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Supplementary Table 1 Summary of dominant drivers of soil microbial alpha diversity in 

terrestrial ecosystems from large-scale studies. 
Driver Effect Involved mechanism or theory Location (sample 

size) 

Temperature Positive Metabolic theory: Elevated temperature increases 

biodiversity by accelerating the biochemical reactions 

that control speciation rate1. 

North America (126 

soils)2 

 

Soil resource 

content 

Positive Species energy theory: Species richness increases 

monotonically with the energy or resource3; It assumes 

that diversity mirrors productivity within 

microorganisms because soil microbial biomass much 

depends upon the soil carbon or nutrient contents4,5. 

Global (~600 soils)4 

Soil carbon 

to nutrient 

ratios 

Negative Stoichiometry theory: Fast growing microorganisms 

require higher demand for nutrients than plants6; It 

assumes that microbial diversity mirrors its biomass, 

and thus lower carbon to nutrient ratios may result in 

higher microbial diversity4. 

Scotland (179 sites)7  

Plant 

diversity 

Positive Aboveground–belowground interactions: Plant 

diversity promotes the diversity of soil microbes by 

increasing the diversity of soil exudates and litter, 

physical microhabitats and environmental conditions, 

and plant hosts for symbiotic and pathogenic 

microbes8,9,10. 

Four continents (25 

temperate grassland 

sites)9 

Soil pH Unimodal Niche imposes a physiological constraint, altering 

competitive outcomes or reducing net growth of 

individual taxa unable to survive if the soil pH falls 

outside a certain range11,12,13. 

North and South 

America (98 soils11; 

88 soils12); Arctic 

(29 sites)13 

Aridity Negative Aridity decreases microbial diversity by its negative 

impact on soil carbon contents. 

Global (80 dryland 

sites)14 

Latitude Negative Covariant factors with latitudinal gradients, especially 

temperature and precipitation. 

Global (365 soils)15; 

Southern hemisphere 

(647 sites)16 
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Supplementary Table 2 Correlation coefficients between response of microbial alpha 

diversity and climate factors.  

GCFs Climates RR of richness RR of Shannon index 

W MAT -0.01(n = 100) 0.07(n = 73) 

MAP -0.11(n = 100) -0.05(n = 73)

eCO2 MAT -0.18(n = 39) 0.31(n = 22)

MAP -0.31(n = 39) 0.09(n = 22)

PPT- MAT -0.16(n = 47) 0.15(n = 59)

MAP 0.00(n = 47) 0.03(n = 59)

PPT+ MAT -0.25(n = 47) -0.09(n = 44)

MAP -0.29(n = 47) -0.1(n = 44)

P MAT -0.12(n = 62) -0.29(n = 35)

MAP -0.07(n = 62) 0.13(n = 35)

N MAT -0.14(n = 287)* -0.2(n = 199)**

MAP -0.07(n = 287) 0.07(n = 199)

LUC MAT -0.05(n = 291) 0.09(n = 246)

MAP 0.00(n = 292) 0.07(n = 246)

WeCO2 MAT -0.04(n = 9) -0.38(n = 5)

MAP 0.13(n = 9) 0.48(n = 5)

NPPT+ MAT -0.51(n = 25)** -0.64(n = 23)***

MAP -0.71(n = 25)*** -0.71(n = 23)***

NP MAT -0.28(n = 58)* -0.16(n = 37)

MAP -0.35(n = 58)** -0.14(n = 37)

NPK MAT -0.21(n = 101)* 0.05(n = 93)

MAP -0.08(n = 101) 0.07(n = 93)

GCFs, global change factors (including warming (W), carbon dioxide enrichment (eCO2), decreased 

precipitation (PPT-), increased precipitation (PPT+), phosphorous addition (P), nitrogen addition (N), land use 

change (LUC), W×eCO2, N×PPT+, N plus P plus potassium addition (N×P×K)); MAT, mean annual 

temperature (℃); MAP, mean annual precipitation (mm). The significant correlations are marked by asterisk (*, 

P<0.05; **, P<0.01; ***, P<0.001). 
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Supplementary Fig. 1 Distribution of the sampling sites for different global change factors. 

The inset scatter plots show the relationships between mean annual temperature (MAT, ℃) 

and mean annual precipitation (MAP, mm). Source data are provided as a Source Data file. 
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Supplementary Fig. 2 Responses of microbial alpha diversity to different land use change 

types. Weighted means and their 95% confidence intervals of response ratios (RR) are given. 

