

# Supplementary appendix

This appendix formed part of the original submission and has been peer reviewed. We post it as supplied by the authors.

Supplement to: Zhou X, Teng T, Zhang Y, et al. Comparative efficacy and acceptability of antidepressants, psychotherapies, and their combination for acute treatment of children and adolescents with depressive disorder: a systematic review and network meta-analysis. *Lancet Psychiatry* 2020; **7:** 581–601.

| Comparative efficacy and acceptability of antidepressants, psychotherapies, and |
|---------------------------------------------------------------------------------|
| their combination for the acute treatment of children and adolescents with      |
| depressive disorder: a systematic review and network meta-analysis              |

Xinyu Zhou, Teng Teng, Yuqing Zhang, Cinzia Del Giovane, Toshi A. Furukawa, John R. Weisz, Xuemei Li, Pim Cuijpers, David Coghill, Yajie Xiang, Sarah E. Hetrick, Stefan Leucht, Mengchang Qin, Jürgen Barth, Arun V. Ravindran, Lining Yang, John F. Curry, Li Fan, Susan G. Silva, Andrea Cipriani, Peng Xie

Supplementary appendix to the manuscript

# Contents of supplementary appendix

| Appendix 1  | Search strategy and results                                                                         |         |  |
|-------------|-----------------------------------------------------------------------------------------------------|---------|--|
| Appendix 2  | The detailed descriptions of these psychotherapies and psychological control conditions             |         |  |
| Appendix 3  | Hierarchy of depression symptom severity measurement scales                                         |         |  |
| Appendix 4  | Network meta-analysis model                                                                         | Page 23 |  |
| Appendix 5  | Published protocol and changes made to the protocol                                                 |         |  |
| Appendix 6  | References for included trials                                                                      | Page 36 |  |
| Appendix 7  | Risk of bias assessment                                                                             | Page 45 |  |
| Appendix 8  | Network plot for secondary outcome                                                                  |         |  |
| Appendix 9  | Results from pairwise meta-analysis for each outcome: numbers, estimates and heterogeneity          | Page 52 |  |
| Appendix 10 | Network meta-analysis of suicidality                                                                |         |  |
| Appendix 11 | Number of patients with suicidality according to treatments                                         |         |  |
| Appendix 12 | Assessment of transitivity                                                                          |         |  |
| Appendix 13 | Assessment of incoherence results for each outcome: global, local and from the node-splitting model | Page 69 |  |
| Appendix 14 | Appendix 14 Comparison-adjusted funnel plot for each outcome from the network meta-analysis         |         |  |
| Appendix 15 | Network meta-regression and sensitivity analyses for each outcome                                   |         |  |
| Appendix 16 | Treatment ranking and SUCRA plot for each outcome                                                   |         |  |
| Appendix 17 | Evaluation of the credibility of each outcome using CINeMA approach                                 |         |  |

## **APPENDIX 1**

Search strategy and results

# **Search Strategy and Results**

# Number of citations by each database and trial register searched $\!^*$

| Databases and Trial registers          | Citations |
|----------------------------------------|-----------|
| Databases:                             |           |
| Pubmed                                 | 1199      |
| Cochrane                               | 4402      |
| Web of Science                         | 3884      |
| Embase                                 | 1450      |
| CINAHL                                 | 668       |
| PsycINFO                               | 2214      |
| LILACS                                 | 417       |
| ProQuest Dissertations                 | 462       |
| Total (databases)                      | 14696     |
|                                        |           |
| Trial registers:                       |           |
| USA (ClinicalTrials.gov)               | 1495      |
| World Health Organization (ICTRP)      | 1009      |
| USA Food and Drug Administration (FDA) | 1878      |
| Australian (ANZCTR)                    | 681       |
| China (ChiCTR)                         | 74        |
| Japan (IMIN-CTR)                       | 80        |
| Netherlands (Trial Register)           | 23        |
| UN (ISRCTN)                            | 430       |
| Total (trial registers)                | 5670      |

### Full search strategy for each database

#### **PubMed**

- #1 Search (depress\*[Title/Abstract] OR dysthymi\*[Title/Abstract] OR mood disorder\*[Title/Abstract] OR affective disorder\*[Title/Abstract])
- #2 Search ((("Depressive Disorder"[Mesh]) OR "Dysthymic Disorder"[Mesh]) OR "Mood Disorders"[Mesh]) OR "Affective Disorders, Psychotic"[Mesh]
- #3 #1 or #2
- #4 Search (adolesc\*[Title/Abstract] OR child\*[Title/Abstract] OR boy\*[Title/Abstract] OR girl\*[Title/Abstract] OR puvenil\*[Title/Abstract] OR minors[Title/Abstract] OR paediatri\*[Title/Abstract] OR pediatri\*[Title/Abstract] OR pubescen\*[Title/Abstract] OR school\*[Title/Abstract] OR student\*[Title/Abstract] OR teen\*[Title/Abstract] OR young[Title/Abstract] OR youth\*[Title/Abstract] OR pre-school[Title/Abstract])
- #5 Search "Child" [Majr] OR "Adolescent" [Majr]
- #6 #4 or #5
- Search (antidepressant\*[Title/Abstract] OR selective serotonin reuptake inhibitor\*[Title/Abstract] SSRI[Title/Abstract] OR SSRIs[Title/Abstract] OR fluoxetine[Title/Abstract] OR fluvoxamine[Title/Abstract] paroxetine[Title/Abstract] OR sertraline[Title/Abstract] OR OR citalopram[Title/Abstract] OR escitalopram[Title/Abstract] OR vortioxetine[Title/Abstract] OR serotonin norepinephrine reuptake inhibitor\*[Title/Abstract] OR SNRI[Title/Abstract] OR SNRIs[Title/Abstract] OR duloxetine[Title/Abstract] OR venlafaxine[Title/Abstract] OR desvenlafaxine[Title/Abstract] OR milnacipran[Title/Abstract] OR levomilnacipran[Title/Abstract] OR mirtazapine[Title/Abstract] OR mianserin[Title/Abstract] OR nefazodone[Title/Abstract] OR trazodone[Title/Abstract] OR vilazodone[Title/Abstract] OR bupropion[Title/Abstract] OR reboxetine[Title/Abstract] OR agomelatine[Title/Abstract] OR noradrenergic and specific serotonergic OR antidepressant\*[Title/Abstract] NaSSA[Title/Abstract] NaSSAs[Title/Abstract] OR OR mirtazapine[Title/Abstract] TCA[Title/Abstract] OR OR TCAs[Title/Abstract] OR tricyclic[Title/Abstract] OR amersergide[Title/Abstract] OR amineptine[Title/Abstract] OR amitriptyline[Title/Abstract] OR amoxapine[Title/Abstract] OR butriptyline[Title/Abstract] OR chlorpoxiten[Title/Abstract] OR clomipramine[Title/Abstract] OR clorimipramine[Title/Abstract] OR demexiptiline[Title/Abstract] OR desipramine[Title/Abstract] OR dibenzipin[Title/Abstract] OR dothiepin[Title/Abstract] doxepin[Title/Abstract] OR imipramine[Title/Abstract] OR lofepramine[Title/Abstract] OR melitracen[Title/Abstract] OR metapramine[Title/Abstract] OR nortriptyline[Title/Abstract] OR noxiptiline[Title/Abstract] OR opipramol[Title/Abstract] OR protriptyline[Title/Abstract] OR quinupramine[Title/Abstract] OR tianeptine[Title/Abstract] OR trimipramine[Title/Abstract])

#8 Search "Antidepressive Agents" [Mesh]

#9 #7 OR #8

#10 Search (psychother\*[Title/Abstract] OR psychological[Title/Abstract] OR cogniti\*[Title/Abstract] OR behavio\*[Title/Abstract] OR CBT[Title/Abstract] OR family therap\*[Title/Abstract] OR interpersonal[Title/Abstract] OR relaxation[Title/Abstract] OR bibliotherap\*[Title/Abstract] OR play therap\*[Title/Abstract] OR physical reinforcement[Title/Abstract] OR reinforced practice[Title/Abstract] OR OR exposure[Title/Abstract] consultation[Title/Abstract] biofeedback[Title/Abstract] OR social skill[Title/Abstract] OR client centered[Title/Abstract] OR counsel\*[Title/Abstract] OR exercise[Title/Abstract] OR psychoeducation\*[Title/Abstract] OR supportive[Title/Abstract] OR mental health[Title/Abstract] OR activity scheduling[Title/Abstract] OR art[Title/Abstract] OR dance[Title/Abstract] OR dialectic\*[Title/Abstract] OR focus\*[Title/Abstract] OR focus-oriented[Title/Abstract] OR humanistic[Title/Abstract] integrative[Title/Abstract] OR integrated[Title/Abstract] OR metacognitive[Title/Abstract] OR meta-cognitive[Title/Abstract] OR non-directive[Title/Abstract] OR non-directive[Title/Abstract] OR problem solving[Title/Abstract] OR psychodynamic[Title/Abstract] OR rational emotive[Title/Abstract] OR self control\*[Title/Abstract] OR self talk[Title/Abstract] OR self help[Title/Abstract] OR stress management[Title/Abstract] OR mind training[Title/Abstract] OR functional analys\*[Title/Abstract] OR psychoanaly\*[Title/Abstract] OR psychodrama[Title/Abstract] OR role play\*[Title/Abstract] OR mindfulness\*[Title/Abstract])

