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Supplementary Note 1: Analytic analysis of electro-opto-mechanical response

Electromechanical model of HBAR mode. To better explain the electromechanical S11 response
and mechanical dispersion shown in the main text, a one-dimensional (1D) analytic electromechan-
ical model is established by combining the well-known Mason model 2 and the transfer matrix
method ®. As shown in Fig. 1(a), the acoustic wave is assumed to propagate bidirectionally along
the z axis due to acoustic reflection at interfaces, such that the mechanical displacement u(z, t) can

be expressed as ': ' A
U(Z, t) _ A-‘re—](k:z—wt) + A—ej(k:z-i-wt) (1)

where, w and k = w/v,. (v, is acoustic velocity) are the frequency and acoustic wave number
respectively, and AT and A~ are amplitudes for the bidirectional propagating waves. The wave is
then related to the velocities v and forces F' (or stress o) at the two surfaces at z; and 25, working
as boundary conditions ':
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Supplementary Figure 1: Model of acoustic wave propagation in a non-piezoelectric material.
(a) Acoustic wave propagates in forward and backward directions in a layer of non-piezoelectric
material. The layer thickness is d with two boundaries located at z; and z». The wave distribution
is solely determined by the boundary conditions of force F' and velocity v. (b) Equivalent circuit
model describing acoustic wave transmission. (c) The two boundaries can be correlated by a
transfer matrix M which is a function of the acoustic impedance and the propagation length.



where S is the surface area, and c is the stiffness coefficient of the material . The prefactor
related with time is omitted for simplicity. After some brief algebra, the forces can be expressed
as the combination of velocities as:

Zac . kd

Fl = W(’Ul — UQ) +]Zactan(7)1)1 (6)
Zac . kd

F2 = jS,T(kd)(Ul — UQ) — ]Zactan(?)vg (7)

where Z,. (=5pv,., where p is the material density) is the acoustic impedance of the material, and
d is the thickness. Interestingly, if we treat force and velocity as voltage and current, an equivalent
circuit model can be built which satisfies Eq. (6-7) according to Kirchhoff’s law, as shown in Fig.
1(b). The circuit consists of three resistors with impedance as labeled in Fig. 1(b). Since the force
and velocity must be continuous at the boundary between two different layers, the circuit model
makes it easy to cascade different layers by connecting their corresponding circuits.

From Eq. (6-7), two adjecent boundaries can be related using a transfer matrix M as *:

-t

In this way, each layer can be represented by its characteristic transfer matrix M [Fig. 1(c)], and
the relation between any two boundaries can be connected by multiplying the transfer matrix of
each layer in between. The boundary condition at each interface can thus be determined from the
very end boundaries of the entire stack structure which, for a general mechanical structure, satisfy
the free boundary condition where the force is zero (F' = 0), or the fixed boundary condition
where the velocity (or equivalently the displacement) is zero (v = 0). After knowing the boundary
conditions, the acoustic wave distribution in each layer can be determined from Eq. (2-5) by
solving for A™ and A~. This is known as transfer matrix method for solving one-dimensional
propagation of acoustic waves in multiple layer structures, which is suitable for our vertical stack
structure of HBAR mode.

After the derivation of acoustic wave propagation, we are now ready for the model of acoustic
wave excitation through a piezoelectric actuator. As we apply voltage to the piezoelectric material,
the electric field will generate stress inside the film, which in turn builds up extra charges at the
surfaces and change the electric field accordingly. The interplay between stress and electric field
can be related as ':

o=cPc+eE )]
D =¢cc+eb (10)
where ¢” is the stiffness coefficient under constant E, ¢ is piezoelectric coefficient, € is dielectric
constant, ¢ is strain, E is electric field, and D is electric displacement. In general, the coefficients

are matrices which correlate the mechanical and electric field in different directions. In our case,
we consider only the terms related to the z direction.

3



(b)

U1 %)

Supplementary Figure 2: Model of acoustic wave propagation in a piezoelectric material. (a)
Equivalent circuit Mason model that describes the excitation and propagation of acoustic waves in
the piezoelectric layer. The three resistors represent the propagation of acoustic waves, while the
transformer represents energy conversion between electrical and mechanical domain. (c) Three
ports representation of the piezoelectric actuator.

