
Neuron, Volume 106

Supplemental Information

Spaced Training Forms Complementary Long-Term

Memories of Opposite Valence in Drosophila

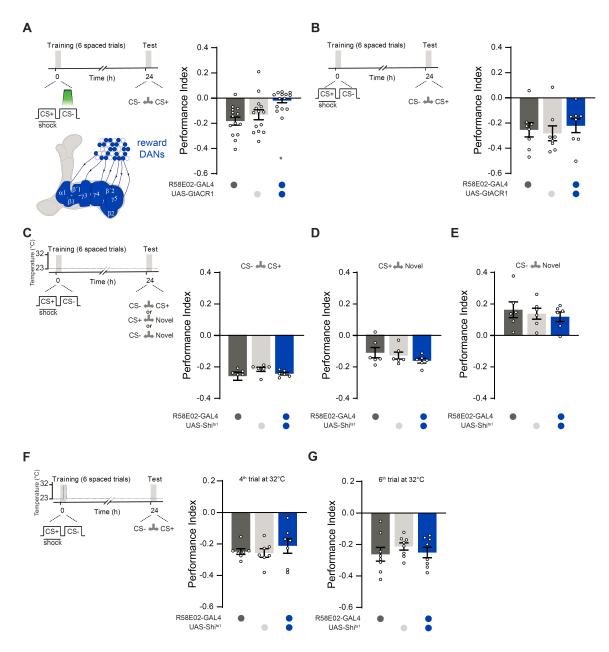

Pedro F. Jacob and Scott Waddell

Figure S1. Related to Figure 1.

Spaced training forms CS+ aversive memory and CS- approach memory.

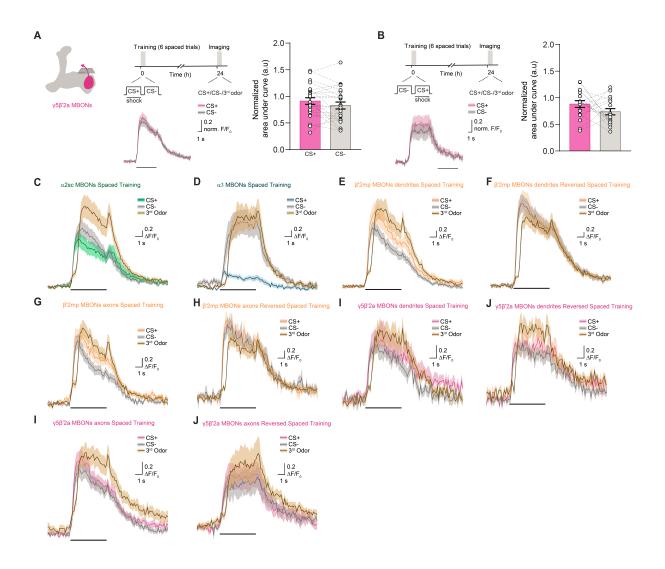

(A) Spaced, reversed spaced and massed training generated a similar 24 h CS+ aversive memory when flies were tested CS+ *vs.* Air. (B) A 24 h CS- approach memory (CS- *vs.* Air), was only measurable following spaced training spaced. After reversed spaced and massed training flies avoided the CS- odor. (C) Massed training did not generate measurable 96 h memory. (D) Spaced relief training (6 trials, shock then odor A training, with 15 min ITI) generated approach memory to odor A, when measured immediately after training. Relief memory to odor A was not formed when ISI was increased from 45 to 135 s. Varying ISI between CS+ and CS- in spaced training produced similar 24 h LTM (E) and CS- approach memory (F). Asterisks denote significant difference. Data mean \pm SEM. Individual data points displayed as dots. See Table S1 for statistics.

Figure S2. Related to Figure 2.

CS- approach memory requires PAM DANs during CS- presentation.

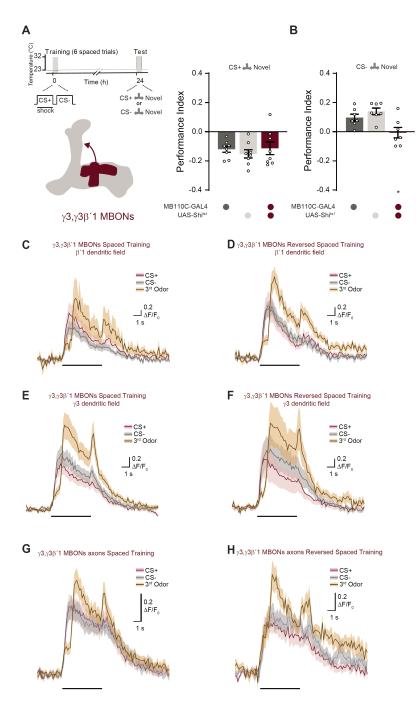

(A) Left: protocol with green light exposure during CS- presentation and PAM/R58E02-GAL4 DAN schematic. Right: Blocking PAM DANs with R58E02-GAL4; UAS-GtACR1 during CSimpaired 24 h memory. (B) Left: protocol without green light. Right: UAS-GtACR1 expression in PAM DANs (R58E02-GAL4) does not disrupt 24 h memory after spaced training. (C) Left: protocol. Right: Expressing UAS-*Shi*^{ts1} in R58E02-GAL4 DANs does not disrupt 24 h memory after spaced training at permissive 23°C. (D) CS+ aversive memory is unaffected. (E) CS- approach memory is unaffected. (F) Left: protocol with temperature shifting, dashed line. Right: Blocking DANs with R58E02-GAL4; UAS-*Shi*^{ts1}, only during the 4th trial or (G) only the 6th trial did not alter 24 h memory. Asterisks denote significant differences. Data mean ± SEM. Individual data points displayed as dots. See Table S1 for statistics.

Figure S3. Related to Figure 3.

Parallel aversive and safety memories can be recorded as depression of odor-specific responses in corresponding MBONs.

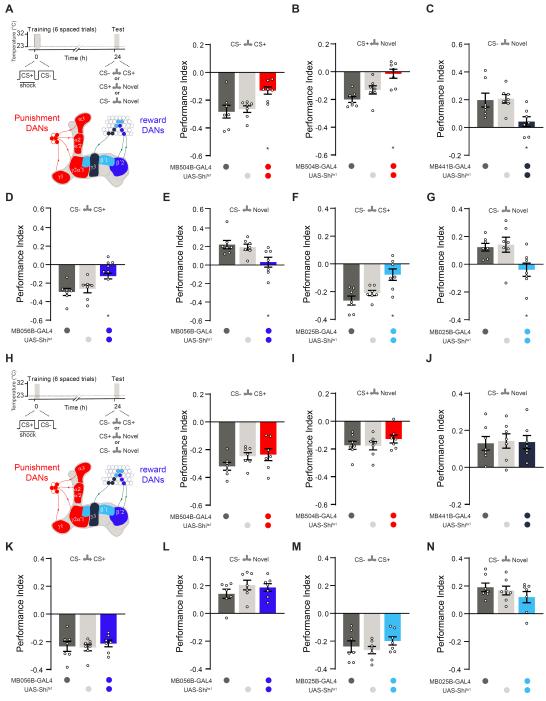
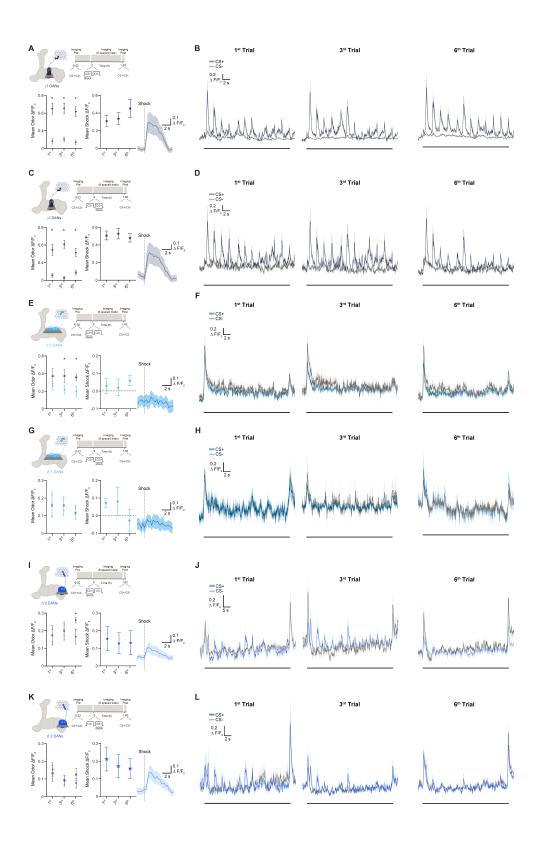

