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Materials and Methods 

The BErkeley High Resolution NO2 Product 

We use version 3.0B with daily NO2 profiles of the BErkeley High Resolution (BEHR) NO2 

Product, described in detail in (12) and validated in (25). Briefly, the BEHR product is based on 

the NASA OMI NO2 Standard Product, version 3.0 (26), but with custom tropospheric air mass 

factors (AMFs). These AMFs are calculated using higher resolution surface reflectance (MODIS 

MCD43D BRDF product, (27–30)), terrain elevation (GLOBE topographic database, (31)), and 

NO2 a priori profiles (simulated at daily, 12 km resolution). Although the product with daily NO2 

a priori profiles limits the analysis to 2005–2014, we have previously shown that these profiles 

are necessary to get optimum results for NOx lifetimes (14). 

Selection of cities for the study 

The 49 cities selected for this study were based on the list given in (32), Table A1.  These cities 

were shown by that study to be indicative of NOx trends in North America. Of the 47 cities listed 

therein, Vancouver, BC had to be removed because it fell outside the BEHR v3.0B domain. 

Three additional cities were added: Austin, TX and Baltimore, MD as large urban areas not 

included in the Russell at al. study, and Cheyenne, WY was added as it contains the NCAR-

Wyoming Supercomputing Center.  Of these 49, 12 had zero or one valid fits given the criteria 

described under “Lifetime quality filtering” below and therefore could not be used. 3 had valid 

fits but no statistically significant trend. Of the remaining 34, 3 had lifetime trend shapes more 

complex than the four simple groups could capture and 3 only had two good quality fits (Fig. S1, 

also see “Lifetime quality filtering” below). 
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Line density calculation and fitting 

NO2 line densities and lifetimes are calculated similarly to (8) and (18). For each day in the 

observation time period, the wind direction over each location is calculated as the average of 

winds over the first five layers of a 3 × 3 set of 12 km WRF-Chem grid boxes centered on that 

location. The WRF-Chem model is that used in (12); a North American domain of 405 × 254 

grid boxes at with 29 levels centered on 97º W, 39º N was used. Meteorological initial and 

boundary conditions were taken from the North American Regional Reanalysis (NARR) (33). U 

and V winds, temperature, and water vapor were nudged every 3 hours for all levels with 

nudging coefficients of 0.0003 s-1. The distance downwind, upwind, and perpendicular to the 

wind direction included in the line densities are defined by boxes manually chosen for each city 

to minimize the influence of other nearby sources while still capturing the full plume (see “Effect 

of box size”, below). Some wind directions were also excluded due to overlap with other nearby 

sources (Table S3). 

BEHR NO2 columns from each day were rotated so that the wind directions were aligned. Only 

days with an average wind speed > 3 m s-1 are used. A time average of the rotated columns, 

weighted by the inverse of the pixel area is computed, and then integrated in the across-wind 

direction to produce a line density. NO2 columns with cloud fraction 0.2, viewing zenith angle 

>60º, or flagged as in the row anomaly 

(http://projects.knmi.nl/omi/research/product/rowanomaly-background.php) are not included. 

These line densities are fit with an exponentially-modified Gaussian (EMG) function (10, 18): 
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http://projects.knmi.nl/omi/research/product/rowanomaly-background.php
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where a, x0, µx, σx, and B are fitting parameters. We use a non-linear interior point minimization 

algorithm (fmincon in Matlab) to minimize the cost function: 

  
2

0 0 2( , , , , ) ( | , , , , ) NO ( )x x x x

x

R a x B F x a x B x      (S2) 

where 𝐹 is the EMG fitting function from and NO2(x) the line densities. To avoid unphysical 

results, constraints are placed on the fitting parameters (Table S1). The rationale for these 

constraints is the same as in (14). 

The fitting procedure is repeated 10 times for each line density. For the first attempt a best guess 

of the initial values for the five fitting parameters is used (Table S2). For the remaining 9 

attempts, random values are used. The fit with the smallest residual by is kept as the best fit. The 

entire process is repeated twice for each city, and if the best fits do not agree, that fit is discarded. 

