Supporting Information

Impacts of Steric Compression, Protonation, and Intramolecular Hydrogen-Bonding on the ¹⁵N NMR spectroscopy of Norditerpenoid Alkaloids and Their Piperidine-Ring Analogues

 $Ziyu\ Zeng,\ Ashraf\ M.\ A.\ Qasem,\ Timothy\ J.\ Woodman,\ Michael\ G.\ Rowan,\ and\ Ian\ S.\ Blagbrough*$

Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, U.K.

Table of Contents

Figure S2. ¹³C NMR spectrum of *N*-Et piperidine (1) in CDCl₃

Figure S4. ¹H-¹⁵N HMBC spectrum of *N*-Et piperidine (1) in CDCl₃

Figure S6. ¹³C NMR spectrum of *N*-Et piperidine (1) in CD₃OD

-10

 140 130 120

Figure S7. HSQC spectrum of *N*-Et piperidine (1) in CD₃OD

Figure S8. ¹H-¹⁵N HMBC spectrum of *N*-Et piperidine (1) in CD₃OD

Figure S10. ¹³C NMR spectrum of *N*-Et piperidine (1) in d_6 -DMSO

Figure S12. ¹H-¹⁵N HMBC spectrum of *N*-Et piperidine (1) in d_6 -DMSO

Figure S15. HSQC spectrum of *N*-Et piperidine (1) in D_2O (with additional 2 drops of d_6 -DMSO)

Figure S16. ¹H-¹⁵N HMBC spectrum of *N*-Et piperidine (1) in D_2O (with additional 2 drops of d_6 -DMSO)

Figure S17. ¹H NMR spectrum of *N*-Et piperidine (1) in D₂O (with additional 2 drops of d_6 -DMSO and drops of NaOD solution, 30% in D₂O, w/w, pD ~13)

56.26 55.44 54.94 54.39 40.94 40.77 40.60 40.43 40.43 40.60 32.93 39.93	28.11 27.27 26.88 26.11	14.17	-0.00
All mar	SVZ	17	1

Figure S18. ¹³C NMR spectrum of *N*-Et piperidine (1) in D₂O (with additional 2 drops of d_6 -DMSO and drops of NaOD solution, 30% in D₂O, w/w, pD ~13)

Figure S19. HSQC spectrum of *N*-Et piperidine (1) in D_2O (with additional 2 drops of d_6 -DMSO and drops of NaOD solution, 30% in D_2O , w/w, pD ~13)

Figure S20. ¹H-¹⁵N HMBC spectrum of *N*-Et piperidine (1) in D₂O (with additional 2 drops of d_6 -DMSO and drops of NaOD solution, 30% in D₂O, w/w, pD ~13)

Figure S22. ¹³C NMR spectrum of *N*-Et piperidine HCl salt (1') in CDCl₃

Figure S23. HSQC spectrum of *N*-Et piperidine HCl salt (1') in CDCl₃

Figure S24. ¹H-¹⁵N HMBC spectrum of *N*-Et piperidine HCl salt (1') in CDCl₃

Figure S27. HSQC spectrum of *N*-Et piperidine HCl salt (1') in CD₃OD

Figure S28. ¹H-¹⁵N HMBC spectrum of *N*-Et piperidine HCl salt (1') in CD₃OD

Figure S30. ¹³C NMR spectrum of *N*-Et piperidine HCl salt (1') in d_6 -DMSO

Figure S31. HSQC spectrum of *N*-Et piperidine HCl salt (1') in d_6 -DMSO

Figure S32. ¹H-¹⁵N HMBC spectrum of *N*-Et piperidine HCl salt (1') in d_6 -DMSO

Figure S34. ¹³C NMR spectrum of *N*-Et piperidine HCl salt (1') in D₂O

Figure S35. HSQC spectrum of N-Et piperidine HCl salt (1') in D_2O

Figure S36. ¹H-¹⁵N HMBC spectrum of *N*-Et piperidine HCl salt (1') in D₂O

Figure S38. ¹³C NMR spectrum of *N*-Me piperidine (2) in CDCl₃

Figure S39. HSQC spectrum of *N*-Me piperidine (2) in CDCl₃

Figure S40. ¹H-¹⁵N HMBC spectrum of *N*-Me piperidine (2) in CDCl₃

Figure S42. ¹³C NMR spectrum of *N*-Me piperidine (2) in D_2O (with additional 2 drops of d_6 -DMSO)