#11 Search "Psychotherapy" [Mesh]

#12 #10 OR #11

#13 #9 OR #12

#14 #9 AND #12

#15 #3 AND #6 AND #13 [Publication date from 2014/01/01 to 2018/06/30]

#16 #3 AND #6 AND #14 [Publication date from 1800/01/01 to 2014/01/01]

#17 #15 OR #16

#### Cochrane

#1 depress\* or dysthymi\* or "mood disorder\*" or "affective disorder\*":ti or depress\* or dysthymi\* or "mood disorder\*" or "affective disorder\*":ab

#2 MeSH descriptor: [Depressive Disorder] explode all trees

#3 MeSH descriptor: [Dysthymic Disorder] explode all trees

#4 MeSH descriptor: [Mood Disorders] explode all trees

#5 #1 or #2 or #3 or #4

#6 adolesc\* or child\* or boy\* or girl\* or juvenil\* or minors or paediatri\* or pediatri\* or pubescen\* or school\* or student\* or teen\* or young or youth\* or preschool or pre-school:ti or adolesc\* or child\* or boy\* or girl\* or juvenil\* or minors or paediatri\* or pediatri\* or pubescen\* or school\* or student\* or teen\* or young or youth\* or preschool or pre-school:ab

#7 MeSH descriptor: [Child] explode all trees

#8 MeSH descriptor: [Adolescent] explode all trees

#9 #6 or #7 or #8

#10 antidepressant\* or "selective serotonin reuptake inhibitor\*" or SSRI or SSRIs or fluoxetine or fluvoxamine or paroxetine or sertraline or citalopram or escitalopram or vortioxetine or "serotonin norepinephrine reuptake inhibitor\*" or SNRI or SNRIs or duloxetine or venlafaxine or desvenlafaxine or milnacipran or levomilnacipran or mirtazapine or mianserin or nefazodone or trazodone or vilazodone or bupropion or reboxetine or agomelatine or "noradrenergic and specific serotonergic antidepressant\*" or NaSSA or NaSSAs or mirtazapine or TCA or TCAs or tricyclic or amersergide or amineptine or amitriptyline or amoxapine or butriptyline or chlorpoxiten or clomipramine or clorimipramine or demexiptiline or desipramine or dibenzipin or dothiepin or doxepin or imipramine or lofepramine or melitracen or metapramine or nortriptyline or noxiptiline or opipramol or protriptyline or quinupramine or tianeptine or trimipramine:ti or antidepressant\* or "selective serotonin reuptake inhibitor\*" or SSRI or SSRIs or fluoxetine or fluoxamine or paroxetine or sertraline or citalopram or escitalopram or vortioxetine or "serotonin norepinephrine reuptake inhibitor\*" or SNRI or SNRIs or duloxetine or venlafaxine or desvenlafaxine or milnacipran or levomilnacipran or mirtazapine or mianserin or nefazodone or trazodone or vilazodone or bupropion or reboxetine or agomelatine or "noradrenergic and specific serotonergic antidepressant\*" or NaSSA or NaSSAs or mirtazapine or TCA or TCAs or tricyclic or amersergide or amineptine or amitriptyline or amoxapine or butriptyline or chlorpoxiten or clomipramine or clorimipramine or demexiptiline or desipramine or dibenzipin or dothiepin or doxepin or imipramine or lofepramine or melitracen or metapramine or nortriptyline or noxiptiline or opipramol or protriptyline or quinupramine or tianeptine or trimipramine:ab

#11 MeSH descriptor: [Antidepressive Agents] explode all trees

#12 #10 or #11

#13 psychother\* or psychological or cogniti\* or behavio\* or CBT or "family therap\*" or interpersonal or relaxation or bibliotherap\* or "play therap\*" or "physical reinforcement" or "reinforced practice" or exposure or consultation or biofeedback or "social skill" or "client centered" or counsel\* or exercise or psychoeducation\* or supportive or "mental health" or "activity scheduling" or art or dance or dialectic\*

or "emotion focus\*" or "focus-oriented" or humanistic or integrative or integrated or metacognitive or meta-cognitive or non-directive or "problem solving" or psychodynamic or "rational emotive" or "self control\*" or "self talk" or "self help" or "stress management" or "mind training" or "functional analys\*" or psychoanaly\* or psychodrama or "role play\*" or mindfulness\*:ti or psychother\* or psychological or cogniti\* or behavio\* or CBT or "family therap\*" or interpersonal or relaxation or bibliotherap\* or "play therap\*" or "physical reinforcement" or "reinforced practice" or exposure or consultation or biofeedback or "social skill" or "client centered" or counsel\* or exercise or psychoeducation\* or supportive or "mental health" or "activity scheduling" or art or dance or dialectic\* or "emotion focus\*" or "focus-oriented" or humanistic or integrative or integrated or metacognitive or meta-cognitive or non-directive or "problem solving" or psychodynamic or "rational emotive" or "self control\*" or "self talk" or "self help" or "stress management" or "mind training" or "functional analys\*" or psychoanaly\* or psychodrama or "role play\*" or mindfulness\*:ab

```
#14 acceptance* or commitment*:ti or acceptance* or commitment*:ab
#15 *therap*:ti or *therap*:ab
#16 #14 and #15
#17 MeSH descriptor: [Psychotherapy] explode all trees
#18 #13 or #16 or #17
#19 #12 or #18
#20 #12 and #18
#21 #5 and #9 and #19 [Publication year from 2014 to 2018]
#22 #5 and #9 and #20 [Publication year from 1800 to 2013]
#23 #21 or #22
```

### Web of science

- #1 TS=(depress\* or dysthymi\* or "mood disorder\*" or "affective disorder\*")
- #2 TS=(adolesc\* OR child\* OR boy\* OR girl\* OR juvenil\* OR minors OR paediatri\* OR pediatri\* OR pubescen\* OR school\* OR student\* OR teen\* OR young OR youth\* OR preschool OR pre-school)
- #3 TS=(antidepressant\* or "selective serotonin reuptake inhibitor\*" or SSRI or SSRIs or fluoxetine or fluoxamine or paroxetine or sertraline or citalopram or escitalopram or vortioxetineor "serotonin norepinephrine reuptake inhibitor\*" or SNRI or SNRIs or duloxetine or venlafaxine or desvenlafaxine or milnacipran or levomilnacipran or mirtazapine or mianserin or nefazodone or trazodone or

vilazodone or bupropion or reboxetine or agomelatine or "noradrenergic and specific serotonergic antidepressant\*" or NaSSA or NaSSAs or mirtazapine or TCA or TCAs or tricyclic or amersergide or amineptine or amitriptyline or amoxapine or butriptyline or chlorpoxiten or clomipramine or clorimipramine or demexiptiline or desipramine or dibenzipin or dothiepin or doxepin or imipramine or lofepramine or melitracen or metapramine or nortriptyline or noxiptiline or opipramol or protriptyline or quinupramine or tianeptine or trimipramine)

```
#4 TS=(*therap* and (acceptance* or commitment*))
```

#5 TS=(psychother\* or psychological or cogniti\* or behavio\* or CBT or "family therap\*" or interpersonal or relaxation or bibliotherap\* or "play therap\*" or "physical reinforcement" or "reinforced practice" or exposure or consultation or biofeedback or "social skill" or "client centered" or counsel\* or exercise or psychoeducation\* or supportive or "mental health" or "activity scheduling" or art or dance or dialectic\* or "emotion focus\*" or "focus-oriented" or humanistic or integrative or integrated or metacognitive or meta-cognitive or non-directive or "problem solving" or psychodynamic or "rational emotive" or "self control\*" or "self talk" or "self help" or "stress management" or "mind training" or "functional analys\*" or psychoanaly\* or psychodrama or "role play\*" or mindfulness\*)

```
#6 #5 OR #4
```

- #7 TS=(random\* or allocate\* or assign\* or cross over\* or crossover\* or controlled)
- #8 #6 OR #3
- #9 #6 AND #3
- #10 #8 AND #7 AND #2 AND #1 [Publication date from 2014 to 2018]
- #11 #9 AND #7 AND #2 AND #1 [Publication date from 1992 to 2013]
- #12 #10 OR #11

### **Embase**

- #1 depress\*:ab,ti OR dysthymi\*:ab,ti OR 'mood disorder\*':ab,ti OR 'affective disorder\*':ab,ti
- #2 'depression'/exp OR 'dysthymia'/exp OR 'mood disorder'/exp
- #3 #1 OR #2

#4 adolesc\*:ab,ti OR child\*:ab,ti OR boy\*:ab,ti OR girl\*:ab,ti OR juvenil\*:ab,ti OR minors:ab,ti OR paediatri\*:ab,ti OR pediatri\*:ab,ti OR pubescen\*:ab,ti OR school\*:ab,ti OR student\*:ab,ti OR teen\*:ab,ti OR young:ab,ti OR youth\*:ab,ti OR preschool:ab,ti OR 'preschool':ab,ti