By performing a similar procedure as before, the velocities and forces generated at the bound-
aries can be calculated from the applied external voltage and current through :

e _ kd h
= —(v; — Z,ctan(— —17 11
1 Jsin(kd) (v1 — v2) + jZ, tan( 5 Jur + i (11)
Z kd h
=" (v, — — L tan(— —1T 12
2 jsin(kd) (1= v2) = an( 2 Ju2 + Jjw (12)
1
V = ijO [I + hCo(Ul — Ug)} (13)

where Cy (= €S/d) is the intrinsic capacitance of the piezoelectric actuator, and h = e/e is a
constant related with the material properties. Based on these equations, an equivalent circuit model
can be established as shown in Fig. 2(a), which is the so-called Mason model !. Compared with
the previous circuit in Fig. 1(b) which does not consider the piezoelectric effect, a transformer is
added to the middle branch with a ratio of 1 : hC{, which then connects to the external power
source through series and parallel capacitances Cj,. The series capacitance has a negative sign
which indicates that its current will combine with the external current / and go through the parallel
capacitance. This is to be consistent with Eq. (13). The other resistors describe the acoustic wave
propagation in the piezoelectric layer as before. The piezoelectric layer can be treated as a three
port component as shown in Fig. 2(b), where the mechanical ports are dependent on /-V port. In
transfer matrix method, this active component introduces additional boundary conditions through
the electric port.

As we have the circuit model and transfer matrix of each layer, the actual device as described
in the main text and shown in Fig. 3(a) can be modeled by simply connecting each adjacent layer.
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Supplementary Figure 3: Electromechanical model of the actual device in this work. (a) Vertical
stacking structure of the whole device. (b) Equivalent circuit model by connecting adjacent layers.
The end ports are shorted as required by the free boundary condition. (c) Transfer matrix chain
that connects each interface. The input impedance at each port can be correlated and calculated
by the multiplication of matrices in between.

Fig. 3(b) shows the equivalent circuit of the whole device. Free boundary conditions at the top
and bottom surfaces are employed such that the forces F3 and F} are zero, which correspond to an
electric short in the circuit. The impedance looking into one interface can be defined as Z = F'/v.
By utilizing Eq. (8), and assuming F = 0 and F; = 0, the impedance at port 1’ and 3 from the top
Al electrode and bottom Si substrate can be calculated easily as:

Zrop = jZartan(kaiday) (14)
Zs = jZstan(ksids;) (15)

where Z,; and Zg; are the acoustic impedance of Al and Si respectively. Similarly, by multiplying
matrices of cascaded layers, the impedance at ports 2 and 1 can be calculated:

Z it k id i Zoxt koxdox
Z2:j san(s s)—|— an( ) (16)
1— (ZSi/ZOX)tan(kSidSi)tan(koxdox)
ZQ + jZMOtan(k;ModMo)
Zbot = ;
1+ ] (ZQ/ZMO)taH(/{ZMOdMO)
where Z,, and Zy, are the acoustic impedance of SiO, and Mo respectively. From Eq. (11-13),
the electrical impedance Z;, (= V/I) can be obtained by '*:

_ 1 {1 B k? (Ztop + 2bot)Sin(kandaN) + j2[1 — cos(kandan)] } (18)
JwCo EandaN (Ziop + Zbot)cOS (KandaN) + J(1 4 Ziop2bor)Sin(KaNdaN)

7)

Zin
where, ktz is the intrinsic electromechanical coupling coefficient of AIN which is 6.5%, zi,p (=
Ziop/ZaN) and zpot (= Zpot/Zaw) are the impedance from the top and bottom side of AIN which

are normalized by the AIN acoustic impedance Z.
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Electromechanical S, reflection parameter. By applying actual material properties as summa-
rized in Table 1, the electrical input impedance can be calculated, from which the S;; response can
be calculated as:
Z[) — Zi

B ZO + Zin
where Z, (50 €2) is the standard normalized impedance of the network analyzer. The results are
shown in Fig. 4 which demonstrates similarity between measurements and calculations from the
electromechanical model. The difference in magnitude is mainly introduced by the calibration and
parasitic capacitance from the probe landing during the electrical experiments. The variation of
envelope caused by the coupling between Si, Si0, and AIN cavities is well captured by the model.
As mentioned in the main text, the node of the envelope corresponds to a Si0; resonance. This is
because, at the SiO, resonance, more acoustic energy is confined in SiO, which is softer and has
smaller acoustic impedance as compared to Si.
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Supplementary Figure 4: Measured (a) and calculated (b) Si; reflection parameter, showing
much similarity in terms of varied envelope and its period.

Mechanical dispersion analysis. Provided the precision of the model demonstrated in last sec-
tion, we can rely on the model and analyze the mechanical dispersion by calculating resonant
frequencies. By letting the denominator in Eq. (18) equal zero, we retrieve the parallel resonant
frequencies corresponding to maximum resistance °:

(Ziop + 2bot)COS(kaNdAN) + 7 (1 + Ziop2bor)SiN(kandaN) = 0 (20)

The dispersion equation is transcendental and can be solved numerically. The FSR variation and
higher order dispersion can thus be calculated from resonant frequencies as shown in the main
text. To get a feeling of why and how the FSR varies, an analytic expression of FSR can be derived
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under simplified assumptions. Specifically, we can assume the metal thickness is much smaller
than the acoustic wavelength, such that their impedance is nearly zero. Under this assumption, the
dispersion equation Eq. (20) can be simplified to:

Zoxtan(koxdox) + Zantan(kandan)

Zsitan(ksids;) +
sitan (ksids;) 1 — Z%an (kada ) tan (Koxdox)

21

The equation is arranged in the way that SiO, and AIN are combined and work together as an
external cavity coupled to the Si cavity. The FSR can be divided into four regions in terms of
resonance and anti-resonance of SiO, and AIN cavities (see Table 2 and Fig. 5).