Lifetime calculation 

The fitting parameter 𝑥0 is related to the plume average NOx lifetime by: 

 0x

w
   (S3) 

where w is the average wind speed for that location. 

The absolute uncertainty of the lifetime is calculated as: 
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where 

 
0x is the uncertainty in the x0 parameter 

 VCD  is the uncertainty in the NO2 vertical column densities (25%) 

 n is the number of observations used in calculating the line densities. It is computed as 

the minimum number of pixels that contribute to the time average of any one grid cell 

during the line density calculation. 

 b is the uncertainty due to across wind integration distance (10%) 

 w is the uncertainty due to the choice of wind fields (30%) 

These uncertainties are assigned based on (10) and (18). The uncertainty in x0 is computed as a 

95% confidence interval for m – 5 degrees of freedom, where m is the number of points in the 

line density. The standard deviation needed for the confidence interval is calculated as: 
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where 𝑅 is the residual from Eq. (S2) and 
1

ih
 is the 𝑖th diagonal element on the inverse Hessian 

matrix returned by the minimization at the final solution (34). 

However, when considering trends, this error is likely an overestimate of the relative error 

between years for the same location, as part of the errors will be correlated across years: 

 Errors in polluted VCDs are largely attributable to the air mass factor (AMF). Errors in 

the AMF are in turn attributable to its inputs: surface reflectance, surface pressure, and 
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NO2 profile shape. Biases in any of these can persist across years even if day-specific 

inputs are used if the models representing them are unable to adequately represent the 

true state around the city. 

 The effect on lifetime due to box width was shown by (10) to monotonically increase 

with box width; since we use the same box width for all years, this error should be 

entirely correlated. 

 Unresolved complexity in terrain can lead to systematic errors in wind fields (35). 

Therefore, at least part of the error due to wind fields is likely correlated. 

The temporal correlation of these errors is not well studied. However, Beirle et al. (10) computed 

the standard mean error (SME) in the fit among line densities along wind directions divided into 

8 sectors, and found that this error was 10% to 40%. Since the 8 sectors used to calculate the 

SME are for the same city, their variation is a reasonable representation of the uncorrelated error 

to expect in a trend. Therefore, 10% is likely the lower bound for uncorrelated error in these 

trends. However, since we cannot explicitly separate the correlated and uncorrelated error in the 

lifetime trends, we retain the absolute lifetime error calculated as above as a conservative value 

when testing for significance of the trends.  

To test whether any two lifetimes are statistically different, we use a two sample 𝑡-test. Since the 

lifetimes have different uncertainties, we use the form (36): 
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and consider the difference statistically significant if calc DoF(95%, )t t n for a two-sided t-test. 

Here, τ is the lifetime, σ the standard deviation calculated by propagating the value for x0 from 

Eq. (S5) with Eq. (S4) and n is the number of points in the line densities. We tested reducing n 

by 5 to be the number of degrees of freedom of each lifetime as a conservative check; it did not 

affect our results. 

Lifetime quality filtering 

Visual examination of any selection of line densities and fits demonstrates that the fitting is not 

always able to reproduce the observed shape of the line densities, therefore criteria to identify 

accurate vs. inaccurate fits were required. To avoid biasing the results, four criteria were 

developed by simulating idealized line densities with fixed first-order lifetimes, identifying under 

which circumstances the fitting failed, and refining the criteria until they successfully accept 

good fits and reject bad fits. 

In detail, we generated line densities from an ideal 2D multibox model (37) with a constant 

emission source and a prescribed first order lifetime.  The model simulated a 2D Gaussian NO 

source with a total emission of 17.78 Mg NO h-1 (based off emissions of Chicago, IL) with a 

wind speed of 5 m s-1 in the x-direction and diffusion coefficients of 100 m2 s-1 in both x and y 

directions. The NOx lifetime in the model was represented as a fixed first-order loss. For model 

lifetimes between 1 and 9 h and emission widths between 3 and 162 km the model was run to 

steady state and the resulting 2D plume integrated perpendicular to the wind to generate a 
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modeled line density. These line densities (with a small amount of random noise, ±5%) were fit 

and the fitted lifetime compared to the specified lifetime for that run. If the fitted and model 

lifetimes were within 10%, that fit was considered correct, otherwise it was considered incorrect. 