#5 'child'/mj OR 'adolescent'/mj

#6 #4 OR #5

#7 antidepressant\*:ab,ti OR 'selective serotonin reuptake inhibitor\*':ab,ti OR ssri:ab,ti OR ssri:ab,ti OR fluoxetine:ab,ti OR fluoxetine:ab,ti OR paroxetine:ab,ti OR sertraline:ab,ti OR citalopram:ab,ti OR escitalopram:ab,ti OR vortioxetine:ab,ti OR 'serotonin norepinephrine reuptake inhibitor\*':ab,ti OR snri:ab,ti OR snri:ab,ti OR snri:ab,ti OR duloxetine:ab,ti OR venlafaxine:ab,ti OR desvenlafaxine:ab,ti OR milnacipran:ab,ti OR levomilnacipran:ab,ti OR minaserin:ab,ti OR nefazodone:ab,ti OR trazodone:ab,ti OR vilazodone:ab,ti OR bupropion:ab,ti OR reboxetine:ab,ti OR agomelatine:ab,ti OR 'noradrenergic and specific serotonergic antidepressant\*':ab,ti OR nassa:ab,ti OR nassa:ab,ti OR mirtazapine:ab,ti OR tca:ab,ti OR tricyclic:ab,ti OR amersergide:ab,ti OR amineptine:ab,ti OR amitriptyline:ab,ti OR amoxapine:ab,ti OR butriptyline:ab,ti OR chlorpoxiten:ab,ti OR dibenzipin:ab,ti OR dothiepin:ab,ti OR doxepin:ab,ti OR imipramine:ab,ti OR lofepramine:ab,ti OR melitracen:ab,ti OR metapramine:ab,ti OR nortriptyline:ab,ti OR noxiptiline:ab,ti OR opipramol:ab,ti OR protriptyline:ab,ti OR quinupramine:ab,ti OR tianeptine:ab,ti OR trimipramine:ab,ti OR opipramol:ab,ti OR protriptyline:ab,ti OR quinupramine:ab,ti OR tianeptine:ab,ti OR trimipramine:ab,ti

#8 'antidepressant agent'/exp

#9 #7 OR #8

#10 psychother\*:ab,ti OR psychological:ab,ti OR cogniti\*:ab,ti OR behavio\*:ab,ti OR cbt:ab,ti OR 'family therap\*':ab,ti OR interpersonal:ab,ti OR relaxation:ab,ti OR bibliotherap\*:ab,ti OR 'play therap\*':ab,ti OR 'physical reinforcement':ab,ti OR 'reinforced practice':ab,ti OR exposure:ab,ti OR consultation:ab,ti OR biofeedback:ab,ti OR 'social skill':ab,ti OR 'client centered':ab,ti OR counsel\*:ab,ti OR exercise:ab,ti OR psychoeducation\*:ab,ti OR supportive:ab,ti OR 'mental health':ab,ti OR 'activity scheduling':ab,ti OR art:ab,ti OR dance:ab,ti OR dialectic\*:ab,ti OR 'emotion focus\*':ab,ti OR 'focus-oriented':ab,ti OR humanistic:ab,ti OR integrative:ab,ti OR integrated:ab,ti OR 'problem solving':ab,ti OR psychodynamic:ab,ti OR rational emotive':ab,ti OR 'self control\*':ab,ti OR 'self talk':ab,ti OR 'self help':ab,ti OR 'stress management':ab,ti OR 'mind training':ab,ti OR 'functional analys\*':ab,ti OR psychoanaly\*:ab,ti OR psychodrama:ab,ti OR 'role play\*':ab,ti OR mindfulness\*:ab,ti

#11 therap\*:ab,ti AND (acceptance\*:ab,ti OR commitment\*:ab,ti)

#12 'psychotherapy'/exp

#13 #10 OR #11 OR #12

#14 #9 OR #13

#15 #9 AND #13

#16 #3 and #6 and #14 [Publication year from 2014 to 2018]

#17 #3 and #6 and #15 [Publication year from 1966 to 2013]

#18 #16 or #17

#### **CINAHL**

S1 TI (depress\* or dysthymi\* or "mood disorder\*" or "affective disorder\*") OR AB (depress\* or dysthymi\* or "mood disorder\*" or "affective disorder\*")

S2 (MH "Affective Disorders+") OR (MH "Depression+") OR (MH "Dysthymic Disorder")

S3 S1 OR S2

S4 TI (adolesc\* OR child\* OR boy\* OR girl\* OR juvenil\* OR minors OR paediatri\* OR pediatri\* OR pubescen\* OR school\* OR student\* OR teen\* OR young OR youth\* OR preschool OR pre-school) OR AB (adolesc\* OR child\* OR boy\* OR girl\* OR juvenil\* OR minors OR paediatri\* OR pediatri\* OR pubescen\* OR school\* OR student\* OR teen\* OR young OR youth\* OR preschool OR pre-school)

S5 (MH "Child") OR (MH "Adolescence")

S6 S4 OR S5

TI (antidepressant\* or "selective serotonin reuptake inhibitor\*" or SSRI or SSRIs or fluoxetine or fluvoxamine or paroxetine or sertraline or citalogram or escitalogram orvortioxetine or "serotonin norepinephrine reuptake inhibitor\*" or SNRI or SNRIs or duloxetine or venlafaxine or desvenlafaxine or milnacipran or levomilnacipran or mirtazapine or mianserin or nefazodone or trazodone or vilazodone or bupropion or reboxetine or agomelatine or "noradrenergic and specific serotonergic antidepressant\*" or NaSSA or NaSSAs or mirtazapine or TCA or TCAs or tricyclic or amersergide or amineptine or amitriptyline or amoxapine or butriptyline or chlorpoxiten or clomipramine or clorimipramine or demexiptiline or desipramine or dibenzipin or dothiepin or doxepin or imipramine or lofepramine or melitracen or metapramine or nortriptyline or noxiptiline or opipramol or protriptyline or quinupramine or tianeptine or trimipramine) OR AB (antidepressant\* or "selective serotonin reuptake inhibitor\*" or SSRI or SSRIs or fluoxetine or fluoxamine or paroxetine or sertraline or citalopram or escitalopram or "serotonin norepinephrine reuptake inhibitor\*" or SNRI or SNRIs or duloxetine or venlafaxine or desvenlafaxine or milnacipran or levomilnacipran or mirtazapine or mianserin or nefazodone or trazodone or vilazodone or bupropion or reboxetine or agomelatine or "noradrenergic and specific serotonergic antidepressant\*" or NaSSA or NaSSAs or mirtazapine or TCA or TCAs or tricyclic or amersergide or amineptine or amitriptyline or amoxapine or butriptyline or chlorpoxiten or clomipramine or clorimipramine or demexiptiline or desipramine or dibenzipin or dothiepin or doxepin or imipramine or lofepramine or melitracen or metapramine or nortriptyline or

noxiptiline or opipramol or protriptyline or quinupramine or tianeptine or trimipramine)

S8 (MH "Antidepressive Agents+")

S9 S7 OR S8

S10 TI (psychother\* or psychological or cogniti\* or behavio\* or CBT or "family therap\*" or interpersonal or relaxation or bibliotherap\* or "play therap\*" or "physical reinforcement" or "reinforced practice" or exposure or consultation or biofeedback or "social skill" or "client centered" or counsel\* or exercise or psychoeducation\* or supportive or "mental health" or "activity scheduling" or art or dance or dialectic\* or "emotion focus\*" or "focus-oriented" or humanistic or integrative or integrated or metacognitive or meta-cognitive or nondirective or "problem solving" or psychodynamic or "rational emotive" or "self control\*" or "self talk" or "self help" or "stress management" or "mind training" or "functional analys\*" or psychoanaly\* or psychodrama or "role play\*" or mindfulness\*) OR AB (psychother\* or psychological or cogniti\* or behavio\* or CBT or "family therap\*" or interpersonal or relaxation or bibliotherap\* or "play therap\*" or "physical reinforcement" or "reinforced practice" or exposure or consultation or biofeedback or "social skill" or "client centered" or counsel\* or exercise or psychoeducation\* or supportive or "mental health" or "activity scheduling" or art or dance or dialectic\* or "emotion focus\*" or "focus-oriented" or humanistic or integrative or integrated or metacognitive or meta-cognitive or nondirective or non-directive or "problem solving" or psychodynamic or "rational emotive" or "self control\*" or "self talk" or "self help" or "stress management" or "mind training" or "functional analys\*" or psychoanaly\* or psychodrama or "role play" or mindfulness")

S11 TI \*therap\* OR AB \*therap\*

S12 TI (acceptance\* or commitment\*) OR AB (acceptance\* or commitment\*)

S13 S11 AND S12

S14 (MH "Psychotherapy+")

S15 S10 OR S13 OR S14

S16 TI (random\* or allocate\* or assign\* or cross over\* or crossover\* or controlled) OR AB (random\* or allocate\* or assign\* or cross over\* or crossover\* or controlled)

S17 (MH "Clinical Trials+")

S18 S16 OR S17

S19 S9 OR S15

S20 S9 AND S15

- S21 S3 AND S6 AND S18 AND S19 [Publication date from 2014/01/01 to 2018/06/30]
- S22 S3 AND S6 AND S18 AND S20 [Publication date from 1800/01/01 to 2013/12/31]