Firstly, let’s consider frequencies around AIN resonance, where kaindain = pm + daN, With
p an integer number and d;y denoting a small deviation. When the SiO, is at resonance such that
the second term in Eq. (21) is near zero, kocdox = nm + k. In this case, Si cavity must satisfy
ksidsi = mm + ds;, such that Eq. (21) becomes 2:

Zsi0si + ZoxOox + Zanoan = 0 (22)
From Eq. (22) we derive the relation between the three cavities as:

ZAIN
ZSi

ksidsi = mm — ﬂ(koxdox - mr) - (kAlNdAlN - ]97T) (23)

Zsi
where ks; = 27 f, /Usi, kox = 27 fin/Voxs kain = 27 fu, /van- This is also true for the m — 1 mode.
Note that the mode order p and n of AIN and SiO, will not change for the m and m — 1 modes. By
taking the frequency difference between the m and m — 1 modes, we can get the local FSR after
some algebra as:

dsi
. 1 Pox PAIN
dSl + Dsi dox + ;Slf\l dAlN

where Afy = vs;/(2ds;) is the original FSR of the Si cavity. This new FSR is smaller than the
original FSR since the SiO, and AIN extends the effective cavity length. It is interesting to note
that this extension is not simply the physical length of each layer but the effective length weighted
by its density relative to Si.

Af=Afo (24)

Following a similar procedure, the FSR at Si0,’s anti-resonance and around AIN’s resonance
can be obtained. In this time, the three cavities satisfy:

kEandain = pm + daN (25)
koxdox = nm + /2 4 dox (26)
kSidSi =mm + 7T/2 + 5Si (27)

By inserting them into Eq. (21), it becomes :

Z.
Zsi  —=2 4+ ZANOAIN
o 581 5;_,{_ ZAINSAIN =0 (28)
Sl ()X(S()X
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Since ZanOain is a very small term, we can ignore it and get:

Zsi Zsi ZAIN
0gi = ——0ox — ) 29
S 7. 72 AIN (29)
We can then retrieve the relation between the three cavities as:
Zs; Zsi 4
kSidSi =mm + 7T/2 — Z_S(koxdox —nmw — 7T/2) — SZQAIN (kAlNdAlN — p’ﬂ') (30)

By taking the frequency difference between f,, and f,,,_1, we can find the local FSR as:

dSi
Z2

Af=Afy 4
dsi + ﬁ <%d0x + %%m)

31

By comparing Eq. (24) and (31), it can be seen that the extra effective length due to SiO,
and AIN is now multiplied by the square of the ratio between the acoustic impedance of Si and
Si0,. Since SiO5 has a smaller impedance than Si, the effective length is longer than before, and
the FSR is thus smaller .

The cases where the AIN is near its anti-resonance condition kandan = pm + 7/2 + daN
can be calculated in a similar manner which are summarized in Table 2. Note the SiO, resonance
is defined as when there is no Si, and now its resonant condition becomes koxdox = nm + /2 4 Jox
due to the 7/2 phase introduced from the AIN-SiO; interface. Similar as before, the length (FSR)
is longer (smaller) around SiO,’s anti-resonance as compared to its resonance. By comparing
cases between AIN resonance and anti-resonance regions, there is an additional factor of the ratio
square between the impedance of oxide and AIN around AIN anti-resonance. Since AIN has a
higher impedance than SiO,, the effective length (FSR) around AIN anti-resonance regions is
shorter (larger) than the corresponding region around AIN resonance. Based on the effective length
expressions, we can find that, for two coupled mechanical cavities, if the impedance of the small
cavity is smaller (e.g., Si and Si0O,), the effective length (FSR) is shorter (larger) around the small
cavity resonance than its anti-resonance. This is also true for the reverse case (e.g., SiOs and AIN),
where the small cavity has larger impedance, and the effective length (FSR) is longer (smaller)
around AIN resonance 2.

The boundary conditions at the interfaces in each case are also summarized in Table 2. The
AIN-SiO, interface is free at the AIN resonance and fixed at anti-resonance. This is also true for the
SiO,—Si interface. The four cases are numbered as 1-4 from top to bottom in Table 2 and labeled
and compared with experiments as shown in Fig. 5. Around the AIN resonance, the FSR oscillates
between 1 and 2, while at AIN’s anti-resonance it varies between 3 and 4, which is consistent with
experiments. Finally, as a rule of thumb, since the envelope and FSR are both related with the
matching of acoustic impedance, the node (anti-node) of the S;; envelope corresponds to larger
(smaller) local FSR.