We tested various criteria to classify the fits as good or bad by testing whether the criteria 

correctly identified fits with the lifetime within 10% of the modeled lifetime as good (true 

positive) and outside 10% as bad (true negative) or incorrectly classified fits within 10% as bad 

(false negative) or outside 10% as good (false positive). We found that the following 4 criteria 

correctly accepted or rejected all but one fit when the line density had 61 data points: 

1. 2 0.8R   

2. At least 1.5 lifetimes downwind of the plume center are within the domain 

3. The mean of the EMG fit is not different from the mean of the line density for any window 

of 20 points (test for systematic bias, see Fig. S4b). For every possible window of 20 

adjacent points in the line density and fit, the means are computed and tested if they are 

statistically different. If so, this indicates that the fit lies systematically above or below the 

line density and that this fit should be rejected as the lifetime will be biased. 

4. 0x x  . This checks that the emission width is not greater than the lifetime distance, which 

would potentially cause the emission shape to confound the lifetime. 

We also tested how the number of points in the line density affects the accuracy of the quality 

criteria (Fig. S5), varying the number of points used from 31 to 136. We found that the lowest 

fraction of times the quality filters incorrectly identified the fit as good (false positives) or bad 

(false negatives) requires 60-90 points in the line density. However, line densities with as few as 
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46 points are still well characterized by the quality filtering, and since the majority of our line 

densities have 46–60 points, we did not apply any quality filtering based on the number of 

points. 

Another source of error in the NO2 lifetime could be the upper limit imposed by vertical mixing 

and other non-chemical lifetimes. As NOx from the boundary layer mixes into the free 

troposphere, wind shear can act as an additional pseudo-loss process.  (38) estimated the 

effective lifetime due to vertical mixing to be ~10 h. Similarly, (18) note that the lifetimes 

derived from the EMG fitting are effective lifetimes that include effects such as plume 

meandering and grid resolution. Assuming these non-chemical lifetimes are reasonably constant 

over the study period, the effect on the trends will be to underestimate the year-to-year 

differences in chemical lifetime: since lifetimes add inversely (i.e. τtotal = [1/τ1 + 1/τ2 + … + 1/τn]
-

1), these non-chemical lifetimes will place an upper limit equal to their value on the observed 

lifetime. As the chemical lifetime increases, the observed lifetime will asymptotically approach 

the inverse sum of the non-chemical lifetimes, increasing more slowly than it would if the 

chemical lifetime alone was observed. The effect of vertical mixing is likely to be small in this 

study, since nearly all the observed lifetimes were < 5 hr, but the magnitude of the other non-

chemical lifetimes has not been quantified. Because these non-chemical lifetimes decrease the 

observed lifetime relative to the chemical lifetime, but do not change the derivative with respect 

to NOx, the only effect on this study should be to underestimate the actual change of chemical 

lifetimes. Therefore, any change deemed significant given the observed change will also 

represent a significant change in the chemical lifetime. 

Finally, as we see in Fig. S1b, the lifetime in San Francisco is much longer than any of the other 

cities investigated (~6 h). This is likely because San Francisco is situated on a peninsula that is 
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much longer in the north-south direction than east-west. This means the emission source is not 

Gaussian, and so the lifetime fitting may be attributing part of the emission shape to the lifetime. 

We tested removing San Francisco from our analysis; doing so does not change our conclusions. 

Since it passes the above quality filtering, we elected to leave it in the analysis. 

