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Fig A. R̂R was evaluated as a ratio of the observed diagnosis rate and the expected diagnosis rate.
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US all-patient relative risk (99.9% C.I.)
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Fig B. The top 30 conditions exhibiting the largest increasing or decreasing risks (effect sizes) for the results
of the US all-patient analyses. (A) Increasing signals shown in the US all-patient analysis. (B) Decreasing
signals shown in the US all-patient analysis.

1 Materials and Methods

1.1 The MarketScan All-patient Database

The IBM Watson Health MarketScan compiles data from over a hundred large, US-based insurance com-
panies. We used a 2016 snapshot of this database which contained 5,197,121,918 diagnosis records for
151,104,811 unique patients in the US, enrolled from 2003 to mid-2014. For each patient, we knew when
and where they entered and left our database. Note that not all patients were enrolled in our database from
the start date to the end date. Patients might have been visible for a few weeks, a few months, or several
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years. For each diagnosis entry, the database documented the date, the patient’s age, and an International
Classification of Diseases (IDC) 9th Version, Clinical Modification (ICD-9-CM) code. Because inpatient and
outpatient hospitalizations were not discriminated in this database, we call it the “all-patient” database. We
have also grouped patients by the state of enrollment; therefore the experimental group includes patients
from all states that observe DST, and the negative control group includes patients from states where DST
has not been consistently observed (Arizona, Hawaii, and Indiana before 2006). We did not find patients
registered in insular territories or minor outlying possessions in the data.

1.2 The MarketScan Inpatient Database

For our analysis, we used an inpatient version of the MarketScan database which documents 496,885,296
inpatient diagnoses records in ICD-9-CM for 175,208,465 unique people from 2003 to 2015. Most patients
are duplicates of the enrollees of the all-patient database, but only their inpatient diagnoses were taken into
account in this “inpatient database.”

1.3 The Swedish Inpatient Registry

The Swedish inpatient database we used incorporates 94,669,631 inpatient diagnoses of 9,419,692 Swedish
people from 1968 to 2010. Diagnoses are coded in Sweden’s modification of the ICD, 8th, 9th, or 10th versions
(ICD-8-SE, ICD-9-SE, or ICD-10-SE). The data are collected from all Swedish hospitals as discharge codes.
In the Swedish data, enrollment is nearly static within the weeks surrounding the start or end of daylight
saving time. Theoretically, this is because all Swedish inpatient hospitalizations are documented in this
database. Unlike the insurance-company-curated MarketScan database, Swedish patients were dis-enrolled
only if they died or left Sweden.

1.4 Mappings

The datasets we employed consisted of ICD codes (versions 8, 9, and 10 in the US) and their Swedish
modifications. In order to fully utilize these codes, we first created mappings between the different ICD
versions. We referred to the CDC General Equivalence Mappings for the translation between ICD-9-CM
and ICD-10-CM [46]. We curated the mapping between ICD-9-CM and ICD-8 by ourselves (S14 Table).
Additionally, we grouped the ICD-10 diagnosis codes, based on the first three digits, into 263 conditions
under 31 systems using the WHO ICD-10 reference (S1 Table) [16]. Neighboring codes tended to fall in the
same or related conditions. All ICD-10 codes are categorized in this grouping, so it is also exhaustive. Using
all the mappings mentioned above, we produced a UniICD (ICD VERSION:ICD CODE)-to-condition mapping,
and tuned it for both US and Swedish health records in compliance with the difference between US and
Swedish ICD modifications in trailing digits (S15-16 Tables).

1.5 Models

We borrowed the idea for the general methodology, and the correction of holidays and day length from a
previous study [8]. Thus, we calculated the base diagnosis rate using the expected proportion of patients
out of all the enrollees in a certain age group and sex who were recorded as having a specific condition at a
specific time point. A time point of interest is a day or week in this study, and it’s RR can be quantified as
follows:

RR̂ =
p0

1
2 (p−1 + p+1)

, (1)

where p−1, p0, and p+1 are diagnoses rates for a particular test group (for example, for a condition in a
certain age group and sex, such as diabetes for males aged over 60) at 0, the time point of interest, -1, two
weeks before the time point of interest, or +1, two weeks after the time point 0 (Fig A). If some influential
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holidays or celebrations fell into the week following the time point −1, or +1, the −1 and +1 points are then
adapted to three weeks or one week before and after point 0. In the US data, we considered the following
holidays and celebrations: President’s Day in February, Western Easter, St. Patrick’s Day, Memorial Day,
Thanksgiving, Veterans Day, Columbus Day, and Labor Day. In the Swedish data, we considered only
Western Easter. In the US, Easter and Thanksgiving showed the largest effect on disease reporting, as we
examine in our studies.

The time intervals (called “time points” below) over which we counted disease code incidence, were either
day- or week-long. We estimated both day- and week-level RRs for every test group in a Bayesian framework
with a hierarchical model. We chose a set of flat, non-informative priors [47] for the diagnosis rates two weeks
before and after the day of interest:

p−1 ∼ Beta(1, 1), (2a)

p+1 ∼ Beta(1, 1). (2b)

In addition, we drew RRs across all test groups from a Gamma prior with the mean µ and the standard
deviation σ:

RR ∼ Gamma(mean = µ, sd = σ), (3)

This prior distribution shrank all RRs towards the mean and let information flow across all conditions
and test groups. As Gelman et al. suggested [17], the multiple comparisons problem is alleviated this way.