Odor responses in MBON- γ 5 β '2a are unchanged following spaced training. Imaging plane in presynaptic terminals of MBON- γ 5 β '2a and training and imaging protocols. (**A**) Spaced training and (**B**) reversed spaced training do not change odor-evoked responses in MBON- γ 5 β '2a. (**C-J**) Non-normalized imaging traces for the MBON recordings reported in Figure 3 and S3A and B, in the order depicted in each figure. Odor-evoked activity traces show mean (solid line) with SEM (shadow). Black line underneath, 5 s odor. Asterisks denote significant difference between averaged CS+ and CS- responses. See Table S1 for statistics.

Figure S4. Related to Figure 4.

Output from γ 3, γ 3 β '1 MBONs is required for expression of CS- approach memory.

(**A**) Left: protocol with temperature shifting (dashed line) and illustration of $\gamma3$, $\gamma3\beta'1$ MBONs. Right: blocking $\gamma3$, $\gamma3\beta'1$ MBONs during testing with MB110C-GAL4/UAS-*Shi*^{ts1} did not impair CS+ aversive memory (CS+ *vs.* Novel). (**B**) Blocking $\gamma3$, $\gamma3\beta'1$ MBONs during testing impaired CS- approach memory. (**C-H**) Non-normalized imaging traces for the recordings of $\gamma3$, $\gamma3\beta'1$ MBON responses reported in Figure 4, in the order they are depicted in the figure. Odor-evoked activity traces show mean (solid line) with SEM (shadow). Black line underneath, 5 s odor. Asterisks denote significant difference. Data mean ± SEM. Individual data points displayed as dots. See Table S1 for statistics.



Blocking specific dopaminergic neurons during spaced training localises discrete sites of aversive and safety memory.

GAL4 driver and temperature control experiments for data presented in Figure 5. (A) Left: protocol with temperature shifting (dashed line) and color-coded illustration of DANs labelled with each GAL4. Right: blocking PPL1-DANs during spaced training with MB504B-GAL4; UAS-Shl^{ts1} impaired 24 h memory and (B) CS+ aversive memory (CS+ vs. Novel). (C) CSapproach memory was impaired with PAM-y3 block. (**D**) Blocking PAM- β '2mp impaired 24 h memory and (E) CS- approach memory. (F) Blocking PAM-B'1 impaired 24 h memory and

В

(**G**) CS- approach memory. (**H**) Left: protocol (dashed line) and color-coded illustration of DANs labelled with each GAL4. Right: Expressing UAS-*Shl*^{ts1} in PPL1-DANs (MB504B-GAL4) did not disrupt 24 h memory after spaced training at permissive 23°C. (**I**) CS+ aversive memory was also unaffected. (**J**) CS- approach memory was unaffected for MB441B-GAL4; UAS-*Shl*^{ts1}(PAM- γ 3) flies at permissive 23°C. (**K**) At permissive 23°C, 24 h memory of MB056B-GAL4; UAS-*Shl*^{ts1} (PAM- β '2mp) flies was unaffected, as was (**L**) MB056B-GAL4; UAS-*Shl*^{ts1} CS- approach memory, (**M**) MB025B-GAL4; UAS-*Shl*^{ts1} (PAM- β '1) 24 h memory, and (**N**) MB025B-GAL4; UAS-*Shl*^{ts1} CS- approach memory. Asterisks denote significant differences. Data mean ± SEM. Individual data points displayed as dots. See Table S1 for statistics.

Figure S6. Related to Figure 6.

Spaced training enhanced CS+ responses in aversive γ 3 DANs and CS- responses in rewarding β '1 and β '2mp DANs.

(**A** and **C**) Top: Imaging plane in the presynaptic field of γ 3 DANs and training and imaging protocol. (**A**) Bottom left panel: From the 1st training trial the CS+ showed an increased

mean response relative to the CS-. This was also observed during reversed spaced training (C). (A and C) Bottom right panels: y3 DANs showed a strong calcium response to electric shock. (**B and D**) Calcium responses during the 1st, 3rd and 6th training trials. Odor-evoked activity traces show mean (solid line) with SEM (shadow). Black line underneath, 60 s odor. (E) Top: Imaging plane in the presynaptic field of β' 1 DANs and training and imaging protocol. Bottom left: From the 3rd training trial CS- responses were increased relative to CS+ responses. Bottom right: B'1 DANs did not respond to shock with an increase in calcium. (**F**) Calcium responses during the 1st, 3rd and 6th trials of spaced training. Horizontal line denotes odor stimulus. (G) Top: Imaging plane in the presynaptic field of β' 1 DANs and training and imaging protocol. Bottom left: No differences between the CS+ and CSresponses were observed during reversed spaced training. Bottom right: B'1 DANs did not respond to shock with an increase in calcium. (H) Calcium responses during the 1st, 3rd and 6th trials of reversed spaced training. Horizontal line denotes odor stimulus. (I) Top: Imaging plane in the presynaptic field of β' 2mp DANs and training and imaging protocol. Bottom left: At the 6th training trial, the CS- evoked an increased mean response (over the 60 s of odor presentation) in comparison to the CS+, but not for the other trials analyzed. Bottom right: Aligning the activity of β' 2mp DANs to time of each of the 12 shocks (dashed line) reveals a shock-evoked response. Calcium responses were calculated by averaging the fluorescence over the 3 s following each shock. (J) β '2mp DAN calcium responses during the 1st, 3rd and 6th trials of spaced training. Horizontal line denotes odor stimulus. (**K**) Top: Imaging plane in presynaptic field of β '2mp DANs and training and imaging protocol. Bottom left: No changes were observed between CS+ and CS- responses during reversed spaced training. Bottom right: β'2mp DANs responded to shock. (L) β'2mp DAN calcium responses during the 1st. 3rd and 6th trial of reversed spaced training. Horizontal line denotes odor stimulus. CS+ data corresponds to average data in which 50% of trials used MCH as CS+ and 50% were OCT CS+. Same applies for CS- data. Asterisks denote significant difference between averaged CS+ and CS- responses. See Table S1 for statistics.