Effect of box size 

Beirle et al. (10) found that the box length and width alter the fitted lifetime by 5% and 10% 

respectively in tests done on the Riyadh, Saudi Arabia plume. Riyadh is much more isolated than 

many of the cities investigated in this study. However, our selection of box sizes aimed to limit 

the interference of nearby sources, making the source patterns we analyzed effectively as isolated 

as Riyadh. This was necessary to ensure accurate fitting, and implies that the effects of box 

length and width on the fitted lifetime found by (10) are applicate to this work.  

We have also tested the box length using modeled line densities. The results described above 

fitting various numbers of points (31 to 136) in the line densities from the 2D box model also 

demonstrate that, even if fitting too many or too few points adversely affects the lifetime, the 

quality criteria determined above are generally successful at removing that fit from 

consideration. Therefore, we believe that the specific choice of box length does not affect the 

trends found in this work. In general, we chose the largest box (up to 2° downwind, 1° 

left/right/upwind) possible without encountering secondary sources (Fig. S4a) in order to provide 

as much data as possible for the fit to work with. 

Impact of a priori data and comparison with other satellite products 

Producing NO2 vertical column densities requires certain a priori information, including cloud 

fraction and height, surface albedo and height, and the vertical distribution of NO2 in a given 
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satellite pixel. The subproduct of BEHR v3.0B used in this study (13) makes use of NO2 profiles 

simulated with WRF-Chem specifically for each retrieved day, including trends in emissions of 

various species.  

In order to check that the lifetime trends found in this work were not overly influenced by these 

modeled a priori profiles, we fit lifetimes to line densities calculated directly from WRF-Chem. 

Of the 29 cities that had good quality fits in both the BEHR and WRF-Chem, 18 (62%) fell into 

different categories (increasing, decreasing, CCU, CCD, complex, or no trend) in BEHR vs. 

WRF-Chem. This indicates that it is unlikely that the lifetimes obtained from the BEHR line 

densities are simply mirroring the lifetime imposed in WRF-Chem.  

Similarly, we fit lifetimes to line densities computed from the NASA Standard Product 3 (SP3, 

(26, 39)). Of the 33 cities with good fits from both NASA and BEHR line densities, 19 (58%) 

fell into different categories. In (14), we had found that the lifetime was similar between a 

retrieval using spatially coarse, monthly average a priori profiles (as SP3 does) and one using 

spatially fine, daily a priori profiles (as BEHR does). We suspect that the difference in results is 

simply due to the larger sample here, finding cases where the coarse a priori profiles do affect 

the results. This could happen if the border between two 1° grid cells that the NASA a priori 

profiles are simulated in occurs partway along the line density and causes a sharp drop or 

increase in the line density.  In theory, the BEHR retrieval should provide a better representation 

of the line densities, as the a priori profiles are at the same resolution as the OMI pixels and 

account for the day-to-day variations in wind speed/direction. 
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Steady-state model 

The steady state model used to generate Fig. 1 and Fig. S6 is conceptually similar to that in (40)  

except that OH, HO2, and RO2 are solved for separately.  The model assumes that HO2, RO2, and 

the whole HOx family are each individually in steady state considering the reactions: 

 

We then write the following set of equations: 

 

These equations are solved numerically using “vpasolve” in Matlab. Initial guesses for [HO], 

[HO2], and [RO2] are given by: 

 

where 
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and 

 

[NOx], VOCR, P(HOx), and α are inputs into the mode. The values for the various rate 

expressions and other constants are given in Table S5. 

MOVES emissions 

The MOtor Vehicle Emission Simulator (MOVES) was obtained from 

https://www.epa.gov/moves/latest-version-motor-vehicle-emission-simulator-moves. To 

calculate bottom-up NOx emissions for the required cities, the county at the geographic center of 

the city was selected, and NOx emissions from all sources were aggregated to monthly totals. 

https://www.epa.gov/moves/latest-version-motor-vehicle-emission-simulator-moves
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Fig. S1. 

Absolute weekday lifetimes in each of the four groups from Fig. 1 of the main paper. Missing 

years are due to either to the algorithm failing to fit the line density successfully, or from failing 

the quality criteria discussed above. 
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Fig. S2. 