S23 S21 OR S22

#### **PsycINFO**

- S1 (depress\* or dysthymi\* or mood disorder\* or affective disorder\*) OR AB (depress\* or dysthymi\* or mood disorder\* or affective disorder\*).ab
- S2 MA major depression OR MA affective disorders OR MA dysthymic disorder
- S3 S1 OR S2
- S4 (adolesc\* or child\* or boy\* or girl\* or juvenil\* or minors or paediatri\* or pediatri\* or pubescen\* or school\* or student\* or teen\* or young or youth\* or preschool or pre-school) OR AB (adolesc\* or child\* or boy\* or girl\* or juvenil\* or minors or paediatri\* or pediatri\* or pubescen\* or school\* or student\* or teen\* or young or youth\* or preschool or pre-school).ab
- S5 MA child psychiatry
- S6 MA adolescent psychiatry
- S7 S4 OR S5 OR S6
- (antidepressant\* or selective serotonin reuptake inhibitor\* or SSRI or SSRIs or fluoxetine or fluvoxamine or paroxetine or sertraline or citalopram or escitalopram or vortioxetine orserotonin norepinephrine reuptake inhibitor\* or SNRI or SNRIs or duloxetine or venlafaxine or desvenlafaxine or milnacipran or levomilnacipran or mirtazapine or mianserin or nefazodone or trazodone or vilazodone or bupropion or reboxetine or agomelatine or (noradrenergic and specific serotonergic antidepressant\*) or NaSSA or NaSSAs or mirtazapine or TCA or TCAs or tricyclic or amersergide or amineptine or amitriptyline or amoxapine or butriptyline or chlorpoxiten or clomipramine or clorimipramine or demexiptiline or desipramine or dibenzipin or dothiepin or doxepin or imipramine or lofepramine or melitracen or metapramine or nortriptyline or noxiptiline or opipramol or protriptyline or quinupramine or tianeptine or trimipramine) OR AB (antidepressant\* or selective serotonin reuptake inhibitor\* or SSRI or SSRIs or fluoxetine or fluoxamine or paroxetine or sertraline or citalopram or escitalopram or vortioxetine or serotonin norepinephrine reuptake inhibitor\* or SNRI or SNRIs or duloxetine or venlafaxine or desvenlafaxine or milnacipran or levomilnacipran or mirtazapine or mianserin or nefazodone or trazodone or vilazodone or bupropion or reboxetine or agomelatine or (noradrenergic and specific serotonergic antidepressant\*) or NaSSA or NaSSAs or mirtazapine or TCAs or TCAs or tricyclic or amersergide or amineptine or amitriptyline or amoxapine or butriptyline or chlorpoxiten or clomipramine or clorimipramine or demexiptiline or desipramine or dibenzipin or dothiepin or doxepin

or imipramine or lofepramine or melitracen or metapramine or nortriptyline or noxiptiline or opipramol or protriptyline or quinupramine or tianeptine or trimipramine).ab

S9 (psychother\* or psychological or cogniti\* or behavio\* or CBT or family therap\* or interpersonal or relaxation or bibliotherap\* or play therap\* or physical reinforcement or reinforced practice or exposure or consultation or biofeedback or social skill or client centered or counsel\* or exercise or psychoeducation\* or supportive or mental health or activity scheduling or art or dance or dialectic\* or emotion focus\* or focus-oriented or humanistic or integrative or integrated or metacognitive or meta-cognitive or nondirective or non-directive or problem solving or psychodynamic or rational emotive or self control\* or self talk or self help or stress management or mind training or functional analys\* or psychoanaly\* or psychodrama or role play\* or mindfulness\*) OR AB (psychother\* or psychological or cogniti\* or behavio\* or CBT or family therap\* or interpersonal or relaxation or bibliotherap\* or play therap\* or physical reinforcement or reinforced practice or exposure or consultation or biofeedback or social skill or client centered or counsel\* or exercise or psychoeducation\* or supportive or mental health or activity scheduling or art or dance or dialectic\* or emotion focus\* or focus-oriented or humanistic or integrative or integrated or metacognitive or meta-cognitive or nondirective or non-directive or problem solving or psychodynamic or rational emotive or self control\* or self talk or self help or stress management or mind training or functional analys\* or psychoanaly\* or psychodrama or role play\* or mindfulness\*).ab

S10 TI (acceptance\* or commitment\*) OR AB (acceptance\* or commitment\*)

S11 TI therap\* OR AB therap\*

S12 S10 and S11

S13 S9 or S12

S14 exp psychotherapy/

S15 S13 or S14

S16 exp clinical trials/

S17 (random\* or allocate\* or assign\* or cross over\* or crossover\* or controlled) OR AB (random\* or allocate\* or assign\* or cross over\* or crossover\* or controlled).ab

S18 S16 or S17

S19 S8 OR S15

S20 S8 and S15

S21 S3 and S7 and S18 and S19 [Publication year from 2014 to 2018]

S22 S3 and S7 and S18 and S20[Publication year from 1969 to 2013]

S23 S21 or S22

#### **LILACS**

(depress\$ or dysthymi\$ or "mood disorder\$" or "affective disorder\$") and (adolesc\$ OR child\$ OR boy\$ OR girl\$ OR juvenil\$ OR minors OR paediatri\$ OR pediatri\$ OR pubescen\$ OR school\$ OR student\$ OR teen\$ OR young OR youth\$ OR preschool OR pre-school) [Words] and antidepressant\$ or "selective serotonin reuptake inhibitor\$" or SSRI or SSRIs or fluoxetine or fluvoxamine or paroxetine or sertraline or citalopram or escitalopram or vortioxetineor "serotonin norepinephrine reuptake inhibitor\$" or SNRI or SNRIs or duloxetine or venlafaxine or desvenlafaxine or milnacipran or levomilnacipran or mirtazapine or mianserin or nefazodone or trazodone or vilazodone or bupropion or reboxetine or agomelatine or "noradrenergic and specific serotonergic antidepressant\$" or NaSSA or NaSSAs or mirtazapine or TCA or TCAs or tricyclic or amersergide or amineptine or amitriptyline or amoxapine or butriptyline or chlorpoxiten or clomipramine or clorimipramine or demexiptiline or desipramine or dibenzipin or dothiepin or doxepin or imipramine or lofepramine or melitracen or metapramine or nortriptyline or noxiptiline or opipramol or protriptyline or quinupramine or tianeptine or trimipramine or psychother\$ or psychological or cogniti\$ or behavio\$ or CBT or "family therap\$" or interpersonal or relaxation or bibliotherap\$ or "play therap\$" or "physical reinforcement" or "reinforced practice" or exposure or consultation or biofeedback or "social skill" or "client centered" or counsel\$ or exercise or psychoeducation\$ or supportive or "mental health" or "activity scheduling" or art or dance or dialectic\$ or "emotion focus\$" or "focus-oriented" or humanistic or integrative or integrated or metacognitive or meta-cognitive or nondirective or non-directive or "problem solving" or psychodynamic or "rational emotive" or "self control\$" or "self talk" or "self help" or "stress management" or "mind training" or "functional analys\$" or psychoanaly\$ or psychodrama or "role play\$" or mindfulness\$ [Words] and random\$ or allocate\$ or assign\$ or cross over\$ or crossover\$ or controlled [Words]

#### **ProQuest Dissertations**

- S1 ti(depress\* or dysthymi\* or "mood disorder\*" or "affective disorder\*") OR ab(depress\* or dysthymi\* or "mood disorder\*" or "affective disorder\*") OR su("Affective Disorders\*" or depress\* or "Dysthymic Disorder")
- S2 ti(adolesc\* OR child\* OR boy\* OR girl\* OR juvenil\* OR minors OR paediatri\* OR pediatri\* OR pubescen\* OR school\* OR student\* OR teen\* OR young OR youth\* OR preschool OR pre-school) OR ab(adolesc\* OR child\* OR boy\* OR girl\* OR juvenil\* OR minors OR paediatri\* OR pediatri\* OR pubescen\* OR school\* OR student\* OR teen\* OR young OR youth\* OR preschool OR pre-school) OR su(Child or Adolescence)
- S3 ti(antidepressant\* or "selective serotonin reuptake inhibitor\*" or SSRI or SSRIs or fluoxetine or fluoxamine or paroxetine or sertraline or citalopram or escitalopram or vortioxetine or "serotonin"

norepinephrine reuptake inhibitor\*" or SNRI or SNRIs or duloxetine or venlafaxine or desvenlafaxine or milnacipran or levomilnacipran or mirtazapine or mianserin or nefazodone or trazodone or vilazodone or bupropion or reboxetine or agomelatine or "noradrenergic and specific serotonergic antidepressant\*" or NaSSA or NaSSAs or mirtazapine or TCA or TCAs or tricyclic or amersergide or amineptine or amitriptyline or amoxapine or butriptyline or chlorpoxiten or clomipramine or clorimipramine or demexiptiline or desipramine or dibenzipin or dothiepin or doxepin or imipramine or lofepramine or melitracen or metapramine or nortriptyline or noxiptiline or opipramol or protriptyline or quinupramine or tianeptine or trimipramine) OR ab(antidepressant\* or "selective serotonin reuptake inhibitor\*" or SSRI or SSRIs or fluoxetine or fluoxamine or paroxetine or sertraline or citalogram or escitalopram or vortioxetine or "serotonin norepinephrine reuptake inhibitor\*" or SNRI or SNRIs or duloxetine or venlafaxine or desvenlafaxine or milnacipran or levomilnacipran or mirtazapine or mianserin or nefazodone or trazodone or vilazodone or bupropion or reboxetine or agomelatine or "noradrenergic and specific serotonergic antidepressant\*" or NaSSA or NaSSAs or mirtazapine or TCA or TCAs or tricyclic or amersergide or amineptine or amitriptyline or amoxapine or butriptyline or chlorpoxiten or clomipramine or clorimipramine or demexiptiline or desipramine or dibenzipin or dothiepin or doxepin or imipramine or lofepramine or melitracen or metapramine or nortriptyline or noxiptiline or opipramol or protriptyline or quinupramine or tianeptine or trimipramine) OR su("Antidepressive Agents\*")