Supplementary Table 1: Material properties of each layer employed in the analytic model

Material Density p (kg/m3) | Velocity v (m/s) | Thickness d (ium)
Al 2700 6300 0.1

AIN 3300 11050 0.92

Mo 10200 6636 0.1

SiO; 2200 5640 5.44

Si 2329 8430 231.5

Supplementary Table 2: Effective cavity length at different resonant conditions. The effective
boundary condition at each interface is compared.

kandan koxdox ksids; A|N—S|02 S|02_8| Effective Iength
P nmw mm Free Free dsi + %dox + %dAm
. 72 '
P nr+7/2 | mr+7/2 | Free Fixed dsi + Z—gx' (‘;—‘;dox + %d/\m)
. 2
pr+7/2 | nm+w/2 | mw Fixed Free dsi + %dox + ZZg.L :S"I“ daN
. . Z2 2
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Supplementary Figure 5: Four different regions are labeled by number in the order from top
to bottom corresponding to Table 2. The green dashed lines denote the FSR of each region
and the corresponding effective length de¢ is labeled on the right. The bottom insets show the
schematics of the acoustic stress wave distribution for each region, illustrating the locations of
interfaces relative to the stress wave.
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Supplementary Figure 6: (a) Measured S;; response (top) and calculated effective electrome-
chanical coupling coefficient &2 e ff (bottom). The coupling reaches a maximum value of 0.15%
around 4.3 GHz. (b-c) Measured S,; response of the TE and TM mode (top) and corresponding
normalized product of acousto-optic overlap and kt eff (bottom). When the node of the acoustic
stress wave is located at the center of the waveguide, the acousto-optic overlap integral I becomes

zero and thus causes notches in the S,; response.

Electromechanical coupling and acousto-optic overlap. The model can also be used to estimate
the optomechanical Sy, response which is dependent on both electromechanical coupling efficiency
and acousto-optic overlap. The stress field distribution in AIN will strongly influence the effective
electromechanical coupling, which can be estimated by following the method, as found in the
literature *: 2 g £
2 ™ Js s
Kiers i, (1 fp) (32)
where f, is the parallel resonant frequency when the denominator of Eq. (18) equals zero, and f; is
the series resonant frequency when the numerator of Eq. (18) equals zero. k’? ¢ 18 thus calculated
as shown in Fig. 6(a). A maximum value of 0.15% is reached around 4.3 GHz where the AIN
resonance is located. It varies with a envelope similar as the S;; measurement.

In addition to elecromechanical conversion efficiency, the S21 also depends on acousto-optic
overlap which determines the modulation of the optical resonant frequency. According to the
perturbation theory, the relative change of resonant frequency can be related with the modulation

of refractive index distribution as *:

Aw  [[ An(z,y)|E(z, y)[*dedy 33)
w [ n(z,y)|E(z, y)|*dzdy
where the perturbation of refractive index is caused by the induced stress through the stress-optical
effect, and is proportional to the stress via the stress-optical coefficient. In our specific case, the
stress 1s dominated by the vertical stress o,. Therefore, the normalized acousto-optic overlap can
be approximately estimated as *:

[[ o.(2)|E(r, z)[?drdz

I —
[[|E(r,z)[?drdz

(34)
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where o, is assumed to be dependent only on z and uniform in the r direction. In this way, the
distribution of o, can be calculated from the aforementioned 1-D acoustic model. The electric field
takes only the dominant component, that is £, for TE mode and £, for TM mode.

To better compare with the measured optomechanical So; response, the normalized product
of I' and kf}e 77 1s plotted in Fig. 6 (b-c) for TE and TM modes. Their product can help us to explain
the variation of So; qualitatively. For instance, when the node of a stress wave locates at the center
of the waveguide, the overlap integral approaches zero due to the vertical symmetry of the optical
mode. This causes notches in the So; response, such as the decreasing of So; near 2 GHz of the
TE mode. The nearly periodic variation of the envelope of S, is due to the modulation of k:ie £t
Due to the high confinement of the optical mode in the waveguide, there exhibits only a small
difference of the acousto-optic overlap between the TE and TM modes. On the other hand, the
difference of the measured Sy, response is mainly caused by the optical Q. Since TE mode shows
nearly two times larger Q than TM mode, its response beyond 4 GHz is suppressed by entering into
the resolved sideband regime. The perturbation of the local stress field due to the SioN, waveguide
is not taken into account which requires 2D numerical simulation. This may lead to the difference
between measurement and calculation shown in Fig. 6(b-c). Despite this, the analytic model can
still give us a good qualitative estimation of the electro-optomechanical response.