Figure	Experiment	n	Normally distributed	Statistical test	p value
Figure 1A	CS+ memory (CS+ vs Novel) vs. LTM (CS+ vs CS-); spaced training	8-13	yes	unpaired t-test t(19)= 2.890	p=0.0094
riguic IA	CS- vs Novel; spaced training	10	yes	one sample t-test t(9)=3.312	p=0.0091
Figure 1B	CS+ memory (CS+ vs Novel) vs. LTM (CS+ vs CS-); reversed spaced training	8-11	yes	unpaired t-test t(17)=0.6628	p=0.5163
rigure rb	Performance of CS- vs Novel different from zero; reversed spaced training	8	yes	one sample t-test t(7)=1.546	p=0.1660
Figure 1C	CS+ memory (CS+ vs Novel) vs. LTM (CS+ vs CS-); massed training	10-15	yes	unpaired t-test t(23)=0.7649	p=0.4521
riguic to	Performance of CS- vs Novel different from zero; massed training	10	yes	one sample t-test t(9)=1.151	p=0.2792
Figure 1D	CS+ memory (CS+ vs Novel) vs. LTM (CS+ vs CS-); fasting LTM protocol	10-11	yes	unpaired t-test t(19)=1.802	p=0.09
rigure rb	Performance of CS- vs Novel different from zero; fasting LTM protocol	10	yes	one sample t-test t(9)=0.4190	p=0.6850
	Time-line of CS+ vs. CS- memory (all time points)			F[5,44]=20.61	p<0.0001
	Immediate vs. 24 h				p=0.0011
Figure 1E	30 min vs. 24 h	8-10	yes	Dunnett's multiple	p=0.0122
riguio in	3 h vs. 24 h	0-10	yes	comparisons test	p=0.0043
	14 h vs. 24 h			companionis test	p=0.9998
	96 h vs. 24 h				p=0.0028
	Time-line of CS- vs. Novel (all time points)			F[5,44]=4.33	p=0.0028
	Immediate vs. 24h				p=0.0026
	30 min vs. 24 h	0.10		Dunnett's multiple comparisons test	p=0.047
	3 h vs. 24 h	8-10	yes		p=0.3717
	14 h vs. 24 h				p=0.9997
	96 h vs. 24 h				p=0.8464
	Performance of CS- vs. Novel different from zero @ Immediate time point	8		one sample t-test t(7)=0.6530	p=0.5346
	Performance of CS- vs. Novel different from zero @ 30 min time point	8		one sample t-test(7)=0.9635	p=0.3674
	Performance of CS- vs. Novel different from zero @ 3 h time point	8		one sample t-test(7)=1.931	p=0.0948
Figure 1F	Performance of CS- vs. Novel different from zero @ 14 h time point	8	yes	one sample t-test(7)=5.557	p<0.0001
	Performance of CS- vs. Novel different from zero @ 24 h time point	8		one sample t-test(7)= 9.305	p=0.0009
	Performance of CS- vs. Novel different from zero @ 96 h time point	10		one sample t-test(9)= 2.885	p=0.0180
	Time-line of CS+ vs. Novel (all time points)			F[5,44]=20.61	p<0.0001
	Immediate vs. 24h				p=0.0011
	30 min vs. 24 h		yes	Dunnett's multiple	p=0.0122
	3 h vs. 24 h	8-10		comparisons test	p=0.0043
	14 h vs. 24 h				p=0.9921
	96 h vs. 24 h				p=0.0028
	Performance of CS- vs. Novel different from zero @ Immediate timepoint	10	yes	one sample t-test t(9)=0.1127	p=0.9219
	rad vs. WT; spaced training LTM (CS+ vs CS-)	7	yes	unpaired t-test t(12)=2.225	p=0.0416
Figure 1G	rad vs. WT; spaced training CS+ memory (CS+ vs Novel)	8	yes	unpaired t-test t(14)=2.969	p=0.0102
Ū	rad vs. WT; spaced training CS- memory (CS- vs Novel)	7	yes	unpaired t-test t(12)=0.2593	p=0.7998
	CXM vs. WT; spaced training LTM (CS+ vs CS-)	7-8	yes	unpaired test t(13)=3.943	p=0.0017
Figure 1G	CXM vs. WT; spaced training CS+ memory (CS+ vs Novel)	9-12	yes	unpaired t-test t(19)=2.703	p=0.0141
U	CXM vs. WT; spaced training CS- memory (CS- vs Novel)	11-13	yes	unpaired t-test t(22)=1.720	p=0.0995
	LTM performance (CS+ vs CS-); PAM block		,	F[2,41]=24.93	p<0.0001
	R58E02-GAL4; UAS-Shi ^{fs1} vs.+; UAS-Shi ^{fs1}			., .	p<0.0001
Figure 2A	R58E02-GAL4; UAS-Shi ^{/s1} vs. R58E02-GAL4; +	14-15	yes	Tukey's multiple comparisons	p<0.0001
	R58E02-GAL4; + vs.+; UAS-Shi ^{ts1}			test	p=0.4404
Figure 2B	CS+ memory (CS+ vs Novel); PAM block	6	yes	F[2,15]=0.59	p=0.5668
0.	CS- memory (CS- vs Novel); PAM block		,	F[2,19]=26.32	p<0.0001
	R58E02-GAL4: UAS-Shi ^{ts1} vs.+: UAS-Shi ^{ts1}			.,.,	p<0.0001
Figure 2C	R58E02-GAL4; UAS-Shi ^{fs1} vs. R58E02-GAL4; +	7.9 100 Tuke	Tukey's multiple comparisons	p=0.0002	
	R58E02-GAL4; + vs.+; UAS- <i>Shi</i> ^{fs1}	test	p=0.3370		
	LTM performance (CS+ vs CS-); PAM block during the 1 st and 2 nd trial			F[2,21]=11.40	p=0.0004
	R58E02-GAL4; UAS-Shi ^{4s1} vs.+; UAS-Shi ^{4s1}			1[2,21] 11.40	p=0.0013
Figure 2D	R58E02-GAL4; UAS-Sh ^{fs1} vs. R58E02-GAL4; +	8	yes	Tukey's multiple comparisons	p=0.0014
	R58E02-GAL4; + vs.+; UAS-Shi ^{ds1}			test	p=0.9992
	LTM performance (CS+ vs CS-); PAM block during the 3 rd and 4 th trial			F[2,21]=9.209	p=0.9992 p=0.0004
	R58E02-GAL4; UAS-Shi ^{ts1} vs.+; UAS-Shi ^{ts1}		yes	י נב,בין=ס.בטס	p=0.0004 p=0.0272
Figure 2E	R58E02-GAL4; UAS-Shi ^{s1} vs. r, 0A3-5hi R58E02-GAL4; UAS-Shi ^{s1} vs. R58E02-GAL4; +	8		Tukey's multiple comparisons	p=0.0272 p=0.0011
	R58E02-GAL4; + vs.+; UAS-Shi ^{s1}			test	•
Figure 25	LTM performance (CS+ vs CS-); PAM block during the 5 th and 6 th trial				p=0.3565
Figure 2F	LTM performance (CS+ vs CS-); PAM block during the 5" and 6" trial R58E02-GAL4; UAS-Shi ^{ts1} vs.+; UAS-Sh ^{is1}			F[2,21]=7.741	p=0.003
	R58E02-GAL4; UAS-Shi ^{ts*} vs.+; UAS-Shi ^{ts*} R58E02-GAL4; UAS-Shi ^{ts*} vs. R58E02-GAL4; +	8	yes	Tukey's multiple comparisons	p=0.0083
		-	,	test	p=0.0062
	R58E02-GAL4; + vs.+; UAS-Shi ^{ts1}				p=0.9916

Table S1. Statistical details. Related to Figures 1-6 and S1-S6.