Note that all RR estimates (for all disease groups) were sampled simultaneously within the same inference
framework; individual estimates constrained each other within one hierarchical model.

Hyper-priors of µ and σ were assumed to be nearly flat:

µ ∼ HalfCauchy(5), (4a)

σ ∼ HalfCauchy(5). (4b)

We computed the diagnosis rate on the time point of interest as:

p0 = RR× p−1 + p+1

2
. (5)

We assumed that the observed incidence values followed binomial distributions:

x−1 ∼ Binomial(n−1, p−1), (6a)

x0 ∼ Binomial(n0, p0), (6b)

x+1 ∼ Binomial(n+1, p+1). (6c)

in which x∗ and n∗ (∗ is −1, 0, or +1) were observable incidences and the total numbers of enrollees accumu-
lated through years at spring or autumn DST shifts, respectively:

x∗ =
∑

y: year of data

x∗,y, (7a)

n∗ =
∑

y: year of data

n∗,y. (7b)
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We adjusted for the varied day lengths at a DST shift by multiplying the observed day-level incidences
by a factor of either 23/24 or 25/24, for the spring and autumn, respectively.

Finally, we estimated the posterior RR distribution via a Markov chain Monte Carlo (MCMC) sampler
(PyMC3) [48] and computed the highest posterior density (HPD) interval as the credible interval. We used
the highly efficient No-U-Turn sampler (NUTS) [49], initialized by a variational inference (ADVI, Automatic
Differentiation Variational Inference [50]), which generated four independent Markov traces. Each trace was
composed of 2,000 tuning iterations and an additional 2,000 drawing steps. Other arguments of NUTS and
ADVI such as target acceptance rate, max tree depth, and step scale were PyMC3 3.6’s default choices. We
computed the Gelman-Rubin convergence diagnostic [51,52] for all RR estimates by comparing the difference
between the four traces. The final diagnostic results indicated that all samplings were well-mixed and RR
estimates converged rapidly. We have supplied all the Gelman-Rubin statistics we used against the RR
estimates in the Supplementary Tables. We computed the final RR estimate distributions based on 2000× 4
drawing steps. Again, please note that because the RRs were constrained by an across-the-board, hierarchical
prior, we did not need to make formal corrections for multiple tests after sampling.

However, after applying this model to assess the effect of changing to and from DST, we found that,
for most test groups, the risk is a little bit smaller than one and the mean of RR is smaller than one.
This conflicted with our prior belief that, if DST shifts do not influence health, the relative risk should be
approximately one. The less-than-one phenomenon was due to the fact that the disease trend tends to be
convex (bent downwards) at the DST shift time points. To compensate for this bias, we corrected the RR
using the following equation:

RR̂corrected =
RR̂

E [RR]̂
, (8)

In the above, we estimated the RR’s expectation E [RR]̂ by estimating the Bayesian model’s corresponding
parameter, µ. This correction ensured that RRcorrected’s expectation was one, and for most test groups, the
RR was inclined to one. An observed RRcorrected that was significantly greater than one would mean the
upward curvature at the DST shift had exceeded the average natural bent across all test groups. Such a
correction procedure is equivalent to initializing µ in Expression (3) to 1.

Because we do not have the enrollment information for Swedish data, that corresponding model was
slightly different. The Swedish data was characterized by high coverage and low mobility. Almost all Swedes
were visible in the dataset throughout their entire lives. Therefore, we determined it was safe to presume
that enrollments did not change from two weeks before to two weeks after DST shifts. We quantified the
RR as:

RR̂ =
l0

1
2 (l−1 + l+1)

, (9)

where the diagnosis rate l· here is not the proportion but the exact number of incidences expected to be
documented for a certain condition at a time point. We still assumed RR to follow a Gamma distribution
with an across-all-condition mean µ and we assumed σ as the standard deviation. We set priors for l−1,
l+1, µ, and σ to follow a flat, half-Cauchy distribution with a large scale parameter. Again, we assumed the
observed incidences to follow Poisson distributions:

x−1 ∼ Poisson(l−1), (10a)

x0 ∼ Poisson(l0), (10b)

x+1 ∼ Poisson(l+1). (10c)

Finally, we accounted for the convex tendency by using Equation 8.
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1.6 Alternative Models

As an alternative to the Bayesian method, we also tested frequentist models based on random variables’
asymptotic properties. Both types of analysis, Bayesian and frequentist, led to nearly identical conclusions.

Frequentist Method

For large x and n, we used a normal distribution to approximate the error. The normal approximation of
the diagnosis rate is as follows:

p∼̇ N

(
p̂,

√
p̂(1− p̂)

n

)
, (11)

where p̂ = x/n is a realization of random variable p = X/N . (Throughout this text, we use notation
N (µ, σ) to denote a normal distribution with mean µ and variance σ2.)