S4 ti(psychother\* or psychological or cogniti\* or behavio\* or CBT or "family therap\*" or interpersonal or relaxation or bibliotherap\* or "play therap\*" or "physical reinforcement" or "reinforced practice" or exposure or consultation or biofeedback or "social skill" or "client centered" or counsel\* or exercise or psychoeducation\* or supportive or "mental health" or "activity scheduling" or art or dance or dialectic\* or "emotion focus\*" or "focus-oriented" or humanistic or integrative or integrated or metacognitive or meta-cognitive or nondirective or "problem solving" or psychodynamic or "rational emotive" or "self control\*" or "self talk" or "self help" or "stress management" or "mind training" or "functional analys\*" or psychoanaly\* or psychodrama or "role play\*" or mindfulness\*) OR ab(psychother\* or psychological or cogniti\* or behavio\* or CBT or "family therap\*" or interpersonal or relaxation or bibliotherap\* or "play therap\*" or "physical reinforcement" or "reinforced practice" or exposure or consultation or biofeedback or "social skill" or "client centered" or counsel\* or exercise or psychoeducation\* or supportive or "mental health" or "activity scheduling" or art or dance or dialectic\* or "emotion focus\*" or "focus-oriented" or humanistic or integrative or integrated or metacognitive or meta-cognitive or nondirective or non-directive or "problem solving" or psychodynamic or "rational emotive" or "self control\*" or "self talk" or "self help" or "stress management" or "mind training" or "functional analys\*" or psychoanaly\* or psychodrama or "role play\*" or mindfulness\*)

```
S5 ti(therap*) OR ab( therap*)
```

S6 ti(acceptance\* OR commitment\*) OR ab(acceptance\* OR commitment\*)

S7 S5 AND S6

S8 S4 OR S7

S9 S3 OR S8

S10 S3 AND S8

S11 ti(random\* or allocate\* or assign\* or cross over\* or crossover\* or controlled) or ab(random\* or allocate\* or assign\* or cross over\* or crossover\* or controlled)

S12 S1 AND S2 AND S9 AND S11[Publication date from 2014/01/01 to 2019/01/01]

S13 S1 AND S2 AND S10 AND S11[Publication date from 1962/01/01 to 2013/12/31]

S14 S12 OR S13

## **APPENDIX 2**

The detailed descriptions of these psychotherapies and psychological control conditions

## The detailed descriptions of these psychotherapies and psychological control conditions

| Interventions                   | Abbreviation | Description                                                                                             |  |  |
|---------------------------------|--------------|---------------------------------------------------------------------------------------------------------|--|--|
| Psychotherapeutic Intervention: |              |                                                                                                         |  |  |
| Behavioural therapy             | ВТ           | BT uses some kind of behavioural training and psychoeducation. BT programmes provide                    |  |  |
|                                 |              | parents and youths information about MDD and interventions; teach youths to monitor their               |  |  |
|                                 |              | mood, thoughts and behaviours; proposed pleasant activity scheduling and behavioural                    |  |  |
|                                 |              | activation.                                                                                             |  |  |
| Cognitive-behavioural therapy   | СВТ          | CBT is a combination of BT and CT. Additional CBT skill-building techniques are used in many            |  |  |
|                                 |              | programmes by teaching relaxation techniques to cope with environmental stressors, providing            |  |  |
|                                 |              | social skills and resolution training and teaching general problem-solving.                             |  |  |
| Family therapy                  | FT           | FT works with families to nurture change and development. FT tends to view change in terms              |  |  |
|                                 |              | of the systems of interaction between family members. In the case of youth with MDD, FT aims            |  |  |
|                                 |              | at helping the family to answer the child's needs for completing age-appropriate developmental          |  |  |
|                                 |              | tasks to relieve depression.                                                                            |  |  |
|                                 | IPT          | IPT aims at educating patients as to how their depression and the quality of interpersonal              |  |  |
| Internance and the second       |              | relationships affect one another and at addressing interpersonal problems that may be                   |  |  |
| Interpersonal therapy           |              | contributing to the depression (eg, grief, disputes, role transitions, social deficits). Compared with  |  |  |
|                                 |              | its adult version, IPT in youths is shorter, involves parents and adds a liaison role for the therapist |  |  |

|                            |     | between schools and families.                                                                          |
|----------------------------|-----|--------------------------------------------------------------------------------------------------------|
|                            | PST | PST focus on the problems participants are currently facing and on helping them find solutions to      |
| Problem-solving therapy    |     | those problems.                                                                                        |
|                            | DYN | DYN proposed patients to help understand the origin and nature of long standing problems by            |
|                            |     | investigating both conscious and non-conscious thoughts and emotional feelings. DYN uses free          |
| Psychodynamic therapy      |     | associations and interpretation of dreams (or drawing in children), and addresses how personal         |
|                            |     | history and experience may alter the patient/therapist transference. In youth MDD, a particular        |
|                            |     | interest is given to psychological trauma, early parent/child relationships, narcissistic organisation |
|                            |     | and experiences of loss.                                                                               |
|                            |     | SUP is an unstructured therapy without specific psychological techniques that it helped people         |
| Supportive therapy         | SUP | to ventilate their experiences and emotions and offering empathy. These therapies are commonly         |
|                            |     | described in the literature as either counselling or supportive therapy                                |
| <b>Control conditions:</b> |     |                                                                                                        |
| Psychological placebo      | РВО | PBO is a control condition that was regarded as inactive by the researchers, but was to be the         |
| i sychologicai piaceoo     |     | participants.                                                                                          |
| Treatment as usual         | TAU | TAU is not considered to be structured psychotherapy, but may have some treatment effects.             |
| Weidling                   | WL  | WL is a control condition in which the participants receive no active treatment during the study       |
| Waitlist                   |     | but are forewarned that they can receive one after the study period is over.                           |

## **APPENDIX 3**

Hierarchy of depression symptom severity measurement scales

# Hierarchy of depression symptom severity measurement scales

| Hierarchy | Depression symptom severity measurement scales     | Abbreviation | Included trials |
|-----------|----------------------------------------------------|--------------|-----------------|
| 1         | Children's Depression Rating Scale                 | CDRS         | 30              |
| 2         | Hamilton Depression Rating Scale                   | HAMD         | 16              |
| 3         | Montgomery Asberg Depression Rating Scale          | MADRS        | 3               |
| 4         | Beck Depression Inventory                          | BDI          | 6               |
| 5         | Children's Depression Inventory                    | CDI          | 8               |
|           | Schedule for Affective Disorders and Schizophrenia | W G V D G    | 1               |
| 6         | for School Aged Children                           | K-SADS       |                 |
| 7         | Mood and Feeling Questionnaire                     | MFQ          | 3               |
| 8         | Reynolds Adolescent Depression Scale               | RADS         | 1               |
| 9         | Bellevue Index of Depression                       | BID          | 0               |
| 10        | Child Depression Scale                             | CDS          | 0               |
| 11        | Centre for Epidemiologic Studies Depression Scale  | CESD         | 0               |
| 12        | Child Assessment Schedule                          | CAS          | 0               |
| 14        | Child Behaviour Checklist-Depression               | CBCL-D       | 0               |

### **APPENDIX 4**

Network meta-analysis model

### **NMA** model description

### 1. Random Effects Model for Continuous Data in OpenBUGS

y=a table of the arm-means, sd=a table of the arm sd, n=a table of the arm sample size, t=a table with the names (numbers) of treatments, na=a vector with the number of arms in each study, ref=a number specifying which is the reference treatment

```
model{
for(i in 1:ns){
w[i,1] < 0
delta[i,t[i,1]] < -0
u[i] \sim dnorm(0,.0001)
for (k in 1:na[i]) {
se[i,t[i,k]] < sd[i,t[i,k]]/sqrt(n[i,t[i,k]])
var[i,t[i,k]] <- se[i,t[i,k]] *se[i,t[i,k]]
prec[i,t[i,k]] < 1/var[i,t[i,k]]
#normal likelihood
y[i,t[i,k]] \sim dnorm(phi[i,t[i,k]],prec[i,t[i,k]])
phi[i,t[i,k]]<- (u[i]+delta[i,t[i,k]])*pooled.sd[i]
#calculate the pooled SD
nom1[i,k] <- n[i,t[i,k]] *sd[i,t[i,k]] * mominator for the pooled sd
     }
ss[i]<- sum(n[i,1:nt])-nt+na[i] #total sample size in a study
nom[i]<- sum(nom1[i,1:na[i]]) #nominator for the pooled sd
pooled.sd[i]<- sqrt(nom[i]/(ss[i]-na[i])) #pooled sd
for (k in 2:na[i]) {
delta[i,t[i,k]] \sim dnorm(md[i,t[i,k]],taud[i,t[i,k]]) # trial-specific SMD distributions
md[i,t[i,k]] \leftarrow d[t[i,k]] - d[t[i,1]] + sw[i,k] # mean of SMD distributions
taud[i,t[i,k]]<- tau*2*(k-1)/k #precision of SMDdistributions
w[i,k] \leftarrow (delta[i,t[i,k]]-d[t[i,k]]+d[t[i,1]]) #adjustment, multi-arm RCTs
sw[i,k] < -sum(w[i,1:k-1])/(k-1) # cumulative adjustment for multi-arm trials
     }
d[ref] < -0
for (k \text{ in } 2:nt) \{d[k] \sim dnorm(0,.0001) \}
SD~dunif(0,1) #vague prior for random effects standard deviation
tau < -1/pow(SD,2)
```