Figure 3DR39A05-GFigure 3ER39A05-GAL4Figure 3GR8Figure 3GR6Figure 3HR66C08-GFigure 4AMB1Figure 4BMB110C-GFigure 4CMB110C-GFigure 4DMB110C-GAL4Figure 4EMB110C-GAL4Figure 5AMFigure 5BMFigure 5CMFigure 6BMFigure 6BM				paired t-test t(27)=4.277	p=0.0002
Figure 3D R39A05-G Figure 3E R39A05-GAL4 Figure 3G R6 Figure 3G R6 Figure 3H R66C08-G Figure 4A MB1 Figure 4B MB110C-G Figure 4C MB1 Figure 4C MB110C-G Figure 4D MB110C-G Figure 4E MB110C-G Figure 5A M Figure 5B M Figure 5C M Figure 6B M Figure 6B M Figure 6B M Figure 6H M	G0239-GAL4 after spaced training	20	no	Wilcoxon matched-pairs	p<0.0001
Figure 3D R39A05-G Figure 3E R39A05-GAL4 Figure 3G R6 Figure 3G M8 Figure 3G M8110C-G Figure 4D MB110C-G Figure 4D MB110C-G Figure 4E MB110C-G Figure 4E MB110C-G Figure 5A M Figure 5B M Figure 5C M Figure 6B M Figure 6D M Figure 6H M				signed rank W(19)=169	
Figure 3D R39A05-G Figure 3E R39A05-GAL4 Figure 3G R6 Figure 3G M8 Figure 3G M8110C-G Figure 4D MB110C-G Figure 4D MB110C-G Figure 4E MB110C-G Figure 4E MB110C-G Figure 5A M Figure 5B M Figure 5C M Figure 6B M Figure 6D M Figure 6H M	39A05-GAL4 after spaced training, dendrites	28	yes	paired t-test t(27)=3.374	p=0.023
Figure 3E R39A05-GAL4 Figure 3F R39A05-GAL4 Figure 3G R6 Figure 3G R6 Figure 3H R66C08-0 Figure 4A MB1 Figure 4B MB110C-G Figure 4D MB110C-G Figure 4D MB110C-G Figure 4D MB110C-G Figure 4D MB110C-GAL4 Figure 5A M Figure 5B M Figure 5C M Figure 6B M Figure 6B M Figure 6D M Figure 6H M	-GAL4 after spaced training reverse order, dendrites	24	yes	paired t-test t(23)=0.19	p=0.851
Figure 3F R39A05-GAL4 Figure 3G R6 Figure 3H R66C08-0 Figure 4A MB1 Figure 4B MB110C-G Figure 4D MB110C-G Figure 4D MB110C-G Figure 4D MB110C-G Figure 4D MB110C-G Figure 4E MB110C-GAL4 Figure 5A M Figure 5B N Figure 5C M Figure 6B M	5-GAL4 after spaced training, presynaptic terminals	34	yes	paired t-test t(33)=2.639	p=0.013
Figure 3G Ref Figure 3H R66C08-4 Figure 4A MB1 Figure 4B MB110C-G Figure 4C MB110C-G Figure 4D MB110C-G Figure 4E MB110C-GAL4 Figure 5A M Figure 5B M Figure 5C M Figure 6B M Figure 6D M Figure 6H M	after spaced training reverse order, presynaptic terminals	24	yes	paired t-test t(23)=0.1181	P=0.118
Figure 3H R66C08-4 Figure 4A MB1 Figure 4B MB110C-G Figure 4C MB110C-G Figure 4D MB110C-G Figure 4D MB110C-G Figure 4D MB110C-G Figure 4E MB110C-GAL4 Figure 5A M Figure 5B M Figure 5C M Figure 6B M Figure 6D M Figure 6H M	66C08-GAL4 after spaced training, dendrites	20		paired t-test t(19)=0.1799	p=0.8591
Figure 4A MB1 Figure 4B MB110C-G. Figure 4C MB110C-G. Figure 4C MB110C-G. Figure 4D MB110C-G. Figure 4E MB110C-G. Figure 4E MB110C-G. Figure 4E MB110C-G. Figure 4E MB110C-G. Figure 5A M. Figure 5B M. Figure 5C M. Figure 6B M. Figure 6B M. Figure 6D M. Figure 6H M.			yes	,	· ·
Figure 4B MB110C-G Figure 4C MB110C-G Figure 4D MB110C-G Figure 4E MB110C-GAL4 Figure 5A MB10C-GAL4 Figure 5B MM Figure 5C M Figure 6B M Figure 6F M Figure 6H M	-GAL4 after spaced training reverse order, dendrites	20	yes	paired t-test t(19)=0.03199	p=0.9748
Figure 4C MB1 Figure 4D MB110C-G Figure 4E MB110C-G Figure 4F MB110C-GAL4 Figure 5A MB1 Figure 5B MM Figure 5C MM Figure 6B MM Figure 6F MM Figure 6H MM	110C-GAL4 after spaced training, β '1 dendrites	34	yes	paired t-test t(33)=3.793	p=0.0006
Figure 4D MB110C-G Figure 4E MB110C Figure 4F MB110C-GAL4 Figure 5A M Figure 5B M Figure 5B M Figure 5C M Figure 6B M Figure 6B M Figure 6B M Figure 6F M	GAL4 after spaced training reverse order, β '1 dendrites	30	no	Wilcoxon matched-pairs	p=0.749
Figure 4D MB110C-G Figure 4E MB110C Figure 4F MB110C-GAL4 Figure 5A M Figure 5B M Figure 5B M Figure 5C M Figure 6B M Figure 6B M Figure 6B M Figure 6F M				signed rank W(29)=31	0.011
Figure 4E MB110C Figure 4F MB110C-GAL4 I Figure 5A M Figure 5B M Figure 5C M Figure 6B M Figure 6B M Figure 6A M Figure 6F M Figure 6H M	110C-GAL4 after spaced training, γ3 dendrites	36	no	Wilcoxon matched-pairs	p=0.011
Figure 4E MB110C Figure 4F MB110C-GAL4 I Figure 5A M Figure 5B M Figure 5B M Figure 6B M Figure 6B M Figure 6B M Figure 6A M Figure 6H M				signed rank W(35)=308	
Figure 4F MB110C-GAL4 I Figure 5A Figure 5A Figure 5B Figure 6B Figure 6P Figure 6F Figure 6H	GAL4 after spaced training reverse order, γ3 dendrites	30	yes	paired t-test t(29)=2.140	p=0.04
Figure 5A M M M M M M M M M M M M M M M M M M	C-GAL4 after spaced training, presynaptic terminals	34	yes	paired t-test t(33)=0.1275	p=0.899
Figure 5A	after spaced training reverse order, presynaptic terminals	22	yes	paired t-test t(21)=1.535	p=0.14
Figure 5A	LTM performance (CS+ vs CS-); DAN block			F[4,53]=5.093	p=0.0015
Figure 6F Figure 6H Figure 6H Figure 6H	MB504B-GAL4; UAS-Shi ^{ts1} vs.+; UAS-Shi ^{ts1}				p=0.0024
Figure 5B M M M M M M M M M M M M M M M M M M	MB441B-GAL4; UAS-Shi ^{ts1} vs.+; UAS-Shi ^{ts1}	11-13	yes	Dunnett's multiple	p=0.8683
Figure 5B	MB056B-GAL4; UAS-Shi ^{ts1} vs.+; UAS-Shi ^{ts1}			comparisons test	p=0.0055
Figure 5B	MB025B-GAL4; UAS- <i>Shi^{ts1}</i> vs.+; UAS- <i>Shi^{ts1}</i>	F[4,37]=3.371	p=0.0429		
Figure 5B M M M M M M M M M M M M M M M M M M	CS+ memory (CS+ vs Novel); DAN block			F[4,37]=3.371	p=0.0189
Figure 6D Figure 6F Figure 6H Figure 6H Figure 6H	MB504B-GAL4; UAS- <i>Shi^{ts1}</i> vs.+; UAS- <i>Shi^{ts1}</i>				p=0.0362
Figure 5C	MB441B-GAL4; UAS-Shi ^{ts1} vs.+; UAS-Shi ^{ts1}	8-9	yes	Dunnett's multiple	p=0.9663
Figure 5C	MB056B-GAL4; UAS-Shl ^{ts1} vs.+; UAS-Shl ^{ts1}			comparisons test	p=0.9992
Figure 5C M M M Figure 6B M Figure 6D M Figure 6F M Figure 6H	MB025B-GAL4; UAS-Shi ^{ts1} vs.+; UAS-Shi ^{ts1}				p=0.9997
Figure 5C M M M Figure 6B M Figure 6D M Figure 6F M Figure 6H	CS- memory (CS- vs Novel); DAN block			F[4,335]=11.76	p<0.0001
Figure 6B Figure 6D Figure 6F Figure 6H Figure 6H	MB504B-GAL4; UAS-Shl ^{ts1} vs.+; UAS-Shl ^{ts1}				p=0.8466
Figure 6B Figure 6D Figure 6F Figure 6H Figure 6H	MB441B-GAL4; UAS-Shl ^{ts1} vs.+; UAS-Shl ^{ts1}	8	yes	Dunnett's multiple	p=0.0002
Figure 6B Figure 6D Figure 6F Figure 6H	MB056B-GAL4; UAS-Shl ^{ts1} vs.+; UAS-Shl ^{ts1}	-	,	comparisons test	p=0.0007
Figure 6D Figure 6F Figure 6H	MB025B-GAL4; UAS-Shl ^{fs1} vs.+; UAS-Shl ^{fs1}				p=0.0443
Figure 6D Figure 6F Figure 6H	MB441B-GAL4 after spaced training			Repeated measures ANOVA,	p 0.0110
Figure 6D Figure 6F Figure 6H	MDHT ID-OALT aller spaced training			F[19,57]=5.089	p=0.0102
Figure 6D Figure 6F Figure 6H	pretraining CS+ vs. pretraining CS-			1 [13,57]=3.005	p>0.9999
Figure 6D Figure 6F Figure 6H	pretraining CS+ vs. pretraining CS+ pretraining CS+ vs. posttraining CS+ pretraining CS+ vs. posttraining CS-			Bonferroni's multiple comparisons test	p=0.0388
Figure 6D Figure 6F Figure 6H					
Figure 6D Figure 6F Figure 6H	pretraining CS- vs. posttraining CS-			compansons test	p=0.0001
Figure 6D Figure 6F Figure 6H					p>0.9999
Figure 6F Figure 6H	/IB441B-GAL4 after reversed spaced training			Repeated measures ANOVA,	p=0.0066
Figure 6F Figure 6H				F[19,57]=6.417	
Figure 6F Figure 6H	pretraining CS+ vs. pretraining CS-	20	yes		p>0.9999
Figure 6H	pretraining CS+ vs. posttraining CS+			Bonferroni's multiple	p<0.0001
Figure 6H	pretraining CS+ vs. posttraining CS-			comparisons test	P=0.0406
Figure 6H	pretraining CS- vs. posttraining CS-				p>0.9999
Figure 6H	MB025B-GAL4 after spaced training			Repeated measures ANOVA,	p=0.0066
Figure 6H				F[19,57]= 5.244	p 0.0000
Figure 6H	pretraining CS+ vs. pretraining CS-	20	1/00		p=0.6615
Figure 6H	pretraining CS+ vs. posttraining CS+	20	yes	Bonferroni's multiple	p=0.0254
Figure 6H	pretraining CS+ vs. posttraining CS-			comparisons test	p=0.0019
Figure 6H	pretraining CS- vs. posttraining CS-				p=0.2918
	/B025B-GAL4 after reversed spaced training			Repeated measures ANOVA,	- 0.0045
	-			F[19,57]= 6.063	p=0.0045
	pretraining CS+ vs. pretraining CS-				p=0.1846
Figure 6J	pretraining CS+ vs. posttraining CS+	20	yes	Bonferroni's multiple	p=0.0048
Figure 6J	pretraining CS+ vs. posttraining CS-			comparisons test	p>0.9999
Figure 6J	pretraining CS- vs. posttraining CS-				p=0.045
Figure 6J	MB056B-GAL4 after spaced training			Repeated measures ANOVA,	p -0.040
Figure 6J	mouse one+ and spaced training			F[19,57]=8.042	p=0.0012
Figure 6J	pretraining CS+ vs. pretraining CS			1 [13,37]=0.042	n=0.507
	pretraining CS+ vs. pretraining CS-	20	yes	Destance II III I	p=0.5877
	pretraining CS+ vs. posttraining CS+			Bonferroni's multiple	p>0.9999
	pretraining CS+ vs. posttraining CS-			comparisons test	p=0.0276
	pretraining CS- vs. posttraining CS-				p=0.0041
Figure 6L	/IB056B-GAL4 after reversed spaced training	20	yes	Repeated measures ANOVA,	p=0.283