Figure S43. HSQC spectrum of *N*-Me piperidine (2) in D_2O (with additional 2 drops of d_6 -DMSO)

Figure S44. ¹H-¹⁵N HMBC spectrum of *N*-Me piperidine (2) in D_2O (with additional 2 drops of d_6 -DMSO)

Figure S45. ¹H NMR spectrum of *N*-Me piperidine (**2**) in D₂O (with additional 2 drops of d_6 -DMSO and drops of NaOD solution, 30% in D₂O, w/w, pD ~13)

Figure S46. ¹³C NMR spectrum of *N*-Me piperidine (2) in D₂O (with additional 2 drops of d_6 -DMSO and drops of NaOD solution, 30% in D₂O, w/w, pD ~13)

Figure S47. ¹H-¹⁵N HMBC spectrum of *N*-Me piperidine (**2**) in D₂O (with additional 2 drops of d_6 -DMSO and drops of NaOD solution, 30% in D₂O, w/w, pD ~13)

Figure S48. ¹H NMR spectrum of *N*-Me piperidine HCl salt (2') in CDCl₃

Figure S50. HSQC spectrum of *N*-Me piperidine HCl salt (2') in CDCl₃

Figure S51. ¹H-¹⁵N HMBC spectrum of *N*-Me piperidine HCl salt (2') in CDCl₃

Figure S52. ¹H NMR spectrum of *N*-Me piperidine HCl salt (2') in D₂O

Figure S54. HSQC spectrum of *N*-Me piperidine HCl salt (**2'**) in D₂O

Figure S55. ¹H-¹⁵N HMBC spectrum of *N*-Me piperidine HCl salt (2') in D₂O

S29

Figure S58. HSQC spectrum of *N*-H piperidine (3) in CDCl₃

Figure S59. ¹H-¹⁵N HMBC spectrum of *N*-H piperidine (3) in CDCl₃

130 120 110 100 D -10

Figure S61. ¹³C NMR spectrum of N-H piperidine (3) in D₂O

Figure S64. ¹H NMR spectrum of *N*-H piperidine (**3**) in D_2O (with additional drops of NaOD solution, 30% in D_2O , w/w, pD ~13)

Figure S65. ¹³C NMR spectrum of *N*-H piperidine (**3**) in D_2O (with additional drops of NaOD solution, 30% in D_2O , w/w, pD ~13)

Figure S66. ¹H-¹⁵N HMBC spectrum of *N*-H piperidine (3) in D_2O (with additional drops of NaOD solution, 30% in D_2O , w/w, pD ~13)

Figure S67. ¹H NMR spectrum of *N*-H piperidine HCl salt (3') in CDCl₃ (with additional 2 drops of d_6 -DMSO)

Figure S68. ¹³C NMR spectrum of *N*-H piperidine HCl salt (3') in CDCl₃ (with additional 2 drops of d_6 -DMSO)

Figure S69. HSQC spectrum of *N*-H piperidine HCl salt (3') in $CDCl_3$ (with additional 2 drops of d_6 -DMSO)

Figure S70. ¹H-¹⁵N HMBC spectrum of *N*-H piperidine HCl salt (3') in CDCl₃ (with additional 2 drops of d_6 -DMSO)