### 2. Random Effects Model for Dichotomous Data in OpenBUGS

r= a table of the number of events, n=a table of the arm sample size, t=a table with the names (numbers) of treatments, na=a vector with the number of arms in each study, ref=a number specifying which is the reference treatment

```
model {
for(i in 1:ns) {
w[i,1] < 0
delta[i,t[i,1]] < 0
#Binomial Likelihood#
for (k in 1:na[i]) {
r[i,t[i,k]] \sim dbin(p[i,t[i,k]],n[i,t[i,k]])
#Parameterization of the model#
logit(p[i,t[i,1]]) <- mu[i]
for (k in 2:na[i]) {
logit(p[i,t[i,k]]) <- mu[i] + delta[i,t[i,k]]
delta[i,t[i,k]] \sim dnorm(md[i,t[i,k]],taud[i,t[i,k]])
taud[i,t[i,k]] \leftarrow tau *2*(k-1)/k
md[i,t[i,k]] < -d[t[i,k]] - d[t[i,1]] + sw[i,k]
w[i,k] < -(delta[i,t[i,k]] - d[t[i,k]] + d[t[i,1]])
sw[i,k] <- sum(w[i,1:k-1])/(k-1)
     }
#Priors#
sd \sim dnorm(0,1)I(0,1)
```

```
tau < 1/pow(sd,2)
for(k in 1:(ref-1)) {
d[k] \sim dnorm(0,.0001)
     }
for(k in (ref+1):nt) {
d[k] \sim dnorm(0,.0001)
     }
for(i in 1:ns) {
mu[i] \sim dnorm(0,.0001)
     }
# Collection of results#
#Estimated & Predicted Odds Ratios#
d[ref]<- 0
for(i in 1:(nt-1)) {
for (j in (i+1):nt) {
OR[i,j] <- exp(d[i] - d[j])
LOR[i,j] <- d[i] - d[j]
     }
     }
#Fit of the Model#
for(i in 1:ns) {
for (k in 1:na[i]) {
r[i,t[i,k]])*log((n[i,t[i,k]]-n[i,t[i,k]]*p[i,t[i,k]])/(n[i,t[i,k]]-r[i,t[i,k]])))
     }
D[i]<- sum(Darm[i,1:na[i]])
     }
D.bar <- sum(D[])
}
```

### 3. Meta-regression with a Continuouse Covarite for Continuous Data in OpenBUGS

y=a table of the arm-means, sd=a table of the arm sd, N=a table of the arm sample size, t=a table with the names (numbers) of treatments, na=a vector with the number of arms in each study, ref=a number specifying which is the reference treatment

```
for (k in 1:na[i]) {
            se[i,k] < -sd[i,k]/sqrt(n[i,k])
            var[i,k] < -se[i,k] * se[i,k]
            prec[i,k] < -1/var[i,k]
            #normal likelihood
            y[i,k]~dnorm(phi[i,k],prec[i,k])
            phi[i,k] < -(u[i] + delta[i,k]) *pooled.sd[i] + (beta[t[i,k]] - beta[t[i,1]]) * (x[i] - mx)
            #calculate the pooled SD
            nom1[i,k] < -n[i,k] * sd[i,k] * sd[i,k] # nominator for the pooled sd
            ss[i]<-sum(n[i,1:na[i]]) #total sample size in a study
            nom[i]<-sum(nom1[i,1:na[i]])#nominator for the pooled sd
            pooled.sd[i]<-sqrt(nom[i]/(ss[i]-na[i]))# pooled sd
     for (k in 2:na[i]) {
     delta[i,k] \sim dnorm(md[i,k],taud[i,k])
                                                  # trial-specific LOR distributions
          md[i,k] < - \quad d[t[i,k]] - d[t[i,1]] \quad + sw[i,k]
                                                                # mean of LOR distributions
          taud[i,k] <- tau *2*(k-1)/k
                                                                     #precision of LOR distributions
          w[i,k] \leftarrow (delta[i,k] - d[t[i,k]] + d[t[i,1]]) #adjustment, multi-arm RCTs
          sw[i,k] < -sum(w[i,1:k-1])/(k-1) }
                                                                     # cumulative adjustment for multi-arm
trials
                   }
d[ref] < -0
beta[1] < -0
for (k in 2:nt) {
d[k] \sim dnorm(0,.0001)
beta[k] <- B
}
B \sim dnorm(0,.0001)
SD\sim dunif(0,1)
                                      # vague prior for random effects standard deviation
tau < -1/pow(SD,2)
# Extra code for calculating all odds ratios and log odds ratios, and absolute effects, for covariate
# values in vector z, with length nz (given as data)
for (k \text{ in } 1:nt)
      for \ (j \ in \ 1:nz) \ \{ \ dz[j,k] < - \ d[k] + (beta[k]-beta[1])*(mx-z[j]) \ \} \quad \# \ treatment \ effect \ when \ covariate
=z[j]
  }
# Collection of results#########
```

```
# pairwise SMDs
# for all comparisons
for (c in 1:(nt-1)) {
for (k \text{ in } (c+1):nt) {
# when covariate is zero
  SMD[c,k] \leftarrow d[c] - d[k]
  SMD.neg[c,k] \leftarrow d[k] - d[c]
# at covariate=z[j]
for (j in 1:nz) {
SMDz[j,c,k] \leftarrow dz[j,c] - dz[j,k]
SMD.negz[j,c,k] \leftarrow dz[j,k] - dz[j,c]
       }
      }
    }
#Fit of the Model#
      for(i in 1:ns) {
            for(k in 1:na[i]) {
                  Darm[i,k] < -(y[i,k]-phi[i,k])*(y[i,k]-phi[i,k])/var[i,k]
            }
            D[i]<- sum(Darm[i,1:na[i]])
      }
      D.bar<- sum(D[])
}
```

### 4. Meta-regression with a Dichotomous Covarite for Continuous Data in OpenBUGS

y=a table of the arm-means, sd=a table of the arm sd, N=a table of the arm sample size, t=a table with the names (numbers) of treatments, na=a vector with the number of arms in each study, ref=a number specifying which is the reference treatment

```
\label{eq:model} $$ model $\{$ for (i in 1:ns) $\{$ $w[i,1] <-0$ $ delta[i,1] <-0$ $ u[i] \sim dnorm(0,.0001) $$ for (k in 1:na[i]) $$ { se[i,k] <-sd[i,k] / sqrt(n[i,k])$ $ var[i,k] <-se[i,k] *se[i,k]$ $ prec[i,k] <-1 / var[i,k]$ $$
```

```
#normal likelihood
            y[i,k]~dnorm(phi[i,k],prec[i,k])
            phi[i,k] < -(u[i] + delta[i,k]) * pooled.sd[i] + (beta[t[i,k]] - beta[t[i,1]]) * x[i]
            #calculate the pooled SD
            nom1[i,k]<-n[i,k]*sd[i,k]*sd[i,k] #nominator for the pooled sd
                  }
            ss[i]<-sum(n[i,1:na[i]]) #total sample size in a study
            nom[i]<-sum(nom1[i,1:na[i]])#nominator for the pooled sd
            pooled.sd[i]<-sqrt(nom[i]/(ss[i]-na[i]))# pooled sd
     for (k in 2:na[i]) {
     delta[i,k] \sim dnorm(md[i,k],taud[i,k])
                                                  # trial-specific LOR distributions
          md[i,k] \leftarrow d[t[i,k]] - d[t[i,1]] + sw[i,k]
                                                                # mean of LOR distributions
          taud[i,k] <- tau *2*(k-1)/k
                                                                    #precision of LOR distributions
          w[i,k] \leftarrow (delta[i,k] - d[t[i,k]] + d[t[i,1]]) #adjustment, multi-arm RCTs
          sw[i,k] < -sum(w[i,1:k-1])/(k-1)
                                                                     # cumulative adjustment for multi-arm
trials
                   }
d[ref] < -0
beta[1] <- 0
for (k in 2:nt) {
d[k] \sim dnorm(0,.0001)
beta[k] <- B
B \sim dnorm(0,.0001)
SD\sim dunif(0,1)
                                         vague prior for random effects standard deviation
tau < -1/pow(SD,2)
# Extra code for calculating all odds ratios and log odds ratios, and absolute effects, for covariate
# values in vector z, with length nz (given as data)
for (k \text{ in } 1:nt)
      for \ (j \ in \ 1:nz) \ \{ \ dz[j,k] < - \ d[k] + (beta[k]-beta[1])*z[j] \ \} \quad \# \ treatment \ effect \ when \ covariate = z[j] 
  }
# Collection of results#########
# pairwise SMDs
# for all comparisons
for (c in 1:(nt-1)) {
for (k \text{ in } (c+1):nt) {
# when covariate is zero
  SMD[c,k] \leftarrow d[c] - d[k]
```