	CS+ vs. Air; different training regimens	8	yes	F[2,21]=0.4275	p=0.65
	CS- vs. Air; different training regimens			F[2,27]=7.609	p=0.0024
	spaced vs. reversed spaced				p=0.0021
	spaced vs. massed				p=0.0313
Figure S1B	reversed spaced vs. massed	10	yes	test	p=0.5231
-	Performance of CS- vs. Air different from zero; spaced training			one sample t-test t(9)=2.375	p=0.0416
-	ispaced w. maased Tukey's multiple comparison Performance of CS vs. Ar afferent from zero, respect training To a sample Hest 109-237 Performance of CS vs. Ar afferent from zero, massed training ore sample Hest 109-237 Performance of CS vs. Ar afferent from zero, massed training of h ore sample Hest 109-237 Performance of CS vs. CS - (Th) different from zero, massed training of h ore sample Hest 109-236 Performance of CS vs. Novel different from zero, massed training of h ore sample Hest 109-237 Performance of Sacod relaf training 05 II different from zero ore sample Hest 109-236 Performance of sacod relaf training 05 II different from zero set 109-237 Performance of sacod relaf training 05 II different from zero ore sample Hest 107-1507 Performance of sacod relaf training 05 II different from zero set 500-000-0000 Performance (SS vs CS) performace with waying IT 11 yes r[2,19]-1402 ITM performance (SS vs CS) performace with waying IT 12 yes r[2,19]-1402 wes S1E CS memory (CS vs Nove) Mb block (temperature controls) 6 yes r[2,19]-132 wes S2 TM performance (SS vs CS) PAM block (temperature controls) 6 yes r[2,19]-1342 <td>p=0.0332</td>	p=0.0332			
_		-		,	p=0.0290
				,	p=0.2016
Figure S1C		7	Ves	,	p=0.7133
		ŕ	yes	Tukey's multiple comparisons test one sample t-test t(9)=2.375 one sample t-test t(9)=2.511 one sample t-test t(9)=2.511 one sample t-test t(6)=1.434 one sample t-test t(6)=0.3854 one sample t-test t(6)=1.434 one sample t-test t(7)=5.191 one-sample t-test t(7)=2.425 one-sample t-test t(7)=1.597 F[3,44]=1.228 F[3,40]=1.462 F[2,39]=7.229 Tukey's multiple comparisons test F[2,15]=1.05 F[2,15]=1.32 F[2,15]=1.32 F[2,15]=1.32 F[2,16]=0.3142 F[2,18]=0.9606 F[2,21]=0.4088 F[2,21]=0.4088 F[2,18]=7.316 Tukey's multiple comparisons test F[2,18]=7.316 Tukey's multiple comparisons test F[2,18]=10.99 Tukey's multiple comparisons test F[2,18]=5.393 Tukey's multiple comparisons test F[2,18]=5.395 Tukey's multiple comparisons test F[2,18]=5.395 Tukey's multiple comparisons test F[2,18]=5.395 Tukey's multiple comparisons test	p=0.2969
				,	p=0.0013
Eigure S1D			Vec	,	p=0.0411
			yes	F[2,27]=7.609 Tukey's multiple comparisons test one sample t-test t(9)=2.375 one sample t-test t(9)=2.511 one sample t-test t(6)=1.434 one sample t-test t(6)=1.434 one sample t-test t(6)=1.434 one sample t-test t(7)=5.191 one-sample t-test t(7)=2.425 one-sample t-test t(7)=1.597 F[3,44]=1.228 F[2,39]=7.229 Tukey's multiple comparisons test F[2,15]=1.005 F[2,15]=1.02825 F[2,15]=1.02825 F[2,15]=1.02825 F[2,15]=1.03142 F[2,15]=0.3142 F[2,15]=0.3142 F[2,18]=0.9606 F[2,18]=0.9606 F[2,21]=0.4088 F[2,18]=0.9142 F[2,18]=0.9060 F[2,18]=0.9142 Tukey's multiple comparisons test Tukey's multiple comparisons test F[2,18]=0.914 Tukey's multiple comparisons test Tukey's multiple comparisons test F[2,18]=5.393 Tukey's multiple comparisons test F[2,18]=5.395 Tukey's multiple comparisons test F[2,18]=5.395	p=0.0411 p=0.1543
	· · ·	10		,	•
÷					p=0.31
Figure STF		11	yes		p=0.2393
				F[2,39]=7.229	p=0.0021
Figure S2A		14	yes	Tukey's multiple comparisons	p=0.0370
-					p=0.0018
					p=0.4920
Figure S2B			yes		p=0.7567
Figure S2C	LTM performance (CS+ vs CS-); PAM block (temperature controls)	6	yes	F[2,15]=1.605	p=0.2335
Figure S2D	CS+ memory (CS+ vs Novel); PAM block (temperature controls)	6	yes	F[2,15]=1.132	p=0.3484
Figure S2E	CS- memory (CS- vs Novel); PAM block (temperature controls)	6	yes	F[2,15]=0.3142	p=0.7351
Figure S2F	LTM performance (CS+ vs CS-); PAM block during the 4 th trial	7	yes	F[2,18]=0.9606	p=0.4014
Figure S2G	LTM performance (CS+ vs CS-); PAM block during the 6 th trial	8	yes	F[2,21]=0.5720	p=0.5729
Figure S3A	R66C08-GAL4 after spaced training, presynaptic terminals	24	yes	paired t-test t(23)=1.815	p=0.0825
Figure S3B	R66C08-GAL4 after spaced training reverse order, presynaptic terminals	18	yes	paired t-test t(17)=1.464	p=0.1615
Figure S4A	CS+ memory (CS+ vs Novel); γ3, γ3β'1 MBONs block	8	yes	F[2,21]= 0.4088	p=0.6696
	CS- memory (CS- vs Novel); y3, y3β'1 MBONs block			F[2,18]=7.316	p=0.0047
	+; MB110C-GAL4/UAS-Shi ^{/s1} vs.+; UAS-Shi ^{/s1}				p=0.0042
Figure S4B	+; MB110C-GAL4/UAS- <i>Shi^{ts1}</i> vs. +; MB110C-GAL4	7	yes		p=0.0431
	+; MB110C-GAL4 vs.+; UAS-Shl ^{s1}			test	p=0.5292
	TM performance (CS+ vs CS-); PPI 1-DAN block			E[2 18]=6 134	p=0.0093
				. [2,10] 0.101	p=0.0290
Figure S5A		7	yes	Tukey's multiple comparisons	p=0.0129
				test	p=0.0123
				E[2 18]-10 00	p=0.0210
				1 [2,10]-10.00	p=0.0000
Figure S5B		7	yes	Tukey's multiple comparisons	•
				test	p=0.0006
				FI0 401 5 000	p=0.2257
				F[2,18]=5.393	p=0.0146
Figure S5C		7	yes	one sample t-test t(9)=2.595 one sample t-test t(6)=1.434 one sample t-test t(6)=0.3854 one sample t-test t(6)=1.424 one-sample t-test t(7)=5.191 one-sample t-test t(7)=2.425 one-sample t-test t(7)=1.597 F[3,44]=1.228 F[3,40]=1.462 F[2,39]=7.229 Tukey's multiple comparisons test F[2,15]=1.032 F[2,15]=1.32 F[2,15]=0.3142 F[2,15]=0.3142 F[2,15]=0.3142 F[2,15]=0.3142 F[2,15]=0.3142 F[2,16]=0.606 F[2,15]=0.3142 F[2,18]=0.9606 F[2,21]=0.4088 F[2,18]=7.316 Tukey's multiple comparisons test F[2,18]=6.134 Tukey's multiple comparisons test F[2,18]=10.99 Tukey's multiple comparisons test F[2,18]=5.393 Tukey's multiple comparisons test F[2,18]=5.395 Tukey's multiple comparisons test <	p=0.0233
					p=0.0334
					p=0.9833
				F[2,18]=5.855	p=0.0110
Figure S5D	MB056B-GAL4; UAS-Shi ^{ls1} vs.+; UAS-Shi ^{ls1}	7	ves		
Figure S5D	MB056B-GAL4; UAS-Sh ^{<i>i</i>s1} vs.+; UAS-Sh ^{<i>i</i>s1} MB056B-GAL4; UAS-Sh ^{<i>i</i>s1} vs. MB056B-GAL4; +	7	yes	Tukey's multiple comparisons	p=0.0110
Figure S5D	MB056B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1} MB056B-GAL4; UAS-Sh ^{fs1} vs. MB056B-GAL4; + MB056B-GAL4; + vs.+; UAS-Sh ^{fs1}	7	yes	Tukey's multiple comparisons	p=0.0110 p=0.0463
Figure S5D	MB056B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1} MB056B-GAL4; UAS-Sh ^{fs1} vs. MB056B-GAL4; + MB056B-GAL4; + vs.+; UAS-Sh ^{fs1} CS- memory (CS- vs Novel); PAM-β'2mp DAN block	7	yes	Tukey's multiple comparisons test	p=0.0110 p=0.0463 p=0.0122
	MB056B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1} MB056B-GAL4; UAS-Sh ^{fs1} vs. MB056B-GAL4; + MB056B-GAL4; + vs.+; UAS-Sh ^{fs1} CS- memory (CS- vs Novel); PAM-β'2mp DAN block MB056B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1}			Tukey's multiple comparisons test F[2,18]=5.395	p=0.0110 p=0.0463 p=0.0122 p=0.8000
Figure S5D	MB056B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1} MB056B-GAL4; UAS-Sh ^{fs1} vs. MB056B-GAL4; + MB056B-GAL4; + vs.+; UAS-Sh ^{fs1} CS- memory (CS- vs Novel); PAM-β'2mp DAN block MB056B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1}			Tukey's multiple comparisons test F[2,18]=5.395 Tukey's multiple comparisons	p=0.0110 p=0.0463 p=0.0122 p=0.8000 p=0.0146
	MB056B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1} MB056B-GAL4; UAS-Sh ^{fs1} vs. MB056B-GAL4; + MB056B-GAL4; + vs.+; UAS-Sh ^{fs1} CS- memory (CS- vs Novel); PAM-β'2mp DAN block MB056B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1} MB056B-GAL4; UAS-Sh ^{fs1} vs. MB056B-GAL4; +			Tukey's multiple comparisons test F[2,18]=5.395 Tukey's multiple comparisons	p=0.0110 p=0.0463 p=0.0122 p=0.8000 p=0.0146 p=0.0455