Supplementary Note 2: Investigation of different actuator shapes

Devices with different actuator shape are fully explored, and its influence on DC optical resonance
tuning and high frequency modulation is investigated. The original design with a disk shaped
actuator as described in the main text is shown in Fig. 7(a), which is refered as the Disk device in
the following text. Since the stress mainly originates from the corner of the actuator, the microring
resonator is positioned at the outer edge of the disk actuator. Under positive DC biasing on the top
electrode (while the bottom electrode is always grounded), the AIN film expands and pushes the
ring outwards (i.e., ring expanding) [Fig. 7(e)]. Intuitively, the other design is to use a donut-shape
actuator which squeezes the microring resonator if it is placed at the inner edge of the actuator,
as shown in Fig. 7(b). This is referred as the Donut device in the following. These two designs
will show different stress distribution and static resonance tuning as demonstrated later. The cross-
sections for the two designs are illustrated in Fig. 7(c-d). The ring is placed 3 um within the edge
of the Disk actuator, while 5 wm for the Donut actuator. The final fabricated devices are shown in
Fig. 7(g-h) for the two designs. False color SEMs zoom-in around actuator corners in Fig. 7(i-j)
show the relative position between the optical microring resonator (blue) and the AIN actuator
(green).

The static mechanical simulation is conducted using the finite element method (COMSOL)
as shown in Fig. 7(e-f), in which +60 V DC biasing is applied on the top Al layer while the bottom
Mo layer is grounded. In this case, a negative electric field £, forms (points downwards) across
the AIN thin film, and the AIN film will be squeezed in the z-direction and expand horizontally
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Supplementary Figure 7: Schematics for the designed devices with (a) Disk shape and (b) Donut
shape actuators with the silicon nitride ring resonator (blue) having different relative positions. (c)
and (d) are the cross-sections for the Disk and Donut devices along black dashed lines in (a)
and (b), respectively. (e-f) COMSOL simulation of horizontal stress distribution around the optical
waveguide under +60 V DC biasing for the Disk and Donut devices respectively. The overlaid gray
arrows denote the local mechanical displacement with the biggest arrow scaled to 1 nm. (g-h)
Optical microscope images of fabricated devices. (i-j) False color scanning electron micrograph
(SEM) images around the actuator corner as labeled in white dashed box in (g) and (h) respectively
with color similar to the cross-sections in (c-d).
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(positive Poisson ratio). Fig. 7(e) illustrates the horizontal stress distribution and mechanical dis-
placement around the optical waveguide at the upper right corner of Fig. 7(c). As AIN expands,
starting from the corner, the stress splits into two parts: extensional stress under the actuator and
compressing stress at outside, and the mechanical displacement orients mainly horizontally and
points outside the actuator. Similar results can be drawn for Donut device as in Fig. 7(f). De-
pending on the position of the waveguide, it experiences extensional, compressing, or the interplay
between these two. For the Disk device, the horizontal stress inside the waveguide is a mixture of
extension and compression, while for the Donut device, it is mainly extension.

Disk Donut
(a) (b) (MPg)
o
N —
L.r |
_ _ ’
2.5
% " |
5

Supplementary Figure 8: Static stress distribution in z and ¢ directions. (a) and (b) show the
numerical simulation of vertical (z) stress distribution under +60 V DC biasing for the Disk and
Donut devices, respectively. Both of them show extensional stress around the waveguide. (c)
and (d) are out of plane (tangential to optical ring) stress distributions for Disk and Donut devices.
They present different sign inside the waveguide, since the optical ring of the Disk device expands
whereas the Donut device squeezes.

Besides the dominant horizontal stress, stresses in other directions will also affect the mod-
ulation on the refractive index. As shown in Fig. 8(a) and (b), originating from the corner of top
metal, o, exhibit two main lobes with different sign. Inside the actuator, the waveguides in both
cases experience extensional stress around 2 MPa. Under positive biasing, the ring of the Disk
device will be pushed outwards as the actuator expands, which builds up extensional stress in the
waveguide as in Fig. 8(c). On the other hand, at the inner edge of the Donut actuator, the optical
ring is squeezed, generating compressing stress [Fig. 8(d)]. Since shear stress is found to play a
less role compared with normal stress”, it is not taken into account in this study. Additionally, when
applying negative voltages, the AIN actuator changes from expanding (horizontally) to shrinking,
so that all the stresses in the above analysis change sign. In this way, bi-directional tuning can be
achieved by reversing the applied voltage’s sign, as demonstrated in the following section.

