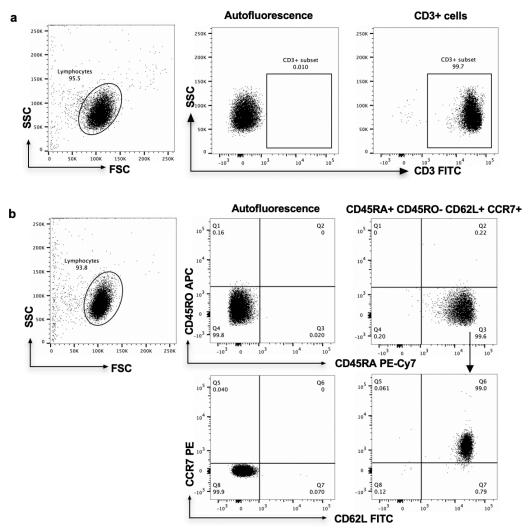
# Supplementary Material

# Piperlongumine acts as an immunosuppressant by exerting prooxidative effects in human T cells resulting in diminished $T_{\rm H}17$ but enhanced $T_{\rm reg}$ differentiation

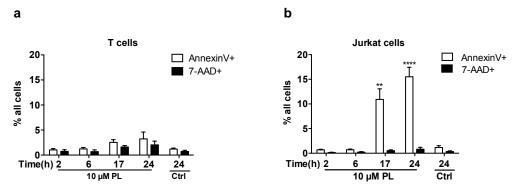
Jie Liang<sup>1,2</sup>, Jacqueline D. Ziegler<sup>1</sup>, Beate Jahraus<sup>1</sup>, Christian Orlik<sup>1</sup>, Renata Blatnik<sup>3</sup>, Norbert Blank<sup>4</sup>, Beate Niesler<sup>5, 6</sup>, Guido Wabnitz<sup>1</sup>, Thomas Ruppert<sup>3</sup>, Katrin Hübner<sup>1</sup>, Emre Balta<sup>1</sup>, and Yvonne Samstag<sup>1\*</sup>

\*Correspondence: yvonne.samstag@urz.uni-heidelberg.de


#### 1 Supplementary Data

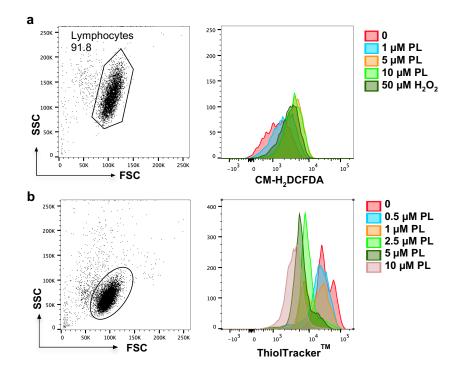
#### **LC-MS** measurements

Nanoflow LC-MS analysis was performed with a NanoAcquity UPLC liquid chromatography (Waters, Eschborn, Germany) system coupled to an Orbitrap XL or with an Ultimate 3000 liquid chromatography system coupled to an Orbitrap Q Exactive mass spectrometer (Thermo-Fischer, Bremen, Germany). When analyzed on the NanoAcquity UPLC – Orbitrap XL mass spectrometer, samples were loaded to a NanoAcquity Symmetry C18 Trap column (particle size 5 µm, inner diameter 180 µm x 20 mm, Waters) at a flow of 15 µL/min for 5 min of 0.5 % solvent B. Peptides were separated using a NanoAcquity M-Class peptide BEH C18 analytical column (particle size 1.7 µm, inner diameter 75 µm x 250 mm, Waters) with a 30 min linear gradient (3-40 % B) with a flow rate of 300 nL/min. Solvent A was 0.1% formic acid (FA; ProteoChem, Denver, CO, USA) in H<sub>2</sub>O (Biosolve) and solvent B was composed of 0.1% FA (ProteoChem), 10% H<sub>2</sub>O (Biosolve) and 89.9 % ACN (Biosolve). The mass spectrometer was operated in data-dependent acquisition mode, automatically switching between MS and MS<sup>2</sup>. MS spectra (m/z 400–1600) were acquired in the Orbitrap at 60,000 (m/z 400) resolution. Collision induced dissociation MS<sup>2</sup> spectra were generated for up to 10 precursors with normalized collision energy of 35 % in the ion trap. When analyzed on the Ultimate 3000 – Q Exactive mass spectrometer, samples were delivered to an inhouse packed analytical column (inner diameter 75 µm x 20 cm; CS – Chromatographie Service GmbH, Langerwehe, Germany) filled with 1.9 µm ReprosilPur-AQ 120 C18 material (Dr. Maisch, Ammerbuch-Entringen, Germany). Solvent A was 0.1 % formic acid (FA; ProteoChem, Denver, CO, USA) in H<sub>2</sub>O (Biosolve) and solvent B was composed of 0.1 % FA (ProteoChem), 10 % H<sub>2</sub>O (Biosolve) and 89.9 % ACN (Biosolve). Sample was loaded to the analytical column for 20 min with 3 % B at 550 nL/min flow rate. Peptides were separated with a 30 min linear gradient (3-40 % B) with a flow rate of 300 nL/min. The mass spectrometer was operated in data-dependent acquisition mode, automatically switching between MS, acquired at 60,000 (m/z 400) resolution, and MS<sup>2</sup> spectra, generated for up to 15 precursors with normalized collision energy of 27 % in the HCD cell and measured in the Orbitrap at 15,000 resolution.