Using this approximation, we can compute the normally-approximated p−1, p0, and p+1, corresponding
to the diagnosis rate two weeks before, on and after the day or week of interest. The expected diagnosis rate
on the time point of interest, p̄0 = 1

2 (p−1 + p+1), is also normal:

p̄0∼̇ N

1

2

(
p̂−1 + p̂+1

)
,

√
p̂−1(1− p̂−1)

4n−1
+
p̂+1(1− p̂+1)

4n+1

 , (12)

Here, we assume p−1 and p+1 are conditionally independent given a consistent, disease-specific incidence
rate. This assumption is generally true if we admit that every incidence is unrelated but only depends on
the disease’s intrinsic attributes. The RR is p0/p̄0, which is the ratio of two normal, random variables.
This ratio’s distribution was discussed by Hinkley in 1969 [53]. Specifically, for two independent, normally-
distributed, random variables X1 ∼ N (θ1, σ1), X2 ∼ N (θ2, σ2), the cumulative distribution function F (w)
of their ratio W = X1/X2 can be approximated by

F (w)→ Φ

(
θ2w − θ1
σ1σ2a(w)

)
as θ2/σ2 →∞, (13)

where Φ(·) is the cumulative distribution function of the standard normal distribution, and

a(w) =

√
w2

σ2
1

+
1

σ2
2

. (14)

Let

θ1 = p0 = x0/n0,

θ2 = p̄0 =
1

2

(
p̂−1 + p̂+1

)
=

1

2
(x−1/n−1 + x+1/n+1) ,

σ1 =

√
p̂0(1− p̂0)

n0
,

σ2 =

√
p̂−1(1− p̂−1)

4n−1
+
p̂+1(1− p̂+1)

4n+1
.

The (1− q)× 100% confidence interval of RR = p0/p̄0 = θ1/θ2 can be found by solving the equation

6



θ2w − θ1
σ1σ2a(w)

= z, (15)

in which z is the 1− q
2 or q

2 quantile of the standard normal distribution.

Half-Bayesian Method

For a binomial proportion p = x/n, we also used a Bayesian method with a Jeffrey’s prior, a beta distribution
with parameters α = β = 1/2, to approximate its distribution. The posterior distribution is also a beta with
parameters:

β =
1

2
+ n− x.

For large α and β, we may use a normal distribution with mean and variance

µ =
α

α+ β
,

α =
1

2
+ x,

σ2 =
αβ

(α+ β)2(α+ β + 1)

as an approximation. Subsequently, the process of estimating the RR and its confidence interval would
be identical to what we have discussed below, in the frequentist method section.

Frequentist Method for Swedish Data

Due to the consistency of enrollment, the frequentist model is simpler for the Swedish data. Again, we
assumed Poisson distributions to observe diagnoses as done in Expression 10. Notice that the sum of two
independent Poisson random variables is still Poisson:

x−1 + x+1 = xs ∼ Poisson(ls = l−1 + l+1). (16)

We considered the confidence interval for the halved RR:

1

2
· RR =

l0
ls
. (17)

Ederer and Mantel have shown that the Poisson ratio’s confidence interval in the above form can be
deduced from the confidence interval of the binomial parameter, θ = l0/(l0 + ls). This is because x0, given
x0 + xs, is a conditional binomial distribution [54].

We used the Wilson score interval [55] for θ. The lower and upper endpoints of the confidence interval
of RR are as follows:

RL =
2θL

1− θL
, (18a)

RU =
2θU

1− θU
, (18b)

where θL and θU are the lower and upper limits of the Wilson score interval of θ.
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1.7 The Multiple Comparisons Problem

The multiplicity involved in constructing thousands of credible or confidence intervals simultaneously in
the present study may have given rise to erroneous inferences. We controlled this problem in different–but
appropriate–ways for the Bayesian and frequentist (and half-Bayesian) methods.

For the Bayesian method, we controlled multiplicity by an across-the-board prior (Expression 3). We
parameterized the prior by using the mean and standard deviation of Gamma but not the commonly-used
shape α and rate β. Nevertheless, for RRs in our study, the mean µ is usually close to one and for σ � µ, the
shape and rate α = µ2/σ2, β = µ/σ2 are large, leading to approximately normal distribution. Sampling for
such a prior would shrink all the RRs towards the mean and restrain the significance of posterior intervals.
We determined how closely we controlled the multiplicity by using the σ scale. A smaller σ would induce
more conservative (wider) posterior credible intervals. In our study, σ was naturally inferred from the whole
data pool with a nearly-flat prior.

We adjusted the simultaneous confidence intervals constructed by the frequentist analyses by controlling
the false coverage rate (or false coverage-statement rate, FCR) [18]. Benjamini and Yekutieli [18] proposed
a very simple procedure to control FCR: ≤ q, through adjusting the significance level q:

q −→ q · s
n
, (19)

where s is the number of selected estimates among all candidates, and n is the number of candidates.
The selection procedure in our study consisted of simply choosing those RR estimates significantly less or
greater than one, meaning the unadjusted confidence intervals before any correction procedure covered one.
The number of candidates are the total number of RRs we were trying to estimate. It is worth noting that
we applied these correction procedures only to the selected estimates, whose unadjusted confidence intervals
do not cover zero, as suggested by Benjamini and Yekutieli in the original article [18]. Other insignificant
confidence intervals remain unchanged. This type of correction procedure ensures that the FCR, i.e., the
proportion of the true parameter’s failure coverage rate, is less than or equal to q, among all selected intervals.

1.8 Negative Controls

We implemented negative controls in a few ways. For the Swedish data, we analyzed records before 1980,
when the DST shift was not obeyed, as a negative control. First, we calculated the pseudo-DST shifts’ RRs
from 1968 to 1979. We determined the pseudo-DST shift using the following equation:

Pseudo-date of DST shift in year y = Date of DST shift in year (y + 12)− 12× 365− 2, (20)

where 1968 ≤ y ≤ 1979. We deducted two days in this equation to calibrate the pseudo-DST dates to
Sundays. We compared these pre-DST-shift results to the results of the RR estimation for data after 1980.
Because we applied the intervention to the entire population of Sweden (comparing patients to themselves
before and after intervention), we treated Swedish data as a natural experiment and deduced a stronger
conclusion.