	MB056B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1} MB056B-GAL4; UAS-Sh ^{fs1} vs. MB056B-GAL4; + MB056B-GAL4; + vs.+; UAS-Sh ^{fs1} CS- memory (CS- vs Novel); PAM-β'2mp DAN block MB056B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1} MB056B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1} MB056B-GAL4; + vs.+; UAS-Sh ^{fs1}			Tukey's multiple comparisons test F[2,18]=5.395 Tukey's multiple comparisons test	p=0.0110 p=0.0463 p=0.0122 p=0.8000 p=0.0146 p=0.0455 p=0.0184
Figure S5E	MB056B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1} MB056B-GAL4; UAS-Sh ^{fs1} vs. MB056B-GAL4; + MB056B-GAL4; + vs.+; UAS-Sh ^{fs1} CS- memory (CS- vs Novel); PAM-β'2mp DAN block MB056B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1} MB056B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1} MB056B-GAL4; + vs.+; UAS-Sh ^{fs1} LTM performance (CS+ vs CS-); PAM-β'1 DAN block	7	yes	Tukey's multiple comparisons test F[2,18]=5.395 Tukey's multiple comparisons test F[2,18]=8.944	p=0.0110 p=0.0463 p=0.0122 p=0.8000 p=0.0146 p=0.0455 p=0.0184 p=0.9000
	MB056B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1} MB056B-GAL4; UAS-Sh ^{fs1} vs. HB056B-GAL4; + MB056B-GAL4; + vs.+; UAS-Sh ^{fs1} CS- memory (CS- vs Novel); PAM-β'2mp DAN block MB056B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1} MB056B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1} MB056B-GAL4; + vs.+; UAS-Sh ^{fs1} LTM performance (CS+ vs CS-); PAM-β'1 DAN block MB025B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1}	7	yes	Tukey's multiple comparisons test F[2,18]=5.395 Tukey's multiple comparisons test F[2,18]=8.944 Tukey's multiple comparisons	p=0.0110 p=0.0463 p=0.0122 p=0.8000 p=0.0146 p=0.0455 p=0.0184 p=0.9000 p=0.002
Figure S5E	MB056B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1} MB056B-GAL4; UAS-Sh ^{fs1} vs. MB056B-GAL4; + MB056B-GAL4; + vs.+; UAS-Sh ^{fs1} CS- memory (CS- vs Novel); PAM-β'2mp DAN block MB056B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1} MB056B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1} LTM performance (CS+ vs CS-); PAM-β'1 DAN block MB025B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1} MB025B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1}	7	yes	Tukey's multiple comparisons test F[2,18]=5.395 Tukey's multiple comparisons test F[2,18]=8.944 Tukey's multiple comparisons	p=0.0110 p=0.0463 p=0.0122 p=0.8000 p=0.0146 p=0.0455 p=0.0184 p=0.9000 p=0.002 p=0.0239
Figure S5E	MB056B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1} MB056B-GAL4; UAS-Sh ^{fs1} vs. MB056B-GAL4; + MB056B-GAL4; + vs.+; UAS-Sh ^{fs1} CS- memory (CS- vs Novel); PAM-β'2mp DAN block MB056B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1} MB056B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1} LTM performance (CS+ vs CS-); PAM-β'1 DAN block MB025B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1} MB025B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1} MB025B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1} MB025B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1}	7	yes	Tukey's multiple comparisons test F[2,18]=5.395 Tukey's multiple comparisons test F[2,18]=8.944 Tukey's multiple comparisons test	p=0.0110 p=0.0463 p=0.0122 p=0.8000 p=0.0146 p=0.0455 p=0.0184 p=0.9000 p=0.002 p=0.0239 p=0.0018 p=0.0018
Figure S5E	MB056B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1} MB056B-GAL4; UAS-Sh ^{fs1} vs. MB056B-GAL4; + MB056B-GAL4; + vs.+; UAS-Sh ^{fs1} CS- memory (CS- vs Novel); PAM-β'2mp DAN block MB056B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1} MB056B-GAL4; UAS-Sh ^{fs1} vs. MB056B-GAL4; + MB056B-GAL4; + vs.+; UAS-Sh ^{fs1} LTM performance (CS+ vs CS-); PAM-β'1 DAN block MB025B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1} MB025B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1} CS- memory (CS- vs Novel); PAM-β'1 DAN block	7	yes	Tukey's multiple comparisons test F[2,18]=5.395 Tukey's multiple comparisons test F[2,18]=8.944 Tukey's multiple comparisons test	p=0.0110 p=0.0463 p=0.0122 p=0.8000 p=0.0146 p=0.0455 p=0.0184 p=0.9000 p=0.002 p=0.0239 p=0.0188
Figure S5E	MB056B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1} MB056B-GAL4; UAS-Sh ^{fs1} vs. MB056B-GAL4; + MB056B-GAL4; VAS-Sh ^{fs1} CS- memory (CS- vs Novel); PAM-β'2mp DAN block MB056B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1} MB056B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1} LTM performance (CS+ vs CS-); PAM-β'1 DAN block MB025B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1} MB025B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1} CS- memory (CS- vs Novel); PAM-β'1 DAN block MB025B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1}	7 7 7	yes	Tukey's multiple comparisons test F[2,18]=5.395 Tukey's multiple comparisons test F[2,18]=8.944 Tukey's multiple comparisons test	p=0.0110 p=0.0463 p=0.0122 p=0.8000 p=0.0146 p=0.0455 p=0.0184 p=0.9000 p=0.002 p=0.0239 p=0.0018 p=0.4695 p=0.0188 p=0.0261
Figure S5E Figure S5F	MB056B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1} MB056B-GAL4; UAS-Sh ^{fs1} vs. MB056B-GAL4; + MB056B-GAL4; VAS-Sh ^{fs1} CS- memory (CS- vs Novel); PAM-β'2mp DAN block MB056B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1} MB056B-GAL4; UAS-Sh ^{fs1} vs. MB056B-GAL4; + MB056B-GAL4; + vs.+; UAS-Sh ^{fs1} LTM performance (CS+ vs CS-); PAM-β'1 DAN block MB025B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1} MB025B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1}	7 7 7	yes	Tukey's multiple comparisons test F[2,18]=5.395 Tukey's multiple comparisons test F[2,18]=8.944 Tukey's multiple comparisons test F[2,18]=5 Tukey's multiple comparisons test	p=0.0110 p=0.0463 p=0.0122 p=0.8000 p=0.0146 p=0.0455 p=0.0184 p=0.9000 p=0.002 p=0.0239 p=0.0018 p=0.4695 p=0.0188 p=0.0261 p=0.0261 p=0.0472
Figure S5E Figure S5F Figure S5G	$\begin{array}{c} MB056B\text{-}GAL4; UAS\text{-}Sh^{l\pm1} vs\text{.+}; UAS\text{-}Sh^{l\pm1} \\ MB056B\text{-}GAL4; UAS\text{-}Sh^{l\pm1} vs\text{.}MB056B\text{-}GAL4; + \\ MB056B\text{-}GAL4; UAS\text{-}Sh^{l\pm1} \\ \hline CS\text{-}memory(CS\text{-}vsNovel); PAM\text{-}B^{D2mp}DANblock \\ MB056B\text{-}GAL4; UAS\text{-}Sh^{l\pm1} vs\text{.+}; UAS\text{-}Sh^{l\pm1} \\ MB025B\text{-}GAL4; + vs\text{.+}; UAS\text{-}Sh^{l\pm1} \\ MB025B\text{-}Sh^{l\pm1} \\ MB025B\text{-}Sh^{l\pm1} \\ MB025B\text{-}Sh^{l\pm1} \\ MB025B\text{-}Sh^{l\pm1} \\ MS^{l\pm1} \\ MS^{l\pm1} \\ MS^{l\pm1} \\ MS^{l\pm1$	7 7 7	yes yes	Tukey's multiple comparisons test F[2,18]=5.395 Tukey's multiple comparisons test F[2,18]=8.944 Tukey's multiple comparisons test F[2,18]=5 Tukey's multiple comparisons test	p=0.0110 p=0.0463 p=0.0122 p=0.8000 p=0.0146 p=0.0455 p=0.0184 p=0.9000 p=0.002 p=0.0023 p=0.00188 p=0.0188 p=0.0188 p=0.0261 p=0.0472 p=0.9546
Figure S5E Figure S5F	MB056B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1} MB056B-GAL4; UAS-Sh ^{fs1} vs. MB056B-GAL4; + MB056B-GAL4; VAS-Sh ^{fs1} CS- memory (CS- vs Novel); PAM-β'2mp DAN block MB056B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1} MB056B-GAL4; UAS-Sh ^{fs1} vs. MB056B-GAL4; + MB056B-GAL4; + vs.+; UAS-Sh ^{fs1} LTM performance (CS+ vs CS-); PAM-β'1 DAN block MB025B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1} MB025B-GAL4; UAS-Sh ^{fs1} vs.+; UAS-Sh ^{fs1}	7 7 7	yes	Tukey's multiple comparisons test F[2,18]=5.395 Tukey's multiple comparisons test F[2,18]=8.944 Tukey's multiple comparisons test F[2,18]=5 Tukey's multiple comparisons test	p=0.0110 p=0.0463 p=0.0122 p=0.8000 p=0.0146 p=0.0455 p=0.0184 p=0.9000 p=0.002 p=0.0239 p=0.0018 p=0.4695 p=0.0188 p=0.0261 p=0.0261 p=0.0472