The presence of stress will change the refractive index of optical material, and affect differ-
ently for distinct polarization of the electric field of light waves, causing so-called birefringence.
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Numerically, they are correlated by stress-optical coefficients by :

n, =ng — Cro, — Cay(0y + 03) (35)
ng =ng — Cioy — Cy(0, + ;) (36)
n, =ng — Cro, — Ca(o, + 0y) (37)

where, ny is original refractive index of the material, C; relates the refractive index and stress that
are in the same direction while C, relates the two that are orthogonal. These equations are appli-
cable to isotropic material such as amorphous SizN4 from low-pressure chemical vapor deposition
(LPCVD) used in this work. The lack of the stress-optical coefficient for SisN, in the literature
makes it difficult to predict precisely the response of the optical ring resonator. However, it would
be possible to extract the coefficients by comparing experimental tuning of optical ring resonator
with simulation, which is under investigation.

DC optical resonance tuning. Working as a Si3N, ring resonator tuner, the static optical reso-
nance tuning is performed by applying DC biasing. Fig. 9(a) shows the transmission spectrum of
one resonance under different voltages for both the TE and TM modes of the Disk device. One can
see that as we apply a positive 60 V the resonance shifts to shorter wavelength (blue curve) relative
to the original resonance (black curve), and the tuning changes direction after reversing the voltage
(red curve), demonstrating bi-directional tuning ability. Also, it can be observed that the resonance
dip only shifts horizontally with little changes of vertical depth, since the waveguide coupling re-
gion is unaffected by the opening section of the actuator. The dependence of resonant wavelength
on voltages is summarized in Fig. 9(c), showing high linearity. Both TE and TM modes demon-
strate similar tuning performances with nearly -12 pm under positive 60 V. This tuning range is on
a similar order or larger than the linewidth of the high optical Q resonances, which is applicable
for SizN, microcomb applications such as Kerr comb generation and stabilization.

More interestingly, due to different relative positions of ring resonator, the Donut device
shows opposite behaviour: the resonant wavelength increases for positive voltages and vice versa,
as can be seen in Fig. 9(b) and (d). Here, the slope of tuning with respect to voltage changes
from negative to positive. On the other hand, it shows much smaller tuning range with 5.66 pm
for the TM mode and 1.63 pm for the TE mode under +60 V. The different tuning range of two
orthogonal polarization modes, TE and TM, demonstrates tunable birefringence in an otherwise
isotropic material by controlling stress, which can be utilized for polarization control ° or tuning
the mode spacing and coupling between a pair of TE and TM modes in a ring resonator. The effect
of mechanical actuation on optical Q is plotted in Fig. 9(e-f), which is found to be insignificant.
The TE mode shows much higher Q than the TM mode, since the TM mode extends further in the
vertical direction which is prone to the absorption of the bottom metal.

RF frequency modulation of the Donut-shape device. The same measurements described in
the main text are also done for the Donut device, including S;; and S,; responses as shown in
Fig. 10. No big differences can be found between the Disk and Donut devices in terms of mode
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Supplementary Figure 9: Transmission spectrum of one resonance of TE and TM polarization
mode for (a) Disk and (b) Donut device under +60 V (blue), 0 V (black), and -60 V (red). The x
axis represents wavelength shifts relative to resonant wavelength )y (~1550 nm) of each mode.
The resonant wavelength decreases for the Disk, while it increases for the Donut under +60 V.
The tuning direction reverses for opposite voltages, demonstrating bi-directional tuning. (c-d) De-
pendence of resonant wavelength detune on voltages for the Disk and Donut devices respectively.
Experimental results (squares) show high linearity for both TE (pink) and TM (cyan) modes, with
R? > 99% linear fitting (straight lines). The two actuator designs show different tuning directions
and tuning ranges. (e-f) Influence of piezoelectric actuation on optical quality factor Q for TE and
TM modes of both designs, which verifies that the actuation will not influence the optical Q.
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Supplementary Figure 10: The same S;; and Ss; measurements on the Donut device in GHz
range. (a) Electromechanical S;; spectrum from 1 to 6 GHz. Optomechanical Sq; responses of
(b) TE and (c) TM modes demonstrate effective stress-optical modulation spanning a broad range
of microwave frequencies. The Donut device shows similar results as reported for the Disk device
in the main text. (d) and (e) show the zoom-in of S;; and S,; responses of TE mode within the
window (green shaded area) around 2 GHz in (b), while (f) shows the zoom-in of TM mode’s So;
response around 4 GHz in (c). (g) Numerical simulation of o, distribution for one typical acoustic
resonant mode at 2.125 GHz, with a zoom-in around the optical waveguide (red box) shown in (h).

distribution, envelope of resonances, and signal to noise ratio. In the zoom-in around 2 GHz in
Fig. 10(e), there are multiple peaks inside each resonance due to existence of higher order acoustic
modes. Numerical simulations of one of the fundamental modes at 2.125 GHz is shown in Fig.
10(g), and the zoom-in around waveguide is in Fig. 10(h). From the mode distribution, we can
see the acoustic wave is effectively excited and confined under the actuator vertically with little
diffraction angle. The good mode confinement guarantees low cross-talk between closely placed
actuators.