All the US health data were collected after the DST shift policy was implemented, so we were unable
to contrast results for actual DST shifts with no-treatment control observations (observing DST shift dates,
but no DST shift, as we were able to do with Swedish data). We therefore designed negative controls in two
different ways:

1. We used health statistics from US states that do not observe the DST shift (Arizona, Hawaii, and
Indiana before 2006) as a negative control. However, we found the population too small to inform any
statistically reliable conclusions. Compared to the experimental group, which included hundreds of millions
of patients who observe the DST shift, this control group only consisted of a few million people. For many
diseases, we only have less than ten incidences a day for a specific age-sex stratification.

2. We applied our pipeline to dates other than those with DST shifts. For spring, we repeated the whole
analysis for 28 days after the DST shift (day and week). For autumn, the control date was selected at 28 days

8



before the DST. Again, we adjusted for holidays: We avoided President’s Day in February, Western Easter,
St. Patrick’s Day, Memorial Day, Thanksgiving, Veterans Day, Columbus Day, and Labor Day. Similar to
the previous Swedish experiment in 1980, we addressed this negative control as “pseudo-DST” analyses on
other dates.

1.9 Geographic Location and Other Covariates

Geographic location will drive variance in daytime length and therefore may affect the DST shift’s influence
on health. Thus, we divided the applicable states that observe the DST shift into two groups (northern
and southern) parts and performed separate analyses. The north part includes Oregon, Idaho, Wyoming,
Nebraska, Iowa, Illinois, Indiana, Ohio, Pennsylvania, New Jersey, and states on the north side of the above-
mentioned states’ south border. The south part includes states on the south side of the northern states’
south border.

We also considered another covariate: the difference in culture and work-life balance between western
and (north) eastern states. The west part includes Washington, Oregon, California, and Nevada. The
east part includes Maine, New Hampshire, Vermont, Massachusetts, Connecticut, Rhode Island, New York,
Pennsylvania, New Jersey, Maryland, Delaware, Virginia, and the District of Columbia. We performed
analyses separately for these two areas.

1.10 First-time Diagnoses

The potential dissimilarity between the effects of DST shifts on a condition’s first incidence and a recurrent
follow-up diagnoses is also noteworthy. Because of most patients’ incomplete enrollment in the MarketScan
data, we were not able to extract a condition’s first diagnoses. We had the entire medical history from birth
of only a small proportion of zero to ten-year old children (around six million), and, in those cases, we were
able to extract first diagnoses. We performed analyses on these patients combining all the DST shift states,
along with a negative control experiment on “pseudo-DST” shift dates. A negative control on the non-DST
states (Arizona, Hawaii, and Indiana before 2006) was unfeasible due to lack of data.

For completeness and comparison purposes, we still performed another analysis on a disease’s first-time
diagnosis in each patient’s insurance claim sequence in the MarketScan data (US all patients). This first
observable diagnosis is not necessarily the true first incidence of a disease, but could be useful for comparison.

As the Swedish register has the complete hospitalization profile for all patients, it allows us to distinguish
the first-time diagnoses of chronic disorders from follow-up visit diagnoses. Thus, we also performed tests
for all Swedish inpatients. However, because the reduced data provided a much smaller sample size (lifetime
first-time diagnoses only, for everyone), this prevented our signals from reaching statistical significance using
either the Bayesian or the frequentist method. Note that the Swedish dataset only contains inpatient
diagnoses, so we are not able to know if there were any identical but non-hospitalized diagnoses occurring
before the first inpatient records of a particular condition.

1.11 Methodological Limitations

The fundamental assumption of the model, illustrated in Fig A, is that the short-term trend of a disease
incidence is approximately linear for the weeks surrounding a DST shift. If this is true, we would be
able to detect irregular disease incident variation by comparing the observed versus the expected (average)
diagnosis rates. This assumption might be violated for some highly seasonal and fluctuating conditions.
We implemented the negative controls and validated the results in two countries to alleviate this issue. We
are comfortable interpreting only DST shift signals supported by the results of statistical tests of various
types across two countries. The set of US-only signals has to be interpreted more carefully: While results
are “real” in the statistical sense, very large datasets capture a plethora of various signals (social, ethnic,
economic, cultural, and climate- and weather-related) that do not lend themselves to easy deconvolution.
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1.12 Data Limitations

Because we focused solely on diagnostic code use around DST shift dates, the data we used in this study were
not large enough for some rare diseases. In addition, because many people’s insurance enrollment intervals
do not overlap with the DST shift dates, the US insurance claim data only covered around one-tenth of the
US population (35 million) during and around those dates. For some rare conditions, we observed only a
few instances in both datasets (the US and Swedish), so the statistical power for detecting putative DST
shift signals was insufficient.