Figure S5K	LTM performance (CS+ vs CS-); PAM-β'2mp DAN block (temperature	7	1/00	F[2,18]=0.2763	p=0.7617
	controls)	1	yes		
Figure S5L	CS- memory (CS- vs Novel); PAM-β'2mp DAN block (temperature controls)	7	yes	F[2,18]=1.053	p=0.3693
Figure S5M	LTM performance (CS+ vs CS-); PAM-β'1 DAN block (temperature controls)	7	Yes	F[2,18]=1.031	p=0.3769
Figure S5N	CS- memory (CS- vs Novel); PAM-β'1 DAN block (temperature controls)	7	yes	F[2,18]=1.064	p=0.3658
	MB441B-GAL4 after spaced training CS+ vs CS- response 1 st trial	20	yes	paired t-test(19)=3.219	p=0.0033
Figure S6A	MB441B-GAL4 after spaced training CS+ vs CS- response 3 rd trial	20	Yes	paired t-test(19)=3.485	p=0.0017
	MB441B-GAL4 after spaced training CS+ vs CS- response 6 th trial	20	yes	paired t-test(19)=3.805	p=0.0007
	MB441B-GAL4 after reversed spaced training CS+ vs CS- response 1 st trial	20	yes	paired t-test(19)=4.443	p=0.0004
Figure S6C	MB441B-GAL4 after reversed spaced training CS+ vs CS- response 3 rd trial	20	Yes	paired t-test(19)=8.27	p<0.0001
	MB441B-GAL4 after reversed spaced training CS+ vs CS- response 6 th trial	20	yes	paired t-test(19)=3.567	p=0.0026
	MB025B-GAL4 after spaced training CS+ vs CS- response 1 st trial	20	yes	paired t-test(19)=1.365	p=0.1855
Figure S6E	MB025B-GAL4 after spaced training CS+ vs CS- response 3rd trial	20	Yes	paired t-test(19)=2.161	p=0.0414
	MB025B-GAL4 after spaced training CS+ vs CS- response 6 th trial	20	yes	paired t-test(19)=2.172	p=0.0404
	MB025B-GAL4 after reversed spaced training CS+ vs CS- response 1 st trial	20	yes	paired t-test(19)=0.0972	p=0.9246
Figure S6G	MB025B-GAL4 after reversed spaced training CS+ vs CS- response 3rd trial	20	Yes	paired t-test(19)=0.0975	p=0.9242
	MB025B-GAL4 after reversed spaced training CS+ vs CS- response 6 th trial	20	yes	paired t-test(19)=0.2381	p=0.8166
	MB056B-GAL4 after spaced training CS+ vs CS- response 1 st trial		no	Wilcoxon matched-pairs	p=0.8242
		20	10	signed rank W(19)=24	
Figure S6I	MB056B-GAL4 after spaced training CS+ vs CS- response 3^{ro} trial		no	Wilcoxon matched-pairs	p=0.8968
rigule Sol				signed rank W(19)=17	
	MB056B-GAL4 after spaced training CS+ vs CS- response 6 th trial	20	no	Wilcoxon matched-pairs	p=0.0437
		20		signed rank W(19)=202	
	MB056B-GAL4 after reversed spaced training CS+ vs CS- response 1 st trial	20	no	Wilcoxon matched-pairs	p=0.4319
		20		signed rank W(19)=-86	
Figure S6K	MB056B-GAL4 after reversed spaced training CS+ vs CS- response 3rd trial		no	Wilcoxon matched-pairs	p=0.8609
i igui e Oolt		20		signed rank W(19)=20	
	MB056B-GAL4 after reversed spaced training CS+ vs CS- response 6 th trial	20	no	Wilcoxon matched-pairs	p=0.0872
		20		signed rank W(19)=184	