Supplementary Note 3: Electromechanical cross-talk between adjacent actuators

As mentioned in the previous section, the high confinement of the acoustic mode beneath the
actuator guarantees low cross-talk between adjacent actuators. To demonstrate this, three actuators
are closely placed on the same optical ring resonator, which cover the whole ring in an interval of
120°, as shown in Fig. 11(a). The one port reflection parameter S;; of actuator 1 is first measured
as illustrated in Fig. 11(b). The difference from the S;; shown in the main text is caused by the
thicker Si substrate (500 pum) and thicker SiO5 cladding (7 pm). These lead to smaller FSR and
period of the envelope.

More importantly, the cross-talk is measured by performing a two-port electromechanical
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Supplementary Figure 11: Demonstration of low electromechanical cross-talk between adjacent
actuators. (a) Optical microscope image of the device with three closely placed actuators. (b) (top)
Two port electromechanical So; measurement by driving actuator 1 and sensing from actuator 2
as labeled in (a). (bottom) S;; reflection for device 1. The cross-talk between the two devices is
as low as -60 dB which guarantees compact integration. (c) Zoom-in of the measured So; and Sy,
responses in the green shaded region in (b).

So1 measurement, where we drive actuator 1 and sense the electrical signal out from the adja-
cent actuator 2. The cross-talk mainly comes from the leaking of acoustic waves from actuator 1
which can be sensed out by actuator 2 via the piezoelectric effect. The leakage of electric field
will also be sensed by device 2 and cause cross-talk between electrical signals of device 1 and 2.
As demonstrated in Fig. 11(b), So; as low as -60 dB of cross-talk is achieved, which illustrates
the electrical and mechanical isolation between the two adjacent devices. This low cross-talk en-
ables us to fabricate several actuators on the same optical ring, which may realize optical isolation
through spatial-temporal modulation "8, or dispersion engineering of SizN4 microring resonator °
by engineering stress distribution.

Supplementary Note 4: High Bandwidth Modulation

For applications where a wide bandwidth is required, the acoustic modes should be effectively
damped or even eliminated. To do this, the backside surface of the Si substrate is first isotropically
etched by XeF; in a Xactix Xenon Difluroide E1 system, with the top surface protected by the
photoresist AZ1518. The roughing will diffract acoustic waves to random directions and thus
weaken constructive interference. Next, as suggested by previous work'?, a layer of polyurethane
(PU) epoxy (Permabond PT326) mixed with 3 pum nickle powder (GoodFellow) is pasted at the
bottom, which can damp acoustic vibration at the boundaries and absorb acoustic energy, as shown
in Fig. 12(a). After post-processing the fabricated device, its electromechnical and optomechanical
performances are recorded in Fig. 12(b) and (c), respectively. To increase the signal to noise
ratio of So; at high frequencies, the RF signal from the VNA is amplified (+30dB) before being
applied to the actuator. From the S;; response, one can see that nearly all resonances from the
Si substrate cavity are diminished. However, the smoothly varying envelope from resonances
in SiO, and AIN cavities still exists, since they remain unaffected by the post-processes. The
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Supplementary Figure 12: (a) Cross-section of the device after roughing and then pasting
polyurethane (PU) epoxy (mixed with 3 um Nickle powders) on the backside of the Si substrate.
(b) S11 and (c) So; of the TM mode after weakening acoustic resonances. The VNA responses
become smoother with only wide range envelope variation. Enabled only by AIN fundamental and
second harmonic resonances (green shaded regions), broadband modulation can be achieved
with 3 dB bandwidth of 250 MHz for each.

So1 measurement also demonstrates smoothing of the modulation spectrum, but with broad range
variations. Some exceptionally small resonances are still visible below 2.5 GHz in S, because the
acoustic wavelength at low frequencies is comparable or larger than the Si roughing scale (~5 pm).
It’s worth noting here that the optical measurement is more sensitive than its electrical counterpart
due to high optical Q and its signal to noise ratio. The fast roll-off of S,; starting around 9.5
GHz is mainly limited by the optical quality factor of the TM mode, and the actual acousto-optic
interaction may potentially extend to frequencies beyond 10 GHz.