#### 2 Supplementary Figures

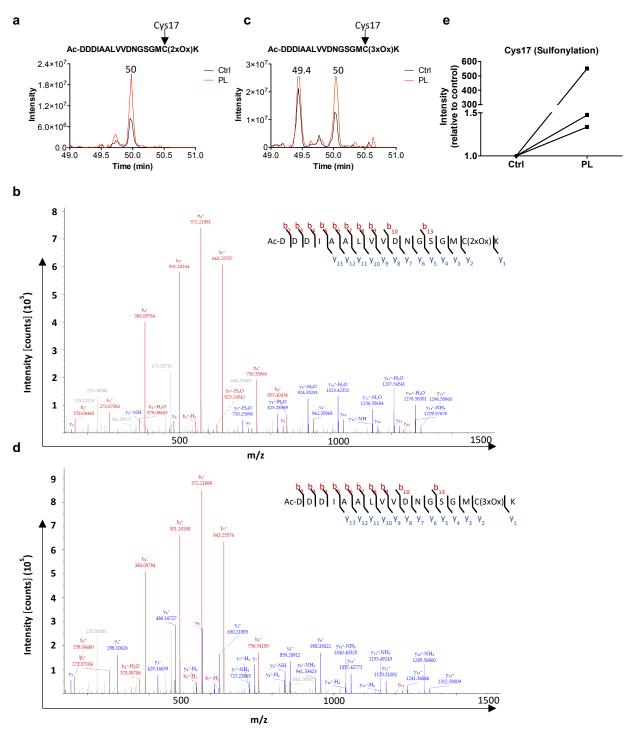
# 2.1 Supplementary Figure 1




**Supplementary Figure 1. Purity of MACS-separated primary human pan-T cells and naïve CD4**<sup>+</sup> **cells (a)** Purified primary human pan-T cells were stained with CD3, and detected by the flow cytometry. **(b)** Purified primary human naïve CD4<sup>+</sup> cells were stained with CD45RA, CD45RO, CCR7, CD62L, and analysed with flow cytometry. Representative flow cytometry plots show the gating strategy.

#### 2.2 Supplementary Figure 2

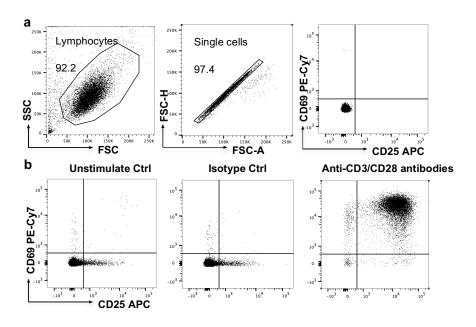



Supplementary Figure 2. PL is not cytotoxic to primary human T cells but to Jurkat cells (a) Primary human T cells or (b) Jurkat cells were treated with DMSO (Ctrl) or 10  $\mu$ M PL for the indicated time points and then stained with AnnexinV and 7-AAD. Signals were detected by flow cytometry. Shown are the quantification of early apoptotic (AnnexinV+) or dead (7-AAD+) cells from the whole cell population (n = 3; mean; SEM; \*\*p < 0.01, \*\*\*\*p < 0.0001).