Median differences in weekend (Saturday-Sunday) and weekday (Tuesday-Friday) lifetime for 

each of the four groups of cities in Fig. 3 of the main paper. 
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Fig. S3. 

Violin plots of the ratio of the 95th percentile of NO2 line densities to the 5th percentile of line 

densities upwind of the position of the 95th percentile. Smaller values indicate increasing 

contribution of the background NO2 VCDs to the urban average. The top and bottom horizontal 

lines represent the minimum and maximum of the ratio; the middle horizontal line is the mean. 

The lighter background shapes’ widths are proportional to the number of cities with the 

corresponding ratio on the 𝑦-axis. 
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Fig S4. 

Hypothetical line densities (circles) and fits (lines) used to demonstrate (a) the problem with 

downwind sources and (b) the systematic bias test. (a) The sum (red) of a primary source (black) 

and secondary, downwind source (blue) create a shape not well captured by the EMG function. 

As a result, the fit of the combined line density (red) decays slower than the true fit of the 

primary source alone (black) in order to include the secondary source in the fit. (b) The window 

(red box) is 20 line density points wide, and the thick horizontal lines represent the mean of the 

line density and fit within that window. If the means are statistically different, the fit is rejected 

due to probable systematic bias between the fit and line density; here, you can see that the fit 

may be overestimating the lifetime as it lies above the line density throughout the window. All 

possible 20 point windows are tested and the fit rejected if any of them have a systematic 

difference. 
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Fig. S5 

Effect of the number of points in the line density on the accuracy of the four lifetime fit goodness 

criteria. “Positive” means the fit is considered good. 
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Fig S6 

Isopleths of NOx lifetime vs. NOx concentration and (a) volatile organic compound OH reactivity 

(VOCR), (b) RO2 + NO alkyl nitrate branching ratio, α, and (c) production of HOx calculated 

from the steady state model described above.  
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Fig. S7 

Line densities and fits for key years of the decreasing lifetime group. 
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Fig. S8 

Line densities and fits for key years for cities in the increasing lifetime group. 
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Fig. S9 

Line densities and fits for key years for cities in the concave up (CCU) lifetime group. 
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Fig. S10 

Line densities and fits for key years for the cities in the concave down (CCD) lifetime group. 
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Fig. S11 

Line densities and fits for key years for cities that do not fit the in previous four groups.  
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Table S1. 

Constraints imposed on the EMG fitting. 

Parameter Allowed range Rationale 

a [0, ) mol a represents plume mass, must be positive 

x0 [1.6, ) km 1/e distance for exponential, 1.6 km is 1/3 grid 

spacing. Minimum distinguishable e-folding 

distance 

µx 
x x  km µ represents plume center, must lie within domain 

σx 
2[min( ), (max(NO ))]x x  σ represents Gaussian width, assume 3 points 

required to define a Gaussian, min width at half 

max is half of 5 km grid cell. 

B 
2[0,max(NO )]  mol km-1 B represents background, must be positive and less 

than maximum line density 

Additional constraints Rationale 

0 max( )x x x    At least one lifetime must occur between plume 

center and edge of domain to be reliably measured 

2

2

0 0 0

exp 20
2

x x x

x x x

  
   

 
 

Prevent the exponential term from approaching 

infinity in the fitting procedure 
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Table S2. 

Best guesses for initial values of each fitting parameter. 

 

Parameter Init. value Rationale 

a 
2NO ( )

x

x dx  Since a relates to plume mass, the total line density integral is a 

reasonable first guess 

x0 54 km Assuming a 5 m s-1 wind and 3 h lifetime to get the e-folding 

lifetime 

µx 
2(max(NO ))x  The peak center should be near the maximum line density 

σx FWHM/2.355 Estimate the full width-half max of the Gaussian which is 2.355 

of its σ 

B 
2min(NO )  The minimum line density is a reasonable guess for the 

background 
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Table S3 

The centers and box widths used to calculate line densities for the cities used in this study. The 

latitude and longitude give the center coordinates of the city, and the box width describes the size 

of the box within which line densities are calculated. For example, a box width of [1 2 0.5 0.5] 

means that NO2 VCDs 1 degree upwind, 2 degrees downwind, and 0.5 degrees to either side of 

the center latitude and longitude were used to calculate the line densities. The rejected wind 

directions column lists wind directions not included in the line densities. The directions specify a 

45º cone centered on that direction that the wind is blowing towards. For example, defining an 

eastward wind direction as 0º, E in this column means any day that the wind vector is between 

±22.5º is not included in the line density. 