Figure S72. ¹³C NMR spectrum of *N*-H piperidine HCl salt (3') in D₂O

Figure S74. ¹H-¹⁵N HMBC spectrum of N-H piperidine HCl salt (3') in D₂O

Figure S75. ¹H-¹⁵N HMBC spectrum of *N*-Et [3.3.1]azabicycle (5) in CDCl₃

Figure S76. IR data of *N*-Me [3.3.1]azabicycle (6)

Walkup Analysis Report

Data Filename Sample Type Instrument Name Acq Method IRM Calibration Statu Comment	IS	AQ-Methyl derPos Sample 6545 QTof Pos_LoopInjection_ Success	s_LoopInjection_MS_0684 MS.m	0.d	Sample Name Position User Name Acquired Time DA Method	AQ-Methyl der. P1-A1 Ashraf Qasem 8/6/2019 6:25:43 PM Pos_LoopInjection_MS.m
Sample Group Walkup Sample Description			Info. Walkup Method	Pos_LoopInjection_	MS	
Formula	C12H19N	O3	Walkup Method Description	Positive mode ioniz loop injection	ation using	
Stream Name	LC 1		Acquisition SW Version	6200 series TOF/65 O-TOF B.09.00 (B9	i00 series 044.0)	

User Chromatograms

Page 1 of 2

Printed at: 6:27 PM on: 8/6/2019

Figure S77. MS data of *N*-Me [3.3.1]azabicycle (6) (part 1)

Walkup Analysis Report

--- End Of Report --

Page 2 of 2

Printed at: 6:27 PM on: 8/6/2019

Figure S78. MS data of *N*-Me [3.3.1]azabicycle (6) (part 2)

Walkup MS Report

Figure 1: Base peak chromatogram

User Chromatogram Peak List

RT					
(min)	Area	Area %	Area Sum (%)	Base Peak (m/z)	Width (min)
0.	75 106650548	100.00	100.00	226.1442	0.180

Compound Table

	рт	Observed mass	Neutral observed	Theoretical mass	Mass error	Isotone match
Compound Label	(min)	(m/z)	mass (Da)	(Da)	(ppm)	score (%)
Cpd 1: C12 H19 N O3	0.75	248.1262	225.1370	225.1365	2.18	99.26
Mass errors of between -5.00 and 5.00 ppm with isotope match scores above 60% are considered confirmation of molecular formulae						

Page 1 of 2

Printed at: 6:27 PM on:8/6/2019

Figure S79. MS data of *N*-Me [3.3.1]azabicycle (6) (part 3)

Walkup MS Report

Figure: Extracted ion chromatogram (EIC) of compound.

150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 Counts vs. Mass-to-Charge (m/z)

Figure: Full range view of Compound spectra and potential adducts.

Figure: Zoomed Compound spectra view

(red boxes indicating expected theoretical isotope spacing and abundance)

Compound isotope peak List

m/z	z	Abund	Formula	Ion
226.1443	1	2824311.5	C12H19NO3	(M+H)+
227.1478	1	358342.2	C12H19NO3	(M+H)+
228.1498	1	37712.9	C12H19NO3	(M+H)+
229.1501	1	5251.6	C12H19NO3	(M+H)+
230.1410	1	2468.6	C12H19NO3	(M+H)+
248.1262	1	469635.3	C12H19NO3	(M+Na)+
249.1294	1	60601.9	C12H19NO3	(M+Na)+
250.1331	1	6829.8	C12H19NO3	(M+Na)+
251.1273	1	3046.4	C12H19NO3	(M+Na)+
252,1276	1	1597.5	C12H19NO3	(M+Na)+

--- End Of Report ---

Page 2 of 2

Printed at: 6:27 PM on:8/6/2019

Figure S80. MS data of *N*-Me [3.3.1]azabicycle (6) (part 4)