It is possible that disease coding errors could influence our RR estimates. A simple way to spot miscoding
is to look for sex-specific codes assigned to the wrong gender. For instance, the data shows males diagnosed
with pregnancy, ovarian cancer, and females diagnosed with prostate cancer. There are two scenarios to
explain the origins of such errors: Either the sex was recorded wrongly or the code itself is inaccurate. The
former scenario would not affect our analyses substantially because we anticipated for symmetric coding
errors in both sexes that offset against each other. On the other hand, if the diagnosis itself is miscoded, it
may influence the RR estimation and tests. We summarized data for some female- and male-specific diseases
as anchor points to estimate the coding error rate (S17-18 Tables). We approximated the error rate using
the following equation:

(FP + FN) Error Rate = 100%× 2× (Fm +Mf )

Ff + Fm +Mm +Mf
= 0.52%, (21)

where FP stands for “false positive,” FN stands for “false negative,” Fm is the number of male-assigned,
female-specific diagnoses, Ff is the number of female-assigned, female-specific diagnoses, Mm is the number of
male-assigned, male-specific diagnoses assigned to females, and Mf is the number of female-specific diagnoses
assigned to males.

With our coding error estimates, the error rate is positive, but is small in comparison to the observed
DST shift effect sizes.

Importantly, simple disease coding errors are unlikely to be in any way related to DST shifts, and would
only bias RR estimates towards the null model.

2 Analyses Summary

All week- and day-level results can be found on the project’s web site https://github.com/hanxinzhang/

dst.

We performed analyses for all 263 disease groups for females and males separately, partitioned into five
age groups (0 to 10, 11 to 20, 21 to 40, 41 to 60, and greater than or equal to 61). We started from
263 × 10 = 2, 630 test groups in total and filtered out those with lower than ten incidences on any day of
study. This quality-control step ensured that all the analyzed conditions were statistically meaningful. For
sub-common diseases, none of our Bayesian, frequentist, or half-Bayesian methods could give dependable
results. Notice that, for the Swedish data, we arranged the age groups slightly differently: 0 to 20, 21 to 40,
41 to 60, and over 60. This difference in analyses groupings does not effect our discussion or conclusions, as
we did not find any significant signals in the younger populations in Sweden.

The time periods covered by the study are: (1) the seven days of the week two weeks before a DST shift;
(2) the seven days just after q DST shift, and; (3) the seven days of the week two weeks after a DST shift.

For negative controls performed on other dates, including 28 days before or after a DST shift (or pseudo-
DST dates before 1980 in Sweden), the days of study were taken around the pseudo-DST dates in a similar
way. If any day of study coincided with a holiday or celebration (see 1.5 in the Models Section), we used
either one or three weeks before and after the DST or pseudo-DST shift.

The number of test groups and the number of spring week-level RRs that were significantly greater or
less than one are summarized in Table A.
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Experiment No.
tests

No. sig.
(Bayesian)

No. sig.
(frequentist)

No. sig.
(half-Bayesian)

US all-patient, all DST states 2025 290 265 265
US all-patient, northern DST states 1691 180 287 287
US all-patient, southern DST states 1802 181 191 191
US all-patient, eastern DST states 1471 118 137 137
US all-patient, western DST states 1258 63 81 81
US all-patient, neg. ctrl on other states 546 4 17 17
US all-patient, neg. ctrl on other dates 2041 229 331 331
US inpatient, all DST states 1635 70 64 64
US inpatient, northern DST states 1117 19 28 28
US inpatient, southern DST states 1291 35 35 35
US inpatient, eastern DST states 854 16 8 8
US inpatient, western DST states 633 11 16 15
US inpatient, neg. ctrl on other states 218 3 1 1
US inpatient, neg. ctrl on other dates 1639 28 31 31
Swedish inpatient since 1980 836 7 4
Swedish inpatient before 1980 242 0 0

Table A. Summary of Our Analyses

2.1 The Signal Selection Procedure for Presenting the US Results

Conditions with Increased Risk During Spring DST Shifts

We designed multiple controls and compared them to spring DST shift tests to corroborate the risk estimation
associated with these DST shifts.

To perform the US analyses, we chose negative-control dates (pseudo-DST) near the actual DST shift
dates; in addition, we used US states that do not observe DST (“non-DST states”) as negative controls (Sec-
tion 1.8). Our analyses of Swedish data were somewhat simpler because Sweden did not observe DST before
1980, providing a natural negative control. We present all significant spring signals for the Swedish analyses
in the main text (Fig 2B) because all of their natural negative controls before 1980 are not significantly
different from one. We used similar selection criteria – by comparing the negative controls to the responses
of actual DST shifts – to identify potential conditions associated with spring DST shifts in the US analyses
(see the descriptions in the following paragraphs).

Autumn DST shift dates could be viewed as controls for spring’s disease RR changes. We did not expect
much risk to be associated with the period surrounding autumn DST shifts. A previous study on DST shift
association with acute myocardial infarction used solely the autumn tests as control [8]. In contrast to that
study’s design, we decided to focus on the pseudo-DST shift’s negative control near the actual DST shift
dates for several reasons.

First, the negative controls we used on the non-DST states did not render a sufficient number of observa-
tions; the data was too sparse to allow for a fair comparison to the experimental tests on actual DST shifts.
We filtered out many conditions during our quality control step due to their low incidence in the non-DST
state data, and it was not even possible to make comparisons for these diseases.

Second, for some diseases, the one-hour disruption – in either direction – seemed to lead to an RR
increase. For example, behavioral and emotional disorders in young adults increase after the DST shift in
both spring and autumn (Fig B panel A). We might conclude that the autumn DST shift may also have
negative effects if this signal were not compared to the negative control tests, which actually revealed a
dubious effect in autumn because the negative control test showed a close result.