 

Location Latitude Longitude Box Size (upwind, downwind, left, right) in degrees Rejected Wind Directions 

Albuquerque, NM 35.2 -106.55 [1 2 0.5 0.5] NW 

Atlanta, GA 33.8 -84.35 [1 2 1 1] SE, E 

Austin, TX 30.26 -97.74 [1 2 1 1] SW 

Bakersfield, CA 35.3 -119 [0.5 1 0.5 0.5]  

Baltimore, MD 39.3 -76.2 [1 2 1 1] NE, SW 

Boston, MA 42.45 -71 [1 2 1 1] S, SW 

Charlotte, NC 35.25 -80.85 [1 1 1 1]  

Cheyenne, WY 41.1 -104.8 [1 2 1 1]  

Chicago, IL 41.8 -87.7 [1 2 1 1]  

Cincinnati, OH 39.1 -84.55 [1 1 1 1]  

Cleveland, OH 41.45 -81.67 [0.5 1 1 1] W 

Columbus, OH 40 -83.1 [0.5 1 0.5 0.5]  

Dallas, TX 32.85 -96.95 [1 2 1 1]  

Denver, CO 39.75 -105 [1 2 1 1]  

Detroit, MI 42.35 -83.1 [1 2 1 1] S 

Fresno, CA 36.7 -119.75 [1 2 0.5 0.5] NW, W, SW, S 

Houston, TX 29.8 -95.25 [1 2 1 1] NE 

Indianapolis, IN 39.8 -86.15 [0.75 1.5 0.75 0.75]  

Jacksonville, FL 30.45 -81.6 [1 2 0.5 0.5] SE 

Kansas City, MO 39.15 -94.55 [1 2 1 1] W, S 

Knoxville, TN 35.95 -84 [0.75 1 0.75 0.75]  

Las Vegas, NV 36.2 -115.2 [1 2 1 1]  

Los Angeles, CA 34 -117.9 [1 2 1 1]  

Memphis, TN 35.1 -90.1 [1 2 0.5 0.5] W, NW 

Miami, FL 26.05 -80.3 [1 2 1 1]  

Minneapolis, MN 44.95 -93.25 [1 2 1 1]  

Montreal, QC 45.6 -73.7 [1 2 1 1]  
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Nashville, TN 36.2 -86.6 [0.5 1 0.5 0.5]  

New Orleans, LA 30.05 -90.3 [1 2 1 1] W, NW 

New York, NY 40.85 -73.7 [1 2 1 1] W, SW 

Omaha, NE 41.3 -96.05 [1 2 0.5 0.5]  

Orlando, FL 28.5 -81.3 [0.5 1 0.5 0.5]  

Philadelphia, PA 40 -75.2 [1 1 0.5 0.5] SW, NE 

Phoenix, AZ 33.6 -112 [1 2 1 1]  

Pittsburgh, PA 40.4 -79.95 [1 2 1 1] W, NW 

Portland, OR 45.45 -122.55 [1 2 1 1]  

Reno, NV 39.55 -119.7 [1 2 0.5 0.5] SW 

Richmond, VA 37.4 -77.3 [0.5 1 0.5 0.5]  

Sacramento, CA 38.65 -121.4 [0.5 1 0.5 0.5] S, SW, W 

Salt Lake City, UT 40.7 -111.95 [0.75 1.5 0.75 0.75]  