The fundamental resonance from the AIN thin film enhances the electromechanical conver-
sion efficiency and thus optical modulation around 4.13 GHz, and thanks to its low mechanical
Q, we observe high bandwidth modulation with a 3 dB bandwidth of 250 MHz, as shown in Fig.
12(c). The second harmonic resonance of AIN cavity is also found in Sy; around 8.7 GHz, here
with a 260 MHz bandwidth. These wide bands of modulation can potentially be used to connect
supperconducting circuits with optical interfaces for low-loss quantum information communica-
tion ', Of note, the positions of these bands can be engineered by modifying the AIN and SiO,
film thickness for specific applications. For future works, dedicated design and patterning of the
bottom surface can be done for better suppression of acoustic resonances from Si cavity. To fur-
ther increase modulation bandwidth, more effort is needed to eliminate resonances from SiO, and
AIN layers, which can be realized by matching mechanical impedance at interfaces, such as using
an acoustic anti-reflection layer '2, or through phononic crystal band gap engineering to suppress
undesired acoustic modes '*.
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Supplementary Figure 13: Schematic for showing the phase matching condition for the two
optical modes in the experiment. The azimuthal order difference between the two optical modes
in the experiment is 16 which requires an effective modulation wave with azimuthal order of 16.
Due to the discrete nature of the modulation regions, it contains multiple components with different
azimuthal orders (the order of each is as labeled), one of which can be used to satisfy the phase
matching condition. The color of each arrow denotes the relative strength of each component
with darker with higher intensity. The momentum axis is represented by the azimuthal order in the
unit of 1/R where R is the radius of the microring. Note this is just for schematic illustration with
frequency and momentum not to the exact scale.

Supplementary Note S: Phase matching condition for SizN, ring isolator

Effect due to the discrete modulation regions. The energy conservation can be easily satisfied
by driving the actuator at the frequency spacing of the two optical modes. Let’s see how the phase
matching (or momentum conservation) can be satisfied in the experiment. By comparing with the
numerical finite element simulation (COMSOL), the azimuthal order difference between the two
TE and TM mode is found to be 16. According to the resonant condition for both optical and
mechanical cavity, the momentum is linked to the azimuthal orders as:

2T m
by =— = — 38
xR (38)
2 my
kp =— = — 39
" =N " R (39)
2T m
ky =— = — 40
N 7 (40)

where k, (my), ky (my), and k,,, (m,,,) are the momentum (azimuthal order) for optical mode a and
b and the modulation wave. R is the radius of the microring. As shown in Fig.13, an effective wave
with azimuthal order of 16 should be excited for efficient scattering between the two modes. Due
to the discrete nature of the modulation scheme, it excites many different Fourier components in
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space with different azimuthal order'*:

<X sin[(1 + 3n)7/3]
Z (14 3n)r/3

— 0.2cos|wpt — 4¢] + - - - — 0.0517cos|wy,t — 16¢] — 0.0486¢c0s[w,,t + 17¢] (41)

cos|wpt — (1 4 3n)¢] = 0.83cos[w,t — @] + 0.4cos[w,t + 2¢)]

n=—oo

where ¢ is the azimuthal rotation angle, w,, is the modulation frequency, 3’ comes from the use
of three actuators. We can see the component with 16 azimuthal order satisfies the momentum
difference between the two optical modes. One important aspect of discrete modulation is the
coexistence of effective waves in the backward direction. However, as shown in Fig.13, mode 16
only exists in the forward direction, whereas mode -17 exists in the other direction which is the
closest mode with momentum mismatch of Am = 1.

(b)

Phase of actuator 3 relative to actuator 1 (rad)

L ! L L L L
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Phase of actuator 2 relative to actuator 1 (rad)

Supplementary Figure 14: (a) Optical microscope of the device with each actuator labeled with
a referencing number. (b) Numerical simulation of the intensity of the converted sideband for
various relative phases between the three actuators. Over a relatively broad RF phase variation
(as labeled in the white circle) there is an observable nonrecipricity.

From the above analysis, we found it would be desirable to decrease the azimuthal order
difference between TE and TM modes for improving the coupling efficiency and isolation. This
can be seen in two ways. First, more modulation energy will be dropped into effective waves with
smaller azimuthal order. For example, 69% (= 0.83%) energy is in mode 1. Thus, ideally we can
optimize the waveguide design to have the optical mode difference to be 1. Second, the energy in
the undesired backward wave with close mode order will be smaller. For example, mode -2 has
energy of 16% (= 0.4%) which is much smaller than the energy in mode 1. Therefore, the device
performance can be further improved by engineering the optical cavity to support TE and TM
modes with order difference of 1.
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Sensitivity to the RF phase deviation from the ideal case. As a practical consideration, it would
be interesting to see how sensitive the nonreciprocity is relative to the deviation of RF phases from
the ideal case. This is done by conducting numerical FDFD simulations'®> as shown in Fig.14.
The converted light intensity is used to represent the coupling strength between the two optical
modes. The phases of actuator 2 and 3 relative to actuator 1 is swept from —7 to 7. To correctly
read the figure we should note that reversing the input light direction is equivalent to reversing the

sign of RF phase differences. From the figure we can find for phase configuration (— %”, %’r) and its
reverse case ( %’r, — %”), there is the maximum nonreciprocity contrast. However, the nonreciprocity

contrast decreases gradually as the phases deviate from the ideal case, which suggests there is a
wiggle room for RF phase tolerance, and no strict phase setting is required in order to observe
nonreciprocity.
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