### 5. Meta-regression with a Continuouse Covarite for Dichotomous Data in OpenBUGS

r= a table of the number of events, n=a table of the arm sample size, t=a table with the names (numbers) of treatments, na=a vector with the number of arms in each study, ref=a number specifying which is the reference treatment

```
taud[i,k]<- tau *2*(k-1)/k
            md[i,k] < -d[t[i,k]] - d[t[i,1]] + sw[i,k]
            w[i,k] < -(delta[i,k] - d[t[i,k]] + d[t[i,1]])
            sw[i,k] < -sum(w[i,1:k-1])/(k-1)
     }
#Priors#
     sd \sim dnorm(0,1)I(0,1)
     tau<- 1/pow(sd,2)
     B \sim dnorm(0,.0001)
     for(k in 2:nt) {
           d[k] \sim dnorm(0,.0001)
                     beta[k] < -B
     for(i in 1:ns) {
           mu[i] \sim dnorm(0,.0001)
     }
#Estimated & Predicted Odds Ratios#
     d[ref]<- 0
beta[1] <- 0
for (k in 1:nt){
     for (j \text{ in } 1:nz) \{ dz[j,k] <- d[k] + (beta[k]-beta[1])*(mx-z[j]) \} # treatment effect when covariate
=z[j]
# pairwise ORs and LORs for all possible pair-wise comparisons
for (c in 1:(nt-1)) {
     for (k in (c+1):nt) {
# when covariate is zero
          OR[c,k] \leftarrow exp(d[c] - d[k])
          LOR[c,k] \leftarrow (d[c]-d[k])
# at covariate=z[j]
          for (j in 1:nz) {
                ORz[j,c,k] \leftarrow exp(dz[j,c] - dz[j,k])
                LORz[j,c,k] \leftarrow (dz[j,c]-dz[j,k])
       }
#Fit of the Model#
```

#### 6. Meta-regression with a Dichotomous Covarite for Dichotomous Data in OpenBUGS

r= a table of the number of events, n=a table of the arm sample size, t=a table with the names (numbers) of treatments, na=a vector with the number of arms in each study, ref=a number specifying which is the reference treatment

```
model {
      for(i in 1:ns) {
      w[i,1] < 0
          delta[i,1]<- 0
#Binomial Likelihood#
            for (k in 1:na[i]) {
            r[i,k] \sim dbin(p[i,k],n[i,k])
#Parameterization of the model#
            logit(p[i,1]) <- mu[i]
            for (k in 2:na[i]) {
      logit(p[i,k]) \leftarrow mu[i] + delta[i,k] + (beta[t[i,k]] - beta[t[i,1]]) * x[i]
                  delta[i,k] \sim dnorm(md[i,k], taud[i,k])
                  taud[i,k]<- tau *2*(k-1)/k
            md[i,\!k]\!\!<\!\!- \quad d[t[i,\!k]] - d[t[i,\!1]] \quad + sw[i,\!k]
            w[i,k] < -(delta[i,k] - d[t[i,k]] + d[t[i,1]])
            sw[i,k] <- sum(w[i,1:k-1])/(k-1)
      }
#Priors#
      sd \sim dnorm(0,1)I(0,1)
```

```
tau < 1/pow(sd,2)
                   B \sim dnorm(0,.0001)
                   for(k in 2:nt) {
                                     d[k] \sim dnorm(0,.0001)
                                                                      beta[k] < -B
                  for(i in 1:ns) {
                                    mu[i] \sim dnorm(0,.0001)
                   }
#Estimated & Predicted Odds Ratios#
                   d[ref]<- 0
beta[1] <- 0
for (k in 1:nt){
                  for \ (j \ in \ 1:nz) \ \{ \ dz[j,k] < - \ d[k] + (beta[k]-beta[1])*z[j] \ \} \quad \# \ treatment \ effect \ when \ covariate = z[j] 
# pairwise ORs and LORs for all possible pair-wise comparisons
for (c in 1:(nt-1)) {
                 for (k in (c+1):nt) {
# when covariate is zero
                                   OR[c,k] \leftarrow exp(d[c] - d[k])
                                   LOR[c,k] \leftarrow (d[c]-d[k])
# at covariate=z[j]
                                   for (j in 1:nz) {
                                                    ORz[j,c,k] \leftarrow exp(dz[j,c] - dz[j,k])
                                                    LORz[j,c,k] < - (dz[j,c] - dz[j,k])
                       }
#Fit of the Model#
                   for(i in 1:ns) {
                                     for (k in 1:na[i]) {
                                                        Darm[i,k] < -2*(r[i,k] *log(n[i,k]*p[i,k]/r[i,k]) + (n[i,k] - r[i,k])*log((n[i,k]-n[i,k]*p[i,k]) + (n[i,k] - r[i,k])*log((n[i,k]-n[i,k]*p[i,k]) + (n[i,k] - r[i,k])*log((n[i,k]-n[i,k]*p[i,k]) + (n[i,k] - r[i,k])*log((n[i,k]-n[i,k]+n[i,k]) + (n[i,k] - r[i,k])*log((n[i,k]-n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i,k]+n[i
p[i,k])/(n[i,k]-r[i,k])))
                                     D[i]<- sum(Darm[i,1:na[i]])
                   }
                  D.bar<- sum(D[])
 }
```

# **APPENDIX 5**

Published protocol and changes made to the protocol

The protocol has been registered in PROSPERO (No.CRD42015020841) and published in BMJ Open – available at https://bmjopen.bmj.com/content/7/8/e016608.full.pdf+html

### Here below changes and clarifications to the published protocol:

- 1. In order to obtain more comprehensive data, we added some text words in search strategy. For example, the additional words inclue 'desvenlafaxine', 'mianserin', 'levomilnacipran', 'trazodone', 'vilazodone' and 'vortioxetine'. We also searched additional international trial registers, including Australian New Zealand Clinical Trials Registry (ANZCTR), Chinese Clinical Trial Register (ChiCTR), UMIN Clinical Trials Registry in Japan (UMIN-CTR), the International Standard Randomised Controlled Trial Number (ISRCTN), and the Netherlands Trial Register.
- 2. We had planed to assess the remission rate (measured by the proportion of patients who achieved the criteria of below the specific threshold scores in depressive symptom scales), tolerability (adverse-event discontinuation measured by the proportion of patients who withdrew for any adverse events), and global functional improvement (estimated by overall change scores on global assessment of functioning scales) as secondary outcomes. However, we found there were not enough available data for network analysis after data extraction. Thus, we didn't perform those three outcomes.
- 3. We have adjusted some analyses for sensitivity analyses, subgroup and meta-regressions according to the characteristics of trials. First, we added meta-regeression analyses with risk of bias, publication year, comorbidity and type of sponsor for primary outcomes, and rating scale for efficacy. Second, we added sensitivity analyses of omitting non-blind trials, unpublished trials and trials with sample size  $\leq 20$  for primary outcomes, and omitting trials with inconsistent of treatment duration and selected time-point for efficacy. However, we didn't perform sensitivity analyses of omitting high risk of bias trials and omitting patients with comorbidity trials for primary outcomes due to no available data, and we also didn't perform sensitivity analyse of omitting trials with imputed data for acceptability due to the same reason. Third, we conducted all the continuous covariate for meta-regressions if possible to ensure the integrity of data. We didn't perform any subgroup analysis due to the limitation of study numbers.
- 4. We used the Confidence In Network Meta-Analysis (CINeMA) approach to evaluate the credibility of each outcome rather than GRADE framework.

**References for included trials** 

# 1. Kye 1996

• Kye CH, Waterman GS, Ryan ND, et al. A randomized, controlled trial of amitriptyline in the acutetreatment of adolescent major depression. *J Am Acad Child Adolesc Psychiatry* 1996; **35:** 1139-44.

# 2. Von Knorring 2006

• Von Knorring AL, Olsson GI, Thomsen PH, Lemming OM, Hultén A. A randomized, double-blind, placebo-controlled study of citalopram in adolescents with major depressive disorder. *J Clin Psychopharmacol* 2006; **26:** 311-5.

# 3. Wagner 2004

• Wagner KD, Robb AS, Findling RL, Jin J, Gutierrez MM, Heydorn WE. A randomized, placebo-controlled trial of citalopram for the treatment of major depression in children and adolescents. *Am J Psychiatry* 2004; **161:** 1079-83.

#### 4. Braconnier 2003

• Braconnier A, Le Coent R, Cohen D, DEROXADO Study Group. Paroxetine versus clomipramine inadolescents with severe major depression: a double-blind, randomized, multicenter trial. *JAm Acad Child Adolesc Psychiatry* 2003; **42:** 22-9.

#### 5. Klein 1998

• Klein RG, Mannuzza S, Koplewicz HS, et al. Adolescent depression: controlled desipraminetreatment and atypical features. *Depress Anxiety* 1998; **7:** 15-31.

#### 6. Kutcher 1994

• Kutcher S, Boulos C, Ward B, et al. Response to desipramine treatment in adolescent depression: afixed-dose, placebo-controlled trial. *J Am Acad Child Adolesc Psychiatry* 1994; **33:** 686-94.

