser power was set as 0.15 watts.
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Fig. S11. Schematic image of selective heating pattern of the strain sensors via the automated
translational stage.
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Fig. S12. The scanning heating pattern and measured profile of B-TRT stamp by the scanning
laser beam. Optical image of the B-TRT stamp (A) before and (B) after heated by the scanning laser
beam with scanning size of § mmX8 mm. (C) The measured profile of the B-TRT stamp from unheated
region to areas heated by the scanning laser beam. Photo Credit: Chengjun Wang, Zhejiang University.
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Fig. S13. Schematic fabrication process of the SAW sensor array.
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Fig. S14. Characteristics of the ZnO thin film sputtered on the Kapton substrate. (A) The
measured XRD spectrum of the ZnO thin film at the given temperature, i.e. 70°C. (B) SEM image of
the cross-section of the ZnO thin film. Photo Credit: Xiang Tao, Zhejiang University.
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Fig. S15. Layout and selective transfer printing pattern of ZnO based flexible SAW sensor. (A)
Design of the flexible SAW sensor array on a 4-inch wafer. (B) Schematic layout of the SAW sensor
with the magnified view at its right-hand side. (C) The programmable and scalable heating pattern of
SAW sensors via the scanning laser beam functionality.



TRT stamp

Fig. S16. Schematic illustration of the InGaN p-LEDs transferred from their fabricated sapphire
wafer to TRT stamp by the standard laser lift-off process.
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Fig. S17. Fabrication process of the p-LED array based flexible display. (A) Schematic fabrication

process of the u-LED array based flexible display with (B)-(C) the magnified view marked in (A)-iii)
and v).



21.9 mm

27.9 mm

R ERREREEREERERE
ifilifalati .Hlll.llully
istilsitalatalslilahitylatilsl

, Pl pattern

, Metal interconnect

HLED
y
(@)
; f
Mask #1, Via hole Mask #3. Via hole

[ ] ‘o\ [ ]

Fig. S18. Layout of ultra-thin p-LED array based flexible display. (A) Design of ultra-thin p-LED
array based flexible display. (B) Optical image of the u-LED connected with row and column
interconnect through via holes. Photo Credit: Chengjun Wang, Zhejiang University.



Legends for movies S1 to S2.

Movie S1. Programmable and scalable printing of strain sensors on the B-TRT stamp to PDMS

substrate via the scanning laser beam.

Movie S2. Flexible inorganic u-LED display.



	abb2393_coverpage
	abb2393_SM_1
	abb2393_coverpage
	abb2393_SupplementalMaterial_v4