Third, we accounted for seasonal variation patterns and disease incidence curvature by comparing actual
DST time points with “pseudo-DST” time points, both chosen close enough (a few weeks) to the actual DST
points. The goal in such an analysis is to account for seasonal confounding factors. Fig B panel A shows the
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example mentioned, in which mental and behavioral disorders in autumn seem to increase for both actual
DST and pseudo-DST shifts with no differentiation between. This indicates such inflation is more likely to
be caused by the trend’s upward curvature or disease seasonality as opposed to DST time shifts.

We selected all diseases with an increased risk that could be putatively associated with the spring DST
shift using the following criteria: (1) The estimated spring DST shift’s RR should be significantly greater
than one after Bayesian shrinkage or frequentist FCR correction, and; (2) The RR associated with the
pseudo-DST shift near the actual spring DST shift dates should not be significantly greater than one after
correction for multiple comparisons. The results are shown in S19 Table (US all-patient, Bayesian), S20 Table
(US all-patient, frequentist), S21 Table (US inpatient, Bayesian), and S22 Table (US inpatient, frequentist).
The half-Bayesian estimates closely followed the frequentist (see Figs C and D), so we focused on comparing
the more divergent Bayesian and frequentist results. Fig E (US all-patient) and Fig F (US inpatient) plot
spring DST shifts’ RRs versus the spring negative control’s RR, with selected conditions based on the above-
mentioned criteria showing increased risk in blue. The top five conditions with the largest absolute effect

sizes (RR̂− 1) are text-labeled.

Using the above-mentioned selection procedure in conjunction with the Bayesian method, we found 82
increased signals for the US all-patient analysis (S19 Table and Fig E panel A). We found 69 when using
the frequentist method (S20 Table and Fig E panel B). Inspecting these results, we noticed a number of
ill-defined clinical and laboratory findings, examinations, and health services, for which the increased risk
could be attributed to various diseases. In addition, some infections, and possibly infection-related eye,
ear, genitourinary, and respiratory diseases showed increased risk. The results also suggest possible inflated
risk in some circulatory, digestive, metabolic, endocrine, nutritional, musculoskeletal, skin, neoplasm, and
mental/behavioral/nervous system diseases, childbirth problems, and injuries in various body sites (S19-
20 Tables). Some anemias also stand out, though only in the frequentist results (and not in the more
conservative Bayesian results, S20 Table).

For the US inpatient analyses, we selected 42 conditions using the same two selection criteria (formulated
above) with a Bayesian analysis (S21 Table and Fig F panel A), and 39 with frequentist estimates (S22 Table
and Fig F panel B). Again, we saw infections, genitourinary, and respiratory diseases’ risks enlarge. We also
saw increased risks in immune, circulatory, digestive, endocrine, metabolic, musculoskeletal, neoplastic,
mental/behavioral/nervous system diseases, childbirth problems, and injuries in various body sites (S21-22
Tables).

Conditions with Decreased Risk During Spring DST Shifts

We performed all our analyses bi-directionally (looking for both increases and decreases in disease risk). A
priori we expected to find as many decreased signals as increased ones (assuming that signals are distributed
randomly with mean zero). This is because, if we assume that there is no effect of changing time, the
distribution of RR estimates should then be approximately zero-mean normal. Thus, we focused here on
significantly decreased RR signals during the spring DST shift period.

Using a similar positive signal selection, but a reverse procedure, we selected conditions with a spring
RR of significantly less than one and a negative control RR not significantly less than one. We summarized
these selected conditions in S23 Table (US all-patient, Bayesian), S24 Table (US all-patient, frequentist), S25
Table (US inpatient, Bayesian), and S26 Table (US inpatient, frequentist). Fig G (US all-patient) and Fig
H (US inpatient) show the spring DST RRs versus the spring negative-control RRs and selected conditions
with decreased risk shown in orange. The top five largest-effect conditions, along with their absolute effect

sizes (1−RR̂), are text-labeled.

Our tests revealed a number of decreased RR signals. The Bayesian all-patient results showed 115
diseases with decreased RR immediately after the actual DST shift, but no significant decrease after the
pseudo-DST shift dates (S23 Table and Fig G panel A). When we used the frequentist method, we were
able to identify 80 diseases with such behavior (S24 Table and Fig G panel B). We observed that these
protective signals were distributed differently with regards to human biological systems–rather than with
regards to diseases possessing increased risk. The diseases with significantly decreased RRs are associated
with infection, genitourinary/urinary systems, skin, musculoskeletal functions, nervous system, neoplasms,
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blood diseases (anemia), and some injuries.

We also found many decreased RR signals in mental and behavioral disorders across various age groups
and both sexes in the US all-patient analysis (S23-24 Tables, and Fig B panel B). We observed these signals
in disease groups that were very different from those with increased risks.

For instance, organic mental disorders showed decreased RR signals in the senior population, while neu-
rotic, stress-related disorders, and youth behavioral and emotional disorders (including attention-deficit/hyperactivity
disorder) showed increased RR signals in the US all-patient dataset. Decreased RRs for circulatory and di-
gestive conditions were also dissimilar from their corresponding, increased RR conditions [This is really
unclear. It seems like stating the very obvious that ”decreased X” would be dissimilar from ”increased X”.
EG ]. Remarkably, cerebrovascular diseases in the middle-aged and senior populations showed decreased RR
in the US analysis.

We did not, however, observe any childbirth and pregnancy-related conditions that with decreased RRs
in the US all-patient analyses. This observation gives more credibility to one of this study’s largest-effect
signals – those related to the spring DST shift’s increase in disease RR related to maternal care for women
of advanced ages.