San Antonio, TX 29.55 -98.45 [1 2 0.5 0.5] NE 

San Diego, CA 32.8 -117 [1 1 0.5 0.5]  

San Francisco, CA 37.6 -122 [1 2 1 1] NE 

Seattle, WA 47.35 -122.25 [1 1.5 1 1]  

St Louis, MO 38.65 -90.35 [1 2 1 1]  

Tampa, FL 27.9 -82.4 [0.75 1.5 0.75 0.75] N, NE 

Toronto, ON 43.7 -79.5 [1 2 1 1] S, SE 

Tucson, AZ 32.25 -110.85 [1 2 0.5 0.5] NW, SE 

Washington, DC 38.9 -77 [0.75 1.5 0.75 0.75] NE, W 
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Table S4 

 

Calculated t-scores and tabulated t-scores for the number of degrees of freedom in each lifetime 

fit for the difference between each pair of key years for the cities used in Fig. 3. For cities with 

increasing/decreasing lifetime, only one pair of years are shown. For cities with concave up or 

down lifetimes, two pairs are shown. 

 

City Years tcalc ttable Years tcalc ttable 

Albuquerque 2006->2010 6.49 1.99    

Atlanta 2006->2008 5.71 1.98 2008->2011 2.32 1.98 

Charlotte 2008->2009 5.3 2    

Cincinnati 2010->2011 3.17 2    

Cleveland 2006->2009 7.29 2.03 2009->2010 6.11 2.03 

Columbus 2008->2009 3.74 2.02    

Dallas 2006->2010 6.41 1.99 2010->2013 3.55 1.98 

Denver 2006->2010 6.88 1.99 2010->2013 4.98 1.98 

Indianapolis 2006->2013 8.5 2    

Jacksonville 2011->2012 3.99 1.98    

Kansas City 2006->2009 8.64 1.99 2009->2011 2.53 1.98 

Knoxville 2006->2008 2.1 2 2008->2012 5.8 2.01 

Los Angeles 2006->2010 2.91 1.98 2010->2013 3.29 1.98 

Memphis 2006->2010 10.22 1.99 2010->2013 13.51 1.99 

Minneapolis 2006->2013 10.77 1.99    

Montreal 2006->2009 5.75 1.98 2009->2013 8.09 1.99 

Nashville 2006->2013 5.15 2.02    

New Orleans 2007->2009 7.99 1.99 2009->2012 8.28 1.99 

New York 2006->2011 6.92 1.99 2011->2013 2.42 1.98 

Omaha 2007->2013 6.92 1.99    

Orlando 2007->2009 2.43 2.01    

Philadelphia 2006->2007 3.78 2 2007->2013 3.62 2 

Pittsburgh 2011->2013 10.33 1.99    

Reno 2006->2011 9.44 1.99    

San Diego 2006->2013 7.91 2.01    

San Francisco 2006->2011 2.09 1.98    

St Louis 2006->2007 4.75 1.98 2007->2013 11.15 1.99 

Tampa 2006->2011 11.23 2.01    

Toronto 2008->2013 5.27 1.98    

Tucson 2009->2013 3.45 1.98    

Washington DC 2006->2009 4.7 1.99 2009->2013 9.56 2 
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Table S5 

Rate constants used in the steady-state model. 

Constant Value 

NO2/NO 4 

α 0.04 

P(HOx) 6.25 × 106 molec. cm-3 s-1 

kOH+NO2 

 
kRO2+NO 8 × 10-12 cm3 molec.-1 s-1 

kRO2+RO2 6.8 × 10-14 cm3 molec.-1 s-1 

kRO2+HO2 8 × 10-12 cm3 molec.-1 s-1 

kHO2+HO2 

 
letting [H2O] = 0.01M 

kHO2+NO k = 3.5 × 10-12 ∙ e250/T 

k2,eff 8 × 10-12 cm3 molec.-1 s-1 

k4 1.1 × 10-11 cm3 molec.-1 s-1 

k5,eff 5 × 10-12 cm3 molec.-1 s-1 
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