The numbers at the right side of the confidence intervals represent the sample sizes. NEtoAgr, 

conversion from native ecosystem to agriculture, NEtoPas, conversion from native ecosystem 

to pasture, NEtoPlant, conversion from native ecosystem to plantation, NEtoSec, conversion 

from native ecosystem to secondary ecosystem. Source data are provided as a Source Data 

file. 
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Supplementary Fig. 3 Paired comparisons of the responses of microbial alpha diversity and 

beta diversity to global change factors. a Comparisons between response ratio (RR) of 

richness and RR of beta diversity. b Comparisons between RR of Shannon index and RR of 

beta diversity. Weighted means and their 95% confidence intervals of RRs are given. The 

numbers at the left represent the sample sizes. W, warming; eCO2, carbon dioxide enrichment; 

PPT-, decreased precipitation; PPT+, increased precipitation; P, phosphorous addition; N, 

nitrogen addition; LUC, land use change; W×eCO2, warming plus carbon dioxide enrichment; 

N×PPT+, nitrogen addition plus increased precipitation; N×P, nitrogen plus phosphorous 

addition; N×P×K, nitrogen plus phosphorous plus potassium addition. Source data are 

provided as a Source Data file. 
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Supplementary Fig. 4 Model-averaged importance of the predictors of global changes effect 

on microbial communities. The importance is based on the sum of Akaike weights derived 

from the model selection using AIC (Akaike’s Information Criteria corrected for small 

samples). A cutoff of 0.8 (the red dashed line) is set to differentiate between important and 

non-essential predictors. abs, absolute value. LUC, land use change; N, nitrogen addition; 

N_P, nitrogen plus phosphorous addition; N_P_K, nitrogen plus phosphorous plus potassium 

addition; N×PPT+, nitrogen addition plus increased precipitation; P, phosphorous addition; 

PPT, altered precipitation; W, warming. Source data are provided as a Source Data file. 
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Supplementary Fig. 5 Weighted averages of the model coefficients across various models 

for the responses of microbial alpha diversity to global change factors. The weights equal to 

the model probabilities. Model parameters are transferred by the fourth root for better 

visualization and ordered by increasing relative importance. The predictors in red bars are the 

ones with the sum of Akaike weights > 0.8. LUC, land use change; N, nitrogen addition; N_P, 

nitrogen plus phosphorous addition; N_P_K, nitrogen plus phosphorous plus potassium 

addition; N×PPT+, nitrogen addition plus increased precipitation; P, phosphorous addition; 

PPT, altered precipitation; W, warming. MAT, mean annual temperature (℃); MAP, mean 

annual precipitation (mm). The units for predictors of duration, N/P/K addition rates, altered 

PPT, and elevated temperature are year, g N/P/K m-2 year-1, %, and ℃, respectively. Source 

data are provided as a Source Data file. 
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Supplementary Fig. 6 Weighted averages of the model coefficients across various models 

for the responses of microbial beta diversity and community structure to global change 

factors. The weights equal to the model probabilities. Model parameters are transferred by the 

fourth root for better visualization and ordered by increasing relative importance. The 

predictors in red bars are the ones with the sum of Akaike weights > 0.8. LUC, land use 

change; N, nitrogen addition; N_P, nitrogen plus phosphorous addition; N_P_K, nitrogen plus 

phosphorous plus potassium addition; N×PPT+, nitrogen addition plus increased 

precipitation; P, phosphorous addition; PPT, altered precipitation; W, warming. MAT, mean 

annual temperature (℃); MAP, mean annual precipitation (mm). The units for predictors of 

duration, N/P/K addition rates, altered PPT, and elevated temperature are year, g N/P/K m-2 

year-1, %, and ℃, respectively. Source data are provided as a Source Data file. 
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Supplementary Fig. 7 Global change factors (GCFs) induced changes in soil properties and 

their correlations. a GCFs induced change in soil pH. b Response ratio (RR) of soil C to 

GCFs. c RR of soil N to GCFs. d RR of soil C:N to GCFs. Weighted means and their 95% 

confidence intervals of RRs are given. The numbers at the right side of the confidence 

intervals represent the sample sizes. W, warming; eCO2, carbon dioxide enrichment; PPT-, 

decreased precipitation; PPT+, increased precipitation; P, phosphorous addition; N, nitrogen 

addition; LUC, land use change; W×eCO2, warming plus carbon dioxide enrichment; 

N×PPT+, nitrogen addition plus increased precipitation; N×P, nitrogen plus phosphorous 

addition; N×P×K, nitrogen plus phosphorous plus potassium addition. e Pearson's r 

correlation coefficients among GCFs induced shifts in soil properties. ***, P<0.001. Source 

data are provided as a Source Data file. 