#### 2.3 Supplementary Figure 3



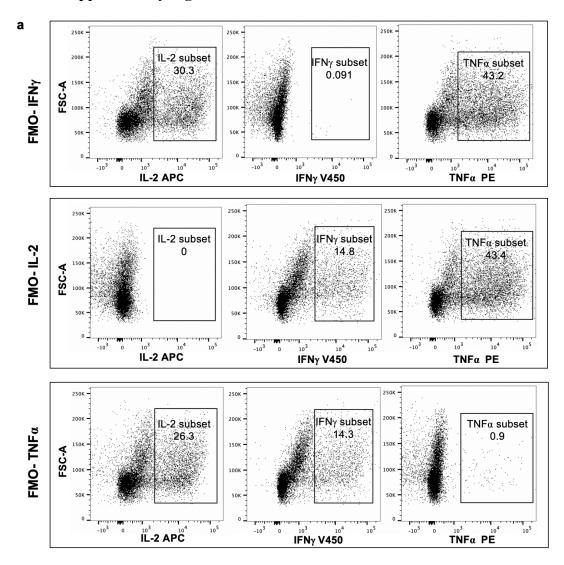
Supplementary Figure 3. Flow cytometry analysis of intracellular ROS and GSH in T cell. Representative dot plots showing gating on viable T cells (left panels) and histograms showing the MFI of the respective dyes (right panels) for (a) CM-H<sub>2</sub>DCFDA (ROS) and (b) ThiolTracker<sup>TM</sup> (GSH) staining.

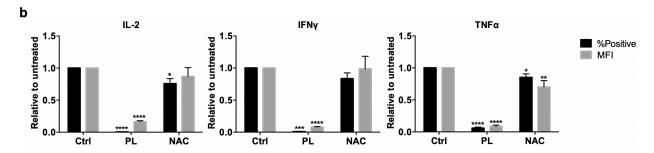

## 2.4 Supplementary Figure 4




Supplementary Figure 4. PL oxidizes Cys17 in peptide Ac-DDDIAALVVDNGSGMCK of actin (a, c) Elution profile of peptide Ac-DDDIAALVVDNGSGMCK of actin in control and PL-treated samples with oxidation of Cys17 to (a) sulfinic (2xOx) or (c) sulfonic (3xOx) acid. Both peptides eluted at 50.0 min in control and PL-treated samples. Signal intensities increased for both peptides with PL-treatment. Chromatographic peak identities were confirmed with MS<sup>2</sup> spectra.

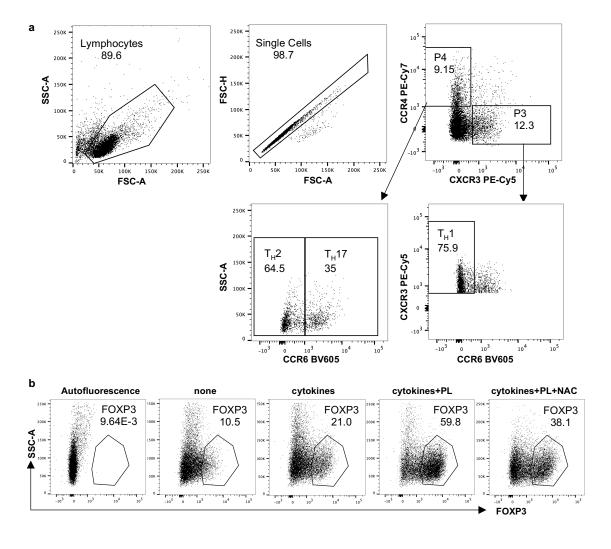
Peak areas calculated with the Skyline software were used for relative quantification of peptides. **(b, d)** MS<sup>2</sup> for the peptide Ac-DDDIAALVVDNGSGMCK of actin with oxidization of Cys17 to **(b)** sulfinic (2xOx) or **(d)** sulfonic (3xOx) acid. MS<sup>2</sup> spectra for both peptides were identified at 50.0 min. Both peptides were detected with cleaved N-terminal methionine and N-terminal acetylation on the first aspartic acid. Peptide sequence with vertical lines represents detected MS<sup>2</sup> ions and peptide sequence coverage. Red and blue peaks in MS<sup>2</sup> spectra represent b and y ions, respectively. **(e)** Sulfonylated (SO<sub>3</sub>H) form of Cys17 in peptide Ac-DDDIAALVVDNGSGMCK of actin was higher upon PL treatment compared to the control in three biological replicates (n = 3). The intense signal at 49.4 min in (C) is a different peptide sharing the same precursor mass.