	Odor Acuity							Shock Acuity	
Genotype	23°C				32°C		32°C		
	MCH	OCT	IAA	MCH	OCT	IAA	23°C	32-0	
WT	-0.32±0.06	-0.30±0.06	-0.35±0.05	N.A.			-0.65±0.03	0.60±0.07	
rad	-0.34±0.08	-0.31±0.08	-0.37±0.09	N.A.			-0.65±0.04	0.60±0.03	
CXM+	-0.33±0.08	-0.30±0.06	-0.30±0.05		N.A.		-0.69±0.03	0.60±0.04	
CXM-	-0.36±0.07	-0.37±0.03	-0.28±0.03		N.A.		-0.65±0.03	0.56±0.04	
UAS-Shi ^{ts1} /+	-0.32±0.07	-0.26±0.03	-0.28±0.04	-0.51±0.04	-0.49±0.03	-0.39±0.05	-0.65±0.06	0.61±0.04	
UAS-Shi ^{ts1;} R58E02	-0.28±0.04	-0.27±0.03	-0.31±0.04	-0.40±0.06	-0.49±0.03	-0.45±0.04	-0.65±0.03	-0.62±0.03	
R58E02/+	-0.32±0.04	-0.25±0.03	-0.30±0.04	-0.43±0.08	-0.40±0.05	-0.39±0.04	-0.60±0.03	-0.6±0.04	
UAS-GtACR1;R58E02	-0.31±0.07	-0.39±0.06	-0.29±0.06	N.A.		-0.68±0.04	N.A.		
UAS-GtACR1/+	-0.32±0.05	-0.34±0.04	-0.35±0.08		N.A.		-0.69±0.05	N.A.	
UAS- <i>Shi^{ts1};</i> MB504B	-0.36±0.03	-0.29±0.04	-0.30±0.04	-0.51±0.03 -0.41±0.07 -0.34±0.04		-0.77±0.05	0.63±0.04		
UAS-Shi ^{ts1} ;MB056B	-0.33±0.07	-0.24±0.06	-0.36±0.06	-0.44±0.04	-0.45±0.04	-0.40±0.04	-0.78±0.03	0.66±0.02	
UAS- <i>Shi^{ts1};</i> MB441B	-0.29±0.05	-0.33±0.03	-0.33±0.03	-0.49±0.04	-0.47±0.05	-0.34±0.03	-0.64±0.07	0.55±0.02	
UAS- <i>Shi^{ts1};</i> MB025B	-0.36±0.03	-0.37±0.06	-0.29±0.04	-0.41±0.05	-0.51±0.04	-0.39±0.06	-0.72±0.05	0.7±0.02	
MB504B/+	-0.30±0.05	-0.29±0.02	-0.34±0.06	-0.46±0.09	-0.54±0.05	-0.31±0.07	-0.68±0.03	0.7±0.04	
MB056B/+	-0.32±0.04	-0.27±0.05	-0.31±0.06	-0.40±0.04	-0.54±0.05	-0.37±0.04	-0.68±0.04	0.59±0.04	
MB441B/+	-0.30±0.02	-0.29±0.02	-0.37±0.05	-0.47±0.04	-0.47±0.05	-0.35±0.06	-0.63±0.05	0.56±0.04	
MB025B/+	-0.31±0.03	-0.34±0.05	-0.30±0.03	-0.44±0.06	-0.49±0.03	-0.36±0.04	-0.67±0.05	0.61±0.05	

Table S2. Odor and shock acuity tests. Related to Figures 1, 2, 5 and S1, S2, S5.

N.A. not applicable