Figure S82. ¹³C NMR spectrum of *N*-Me [3.3.1]azabicycle (6) in CDCl₃

Figure S83. HSQC spectrum of *N*-Me [3.3.1]azabicycle (6) in CDCl₃

Figure S84. COSY spectrum of *N*-Me [3.3.1]azabicycle (6) in CDCl₃

Figure S85. HMBC spectrum of N-Me [3.3.1]azabicycle (6) in CDCl₃

Figure S86. NOESY spectrum of N-Me [3.3.1]azabicycle (6) in CDCl₃

Figure S87. ¹H-¹⁵N HMBC spectrum of *N*-Me [3.3.1]azabicycle (6) in CDCl₃

Figure S88. ¹H-¹⁵N HMBC spectrum of 7-Me [3.3.1]azabicycle (7) in CDCl₃

Figure S89. ¹H-¹⁵N HMBC spectrum of 7-iPr [3.3.1]azabicycle (8) in CDCl₃

Figure S90. ¹H-¹⁵N HMBC spectrum of 7,7-diMe [3.3.1]azabicycle (9) in CDCl₃

S49

Figure S94. ¹H-¹⁵N HMBC spectrum of diol (10) in D_2O (with additional 2 drops of d_6 -DMSO)

S51

Figure S98. ¹H-¹⁵N HMBC spectrum of aconitine HCl salt (13') in D₂O (with additional 2 drops of *d*₆-DMSO)

Figure S102. ¹³C NMR spectrum of crassicauline A HCl salt (**15'**) in D₂O

Figure S104. COSY spectrum of crassicauline A HCl salt (15') in D_2O

Figure S105. HMBC spectrum of crassicauline A HCl salt (15') in D₂O

Figure S106. NOESY spectrum of crassicauline A HCl salt (15') in D_2O

Figure S107. ¹H-¹⁵N HMBC spectrum of crassicauline A HCl salt (15') in D₂O

Figure S108. ¹H-¹⁵N HMBC spectrum of lappaconitine (16) in CDCl₃

Figure S109. ¹H-¹⁵N HMBC spectrum of lappaconitine HBr salt (16') in D₂O (with additional 2 drops of *d*₆-DMSO)

Figure S110. ¹H-¹⁵N HMBC spectrum of lycoctonine (17) in CDCl₃

Figure S111. ¹H NMR spectrum of lycoctonine HCl salt (17') in D₂O (with additional 2 drops of d_6 -DMSO and drops of DCl in 35% in D₂O, pD ~2)

Figure S112. ¹³C NMR spectrum of lycoctonine HCl salt (17') in D₂O (with additional 2 drops of d_6 -DMSO and drops of DCl in 35% in D₂O, pD ~2)

Figure S113. COSY spectrum of lycoctonine HCl salt (17') in D₂O (with additional 2 drops of d_6 -DMSO and drops of DCl in 35% in D₂O, pD ~2)

Figure S114. NOESY spectrum of lycoctonine HCl salt (17') in D_2O (with additional 2 drops of d_6 -DMSO and drops of DCl in 35% in D_2O , pD ~2)

Figure S115. ¹H-¹⁵N HMBC spectrum of lycoctonine HCl salt (17') in D₂O (with additional 2 drops of d_6 -DMSO and drops of DCl in 35% in D₂O, pD ~2)

Figure S116. ¹H-¹⁵N HMBC spectrum of MLA perchlorate (18) in CDCl₃

Figure S118. ¹H-¹⁵N HMBC spectrum of condelphine (20) in CDCl₃

Figure S120. ¹H-¹⁵N HMBC spectrum of neoline (21) in CDCl₃ with additional 2 drops of d_5 -pyridine

Figure S121. ¹H-¹⁵N HMBC spectrum of neoline (**21**) in CDCl₃ with additional 2 drops of d_5 -pyridine and 2 drops of NaOD solution (30% in D₂O, w/w)

Figure S121. Comparison of ¹H NMR spectra between those of neoline (**21**) in CDCl₃, in CDCl₃ with additional 2 drops of d_5 -pyridine, and in CDCl₃with additional 2 drops of d_5 -pyridine and 2 drops of NaOD solution (30% in D₂O, w/w)