#### 2.5 Supplementary Figure 5



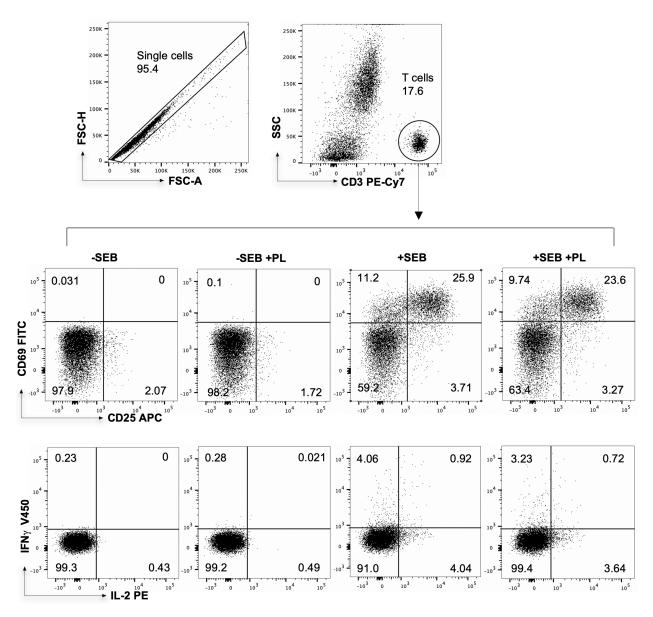



Supplementary Figure 5. PL inhibits the expression of costimulation-induced CD25 and CD69 in T cells (a) Representative flow cytometry dot plots show the gating strategy for CD25 and CD69 stained T cells. (b) Representative flow cytometry dot plots of CD25 and CD69 stained T cells, which are unstimulated, stimulated with anti-CD3/CD28 antibodies or isotype control antibodies. Flow cytometry analysis of CD25 (left) and CD69 (right) (c) surface and (d) total expression in T cells after stimulation with anti-CD3/CD28 antibodies for 24 h. Given are expression levels relative to control in terms of % positive cells and MFI (n = 3; mean; SEM; \*\*p < 0.01, \*\*\*p < 0.001, \*\*\*\*p < 0.0001).


### 2.6 Supplementary Figure 6






Supplementary Figure 6. Intracellular staining of IL-2, IFN $\gamma$  and TNF $\alpha$  (a) Representative flow cytometry dot plots (Florescence Minus One (FMO)). (b) Quantification of IFN $\gamma$ , TNF $\alpha$  and IL-2 detected by intracellular cytokine staining. Shown are ratios of 5 μM PL-treated or NAC-treated cells to the untreated control with regard to the % positive cells (black bars) and MFI (grey bars) (n = 3; mean; SEM; \*p < 0.05, \*\*p < 0.01, \*\*\*\*p < 0.001, \*\*\*\*p < 0.0001).

## 2.7 Supplementary Figure 7



**Supplementary Figure 7. Gating strategies for different T cell subtypes (a)** The gating strategy for T<sub>H</sub>1, T<sub>H</sub>2 and T<sub>H</sub>17 cells. **(b)** Representative flow cytometry dot plots of FOXP3-positive T cell populations.

### 2.8 Supplementary Figure 8



Supplementary Figure 8. Whole blood from patients. Gating strategy for T cells (upper panel). Representative flow cytometry dot plots showing expression of CD25 and CD69 (middle panel), or IFN $\gamma$  and IL-2 (lower panel) in T cells of patients with or without 20 h of 5  $\mu$ M PL treatment.