The inpatient results were generally consistent with the all-patient results (S25-26 Tables, and Fig H).
However, some diseases’ RR signals reversed signs across age groups. For example, for disease codes asso-
ciated with “other forms of heart disease, spring DST shift RRs decreased in females aged 41-60 (S25-26
Tables), but increased in some young and senior age groups (S21-22 Tables).

2.2 Methods Comparison

We evaluated DST shift effects on health based on the results of a Bayesian analysis (which had a tendency
to be more conservative in terms of the number of signals detected)–though the other methods, Bayesian,
frequentist, or half-Bayesian approaches, would have led us to very similar conclusions. Figs C and D show
comparisons of the methods we used to estimate disease RR. Each triad – consisting of the blue, red, and
purple bars – shows a particular test group’s confidence or credible intervals (CI) and RR estimates. All three
methods gave us close RR estimates with comparable interval widths, especially for estimates close to one.
In those more extreme cases, in terms of effect size, the Bayesian method did provide a smaller RR estimate
due to its shrinkage property. The Bayesian method tended to “pull” RRs towards the across-the-board
mean if the information from the observation did not surpass the prior. Fig I (US all-patient) and Fig J (US
inpatient) make this claim more clear. Figs I panel A and J panel A show a scatter-plot of frequentist versus
Bayesian estimates. One can see there are two types of estimates on the plot forming two lines of dots – one
diagonal and the other off-diagonal. The diagonal line shows conditions with enough observed incidences
that all three methods returned very close RR estimates. By contrast, the off-diagonal line shows that the
frequentist method returns more extreme estimates (in terms of absolute effect size), while both Bayesian
methods shrink the estimates to the prior, no-effect assumption. The RR estimate distribution, shown in
Figs I panel B and Fig J panel B, partially explains why there are as many decreased signals as increased
signals. The RR estimates follow a normal distribution with symmetric tails. Again, the Bayesian method
shows a conservatively shrunk estimation.

2.3 Geographic Location Comparison

The DST shift’s health effects may differ between the southern, northern, eastern, and western areas of the
US (Figs K and L, Bayesian estimates). For example, the population appears to suffer more from heart
diseases in the south and west (Fig L), but the northern and eastern population may be higher risks for
injuries and neurotic and stress-related mental disorders (Fig K). Nevertheless, we opt not to make any
inference from these comparisons because too many other covariates should be considered, and a larger
population is required to draw any meaningful conclusion.
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2.4 Results of the First-diagnoses Analyses

US Children (Aged Zero to Ten) with a Complete Medical History

The results of these analyses can be found on the project’s web site https://github.com/hanxinzhang/

dst/tree/master/us_allpatient/results_AllStatesWithDst_trueFirstDiag0-10. The first-diagnoses
analyses show a lack of statistical power. Most conditions were filtered out during the quality control stage.
We would not trust much in the results, as many conditions were not even tested, and those analyzed were not
constrained adequately because of the small test number. The sporadic signals we found in the all-patient,
first-diagnoses experiment are more likely to be due to seasonal convexity or concavity – dermatitis, eczema,
respiratory, and various communicable diseases. The only remarkable signal is non-infective enteritis and
colitis for female children, going up about 3.4 percent in RR in the spring all-patient data. This is also one
of the most important discoveries we observed in other analyses, and it is possibly associated with other,
stress-related mental health issues and immune disorders.

US All Patients, Condition’s First Incidence in the Insurance Claim Sequence

Again, the first-diagnoses analyses show a lack of statistical power due to data limitation. The only significant
signal we replicated is the notable circulatory condition in senior females (other forms of heart diseases in
female patients over 60) using the frequentist method. The results can be found on https://github.com/

hanxinzhang/dst/tree/master/us_allpatient/results_AllStatesWithDst_firstDiag.

Swedish Inpatients, Condition’s First Hospitalized Diagnosis

Most of the conditions were filtered out due to their low incidences. There is no significant signal in the results.
The results can be found on https://github.com/hanxinzhang/dst/tree/master/se_inpatient/first%

20diag

2.5 Absolute Human Cost of the Daylight Saving Time Shift

Due to asynchronous enrollments (not every patient joined from the first day of the MarketScan database and
left on the last day), our data only covered around one-tenth of the US population (35 million) during and
around DST shift dates. We estimated the cost of spring DST shifts in terms of incident elevation (S27-30
Tables). For selected, increasing conditions (see Section 2.1 for the selection procedure), we estimated the

incident increase by (RR̂− 1)× # of expected incidences averaging points +1 and -1. To compute the total
number of incidences possibly associated with spring DST shifts, we combined conditions with significantly
increased RRs in the spring that were not ruled out by the negative control experiment based on our selection
criteria, discussed in Section 2.1.

The RR elevation translates to the following incidences in the first week of a DST shift on average, out
of 35 million people:

• 600 more inpatient incidents of other forms of heart disease

• 300 more inpatient incidents of ischemic heart diseases in people over 60

• 500 more behavioral and emotional disorders for eleven to 20-year olds

• 200 more diagnoses of non-infective enteritis and colitis in 21 to 40-year olds

These numbers are all based on our Bayesian estimates (shown in S27 Table for US all-patient and S29
Table for US inpatient). We also approximated costs using the frequentist results where the estimation is
larger (S28 Table for US all-patient and S30 Table for US inpatient).
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In all, we found that around 15,000 incidences of all kinds on average per year in the first week of a DST
shift could be linked to the time change. Considering the coverage rate of our data, 0.15 million disease
incidents and conditions could emerge due to DST shifts in the US every year. Globally, there could be 0.88
million more disease incidents during the week after the spring DST shift, every year.
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Fig C. Different methods result in similar RR and interval estimates.