Supplementary Fig. 8 Responses of microbial beta diversity and community structure to 

global change factors by microbial groups and biomes. a Response ratio (RR) of beta 

diversity across microbial groups. b RR of community structure across microbial groups. c 

RR of beta diversity across biomes. d RR of community structure across biomes. Weighted 

means and their 95% confidence intervals of RRs are given. The numbers at the top of the 

confidence intervals represent the sample sizes. The significances of microbial groups and 

biome types are tested by omnibus test (QM). W, warming; eCO2, carbon dioxide enrichment; 

PPT-, decreased precipitation; PPT+, increased precipitation; P, phosphorous addition; N, 

nitrogen addition; LUC, land use change; W×eCO2, warming plus carbon dioxide enrichment; 

N×PPT+, nitrogen addition plus increased precipitation; N×P, nitrogen plus phosphorous 

addition; N×P×K, nitrogen plus phosphorous plus potassium addition. Tem/Bor, temperate/

boreal. Tro/Sub, tropical/subtropical. Source data are provided as a Source Data file. 
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Supplementary Fig. 9 Linear relationships of the response ratios (RRs) between microbial 

alpha diversity response and different functional responses. a Linear relationship between RR of 

respiration and RR of richness or Shannon index (insignificant). b Linear relationship between RR of 

N mineralization and RR of richness (y = −25.06x + 0.40) or Shannon index (y = −65.16x + 0.84). c 

Linear relationship between RR of oxidative C-cycling enzymes and RR of richness (y = −4.67x − 

0.06) or Shannon index (insignificant). d Linear relationship between RR of hydrolytic C-cycling 

enzymes and RR of richness (y = −7.42x + 0.03) or Shannon index (y = −17.53x + 0.12). e Linear 

relationship between RR of N-cycling enzymes and RR of richness or Shannon index (insignificant). f 
Linear relationship between RR of P-cycling enzymes and RR of richness or Shannon index 

(insignificant). Source data are provided as a Source Data file. 
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Supplementary Fig. 10 Coordinated changes between microbial alpha diversity and 
functions for specialized microbes. a Linear relationship between response ratio (RR) of 

nitrification activity and RRs of richness (y = −1.44x + 0.39) or Shannon index (insignificant) 

for nitrifier. b Linear relationship between RR of denitrification activity and RRs of richness 

(y = −3.53x + 1.52) or Shannon index (y = −5.79x + 1.19) for denitrifier. c Linear relationship 

between RR of nitrogenase activity and RRs of richness or Shannon index for nitrogen (N) 

fixer (insignificant). d Linear relationship between RR of phosphatase activity and RRs of 

richness or Shannon index for phosphorus mineralizer (insignificant). Source data are 

provided as a Source Data file. 
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Supplementary Fig. 11 Comparisons of response ratios of different richness metrics. The 

asterisks on the left indicate significant differences among the two/three metrics based on 

omnibus test (QM). The inset bar plot shows the total number of significant vs. insignificant 

observations. Source data are provided as a Source Data file. 



 15 / 35 

Supplementary Fig. 12 Comparisons of microbial responses to global change factors by 

different data analytical methods. a Response ratios (RRs) of microbial richness from 

different metrics. b RRs of microbial beta diversity from canonical correspondence analysis 

(CCA), non-metric multidimensional scaling (NMDS), principal correspondence analysis 

(PCoA), redundancy analysis (RDA), and principal component analysis (PCA) plots. c RRs of 

microbial community structure from CCA, NMDS, PCoA, RDA, and PCA plots. The 

significances of methods are tested by omnibus test (QM). Weighted means and their 95% 

confidence intervals of RRs are given. The numbers at the top of the confidence intervals 

represent the sample sizes. W, warming; eCO2, carbon dioxide enrichment; PPT-, decreased 

precipitation; PPT+, increased precipitation; P, phosphorous addition; N, nitrogen addition; 

LUC, land use change; W×eCO2, warming plus carbon dioxide enrichment; N×PPT+, 

nitrogen addition plus increased precipitation; N×P, nitrogen plus phosphorous addition; 

N×P×K, nitrogen plus phosphorous plus potassium addition. Source data are provided as a 

Source Data file. 
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Supplementary Fig. 13 A diagrammatic sketch of the calculation of response of microbial 

community structure and beta diversity. Dci, the ith Euclidean distance within control, Dtj, the 

jth Euclidean distance within treatment, Dbk, the kth Euclidean distance between control and 

treatment. The effect of global change factor on community composition is considered if the 

Euclidean distance between control and treatment is significantly greater than that within 

group. The effect of global change factor on beta diversity is considered if the Euclidean 

distance within treatment is significantly different from that within control. 
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