16



0.80 0.90 1.00 1.10 1.20

Spring

0.80 0.90 1.00 1.10 1.20

Autumn

Bayesian
Frequentist, FCR corrected
Half-Bayesian, FCR corrected

US
 in

pa
tie

nt
 re

lat
ive

 ri
sk

s w
ith

 B
ay

es
ian

 C
.I.

 n
ot

 co
ve

rin
g 

on
e

RR (99.9% corrected C.I.)

Fig D. Different methods result in similar RR estimates and intervals.
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A: Bayesian estimates

B: Frequentist estimates

On examination of other body fluids, substances and 
tissues, without diagnosis, female, 11-20

Benign neoplasms, female, 11-20

Disorders of skin appendages, female, 11-20

Endocrine diseases, thyroid gland / thyroid hormon, 
female, 11-20

Persons encountering health 
services for examination and 
investigation, female, 11-20

Haemolytic anaemias, female, 0-10
On examination of other body fluids, 
substances and tissues, without 
diagnosis, female, 11-20

Endocrine diseases, 
gonads / estrogen, 
androgens, testosterone, 
etc., female, 11-20 Metabolic diseases combinations., male, 11-20

Benign neoplasms, 
female, 11-20

Fig E. Selecting conditions with increased risk by comparing spring DST shift RRs to the negative control
on pseudo-DST shift dates. The top five in effect size are annotated. (A) RR estimates generated by the
Bayesian method. (B) RR estimates generated by the frequentist method.
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B: Frequentist estimates

A: Bayesian estimates

Other forms of heart disease, male, 11-20
Wrist and hand injury, male, 11-20

Certain disorders involving the immune 
mechanism, male, 61-

Head injury, male, 0-10

Malignant neoplasms, connective and 
soft tissue, male, 61-

Resistance to antimicrobial drugs, female, 
41-60Viral infections of the 

central nervous 
system, male, 21-40 Hip and thigh injury, female, 11-20

Wrist and hand injury, male, 11-20

Osteopathies, male, 0-10

Fig F. Selecting conditions with increased RR by comparing spring DST shift RRs to the negative control
on pseudo-DST shift dates. The top five in effect size are annotated. (A) RR estimates generated by the
Bayesian method. (B) RR estimates generated by the frequentist method.
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A: Bayesian estimates

B: Frequentist estimates

Renal failure, male, 61-

Renal failure, female, 61-Renal failure, male, 41-60

Renal failure, female, 41-60Renal failure, male, 21-40

Infections with a predominantly sexual mode 
of transmission, male, 0-10

Renal failure, male, 61-

Renal failure, female, 61-
Renal failure, male, 21-40

Renal failure, male, 41-60

Fig G. Selecting conditions with decreased RR by comparing spring DST shift RRs to the negative control
on pseudo-DST shift dates. The top five in effect size are annotated. (A) RR estimates generated by the
Bayesian method. (B) RR estimates generated by the frequentist method.

20



B: Frequentist estimates

A: Bayesian estimates

Renal tubulo-interstitial diseases, 
female, 11-20

Cerebrovascular diseases, 
male, 21-40

Diseases of liver, female, 21-40

Inflammatory diseases of the central 
nervous system, female, 21-40

Burns and corrosions, male, 41-60

Certain zoonotic bacterial 
diseases, female, 0-10

Mycoses, female, 0-10

Wrist and hand injury, female, 0-10

Unspecified parts of trunk, limb or 
body region injury, female, 21-40

Urticaria and erythema, male, 61-

Fig H. Selecting conditions with decreased RR by comparing spring DST shift RRs to the negative control
on pseudo-DST shift dates. The top five in effect size are annotated. (A) RR estimates generated by the
Bayesian method. (B) RR estimates generated by the frequentist method.

21



A B

Fig I. The Bayesian method shrinks the estimates to the prior mean when there is not enough information.
(A) A scatter-plot of frequentist versus Bayesian estimates. (B) Distributions of RR estimates.

A B

Fig J. The Bayesian method shrinks the estimates to the prior mean when there is not enough information.
(A) A scatter-plot of frequentist versus Bayesian estimates. (B) Distributions of RR estimates.
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Fig K. The geographic and cultural diversity of the DST shift’s effects on health.
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Other forms of heart disease, male, 11 20

Renal failure, female, 61
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Abdomen & lower back injuries, female, 41-60

Abdomen & lower back injuries, male, 60

Head injuries, female, 41 60
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Fig L. The geographic and cultural diversity of the DST shift’s effects on health.
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Fig M. Enrollee variation in the US MarketScan data. Integrating the models’ real-time enrollee number
is an easy step to account for the confounding enrollment variation. Around DST shifts, the total enrollee
number does not change much (around one percent on average, see the plot below), but the yearly difference
is significant. We observe that the number of enrollees changes several folds (yearly) from 2003 to 2014.
The majority of these changes occur at the beginning of each year when new enrollees either joined or left
the insurance policy. However, these yearly changes would not significantly affect the RR estimation, as we
always compared the incidences from the few weeks around DST shifts.

Fig N. Number of enrollees in the MarketScan dataset (Y axis) by week of study (Y axis). Week 0 in this
representation starts on January 1, 2003, and the weeks are numbered sequentially after that.

25