#### 7. Atkinson2018

• Atkinson S, Lubaczewski S, Ramaker S, et al. DesvenlafaxineVersus Placebo in the Treatment of Children and Adolescents with Major Depressive Disorder. *J Child Adolesc Psychopharmacol* 2018; **28**: 55-65.

# 8. Weihs 2018

• Weihs KL, Murphy W, Abbas R, et al.Desvenlafaxine versus placebo in a fluoxetine-referenced study of children and adolescents with major depressive disorder. *J Child Adolesc Psychopharmacol* 2018: **28:** 36-46.

# 9. Emslie 2014

• Emslie GJ, Prakash A, Zhang Q, Pangallo BA, Bangs ME, March JS. A double-blind efficacy andsafety study of duloxetine fixed doses in children and adolescents with major depressivedisorder. *J Child Adolesc Psychopharmacol* 2014; **24:** 170-9.

#### 10. Atkinson 2014

• Atkinson SD, Prakash A, Zhang Q, et al. A double-blind efficacy and safety study of duloxetineflexible dosing in children and adolescents with major depressive disorder. *J Child Adolesc Psychopharmacol* 2014; **24:** 180-9.

#### 11. Emslie 2009

• Emslie GJ, Ventura D, Korotzer A, Tourkodimitris S. Escitalopram in the treatment of adolescentdepression: a randomized placebo-controlled multisite trial. *J Am Acad Child Adolesc Psychiatry* 2009; **48:** 721-9.

# 12. Wagner 2006

• Wagner KD, Jonas J, Findling RL, Ventura D, Saikali K. A double-blind, randomized, placebo-controlled trial of escitalopram in thetreatment of pediatric depression. *J Am Acad Child Adolesc Psychiatry* 2006; **45:** 280-8.

#### 13. Attari 2006

• Attari A, Moghaddam FY, Hasanzadeh A, Soltani M, Mahmoodi M. Comparison of efficacy offluoxetine with nortriptyline in treatment of major depression in children and adolescents: Adouble-blind study. *Journal of Research in Medical Sciences* 2006; **11:** 24-30.

#### 14. Almeida-Montes 2005

• Almeida-MontesLG, Friederichsen A. Treatment of major depressive disorder with fluoxetine inchildren and adolescents. A double-blind, placebo-controlled study. *Psiquiatria Biologica* 2005; **12:** 198-205.

#### 15. Eli Lilly 1986

• B1Y-MC-HCCJ. Fluoxetine: fluoxetine versus placebo in adolescent depressed patients. 17November 2004.

http://art45-paediatric-studies-docs.ema.europa.eu/GROUP%20F/Fluoxetine/fluoxetine%20B1Y-MC-HCCJ%20Clinical%20Study%20Summary.pdf (accessed October 9, 2019)

# 16. Emslie 1997

• Emslie GJ, Rush AJ, Weinberg WA, et al. A double-blind, randomized, placebo-controlled trial offluoxetine in children and adolescents with depression. *Arch Gen Psychiatry* 1997; **54:** 1031-7.

#### 17. Emslie 2002a

• Emslie GJ, Heiligenstein JH, Wagner KD, et al. Fluoxetine for acute treatment of depression inchildren and adolescents: a placebo-controlled, randomized clinical trial. *J Am Acad ChildAdolesc Psychiatry* 2002; **41:** 1205-15.

# 18. Findling 2009

• Findling RL, Pagano ME, McNamara NK, et al. The short-term safety and efficacy of fluoxetine indepressed adolescents with alcohol and cannabis use disorders: a pilot randomized placebo-controlled trial. *Child Adolesc Psychiatry Ment Health* 2009; **3:** 11.

#### 19. Hongfen 2009

• Hongfen C, Weidong J, Guoquan Z, et al. A randomized and double-blind clinical trial ofvenlafaxine hydrochloride sustained release capsules for treating juvenile depression. *EurPsychiatry* 2009; **24:** S502.

### 20. Puig-Antich 1987

• Puig-Antich J, Perel JM, Lupatkin W, et al. Imipramine in prepubertal major depressive disorders. *Arch Gen Psychiatry* 1987; **44:** 81-9.

# 21. Organon 2002a

• Organon Pharmaceuricals USA Inc. A multicenter, randomized, double-blind, placebo-controlled, efficacy and safety study of Remeron in outpatient children and adolescents with major depressive disorder

http://www.hma.eu/fileadmin/dateien/Human\_Medicines/CMD\_h\_/Paediatric\_Regulation/Assessment \_Reports/Article\_45\_work-sharing/Mirtazapine\_2011\_06\_45PaedAR\_Amended.pdf (accessed October 9, 2019).

### 22. Organon 2002b

 Organon Pharmaceuricals USA Inc. A multicenter, randomized, double-blind, placebo-controlled, efficacy and safety study of Remeron in outpatient children and adolescents with major depressive disorder.

http://www.hma.eu/fileadmin/dateien/Human\_Medicines/CMD\_h\_/Paediatric\_Regulation/Assessment \_Reports/Article\_45\_work-sharing/Mirtazapine\_2011\_06\_45PaedAR\_Amended.pdf (accessed October 9, 2019).

# 23. Bristol-Myers Squibb 2002

• Bristol-MyerSquibb. Review and evaluation of clinical data.

https://www.accessdata.fda.gov/drugsatfda\_docs/pediatric/020152s032\_nefazodone\_Serzone\_Clinical\_
BPCA.pdf (accessed October 9, 2019)

#### 24. Emslie 2002b

• Emslie GJ, Heiligenstein JH, Wagner KD, et al. Fluoxetine for acute treatment of depression inchildren and adolescents: a placebo-controlled, randomized clinical trial. *J Am Acad ChildAdolesc Psychiatry* 2002; **41:** 1205-15.

#### 25. Geller 1990

• Geller B, Cooper TB, Graham DL, Marsteller FA, Bryant DM. Double-blind placebo-controlled study of nortriptyline in depressed adolescents using a "fixed plasma level" design. *Psychopharmacol Bull* 1990; **26:** 85-90.

### 26. Geller 1992

• Geller B, Cooper TB, Graham DL, Fetner HH, Marsteller FA, Wells JM. Pharmacokinetically designed double-blind placebo-controlled study of nortriptyline in 6- to 12-year-olds with major

depressive disorder. J Am Acad Child Adolesc Psychiatry 1992; 31: 34-44.

#### 27. Berard 2006

• Berard R, Fong R, Carpenter DJ, ThomasonC, Wilkinson C. An international, multicenter, placebo-controlled trial of paroxetine in adolescents with major depressive disorder. *J Child Adolesc Psychopharmacol* 2006; **16**: 59-75.

#### 28. Emslie 2006

• Emslie GJ, Wagner KD, Kutcher S, et al. Paroxetine treatment in children and adolescents withmajor depressive disorder: a randomized, multicenter, double-blind, placebo-controlled trial. *J Am Acad Child Adolesc Psychiatry* 2006; **45:** 709-19.

#### 29. GlaxoSmithKline 2009

• Paxil Japanese post marketing paediatric study in depression (double-blind, placebo controlled study) [clinical trial]. ClinicalTrials.gov Identifier: NCT00812812. www.clinicaltrials.gov/ct2/show/study/NCT00812812?term=A+randomised%2C+double-blind%2C+pl acebo+controlled%2C+parallel+group%2C+flexible+dose+study+to+evaluate+the+efficacy+and+safet y+of+Paxil%C2%AE+Tablets+in+children+and+adolescents+with+Major+Depressive+Disorder&rank = 1 (accessed October 9, 2019).

#### 30. Noury JL 2015

• Le Noury J, Nardo JM, Healy D, et al. Restoring Study 329: efficacy and harms of paroxetine and imipramine in treatment of major depression in adolescence. *BMJ* 2015; **351:** h4320.

#### 31. Wagner 2003a

• Wagner KD, Ambrosini P, Rynn M, et al. Efficacy of sertraline in the treatment of children and adolescents with major depressive disorder: two randomized controlled trials. *JAMA* 2003; **290**: 1033-41.

#### 32. Wagner 2003b

• Wagner KD, Ambrosini P, Rynn M, et al. Efficacy of sertraline in the treatment of children and adolescents with major depressive disorder: two randomized controlled trials. *JAMA* 2003; **290**: 1033-41.

# 33. Emslie 2007a

• Emslie GJ, Findling RL, Yeung PP, Kunz NR, Li Y. Venlafaxine ER for the treatment of pediatric subjects with depression: results of two placebo-controlled trials. *J Am Acad Child Adolesc Psychiatry* 2007; **46:** 479-88.

#### 34. Emslie 2007b

• Emslie GJ, Findling RL, Yeung PP, Kunz NR, Li Y. Venlafaxine ER for the treatment of pediatric subjects with depression: results of two placebo-controlled trials. *J Am Acad Child Adolesc Psychiatry* 2007; **46:** 479-88.

#### 35. Durgam 2018

• Durgam S, Chen C, Migliore R, Prakash C, Edwards J, Findling RL.A Phase 3, Double-Blind, Randomized, Placebo-Controlled Study of Vilazodone in Adolescents with Major Depressive Disorder. *Paediatr Drugs* 2018; **20:** 353-63.

#### 36. Reed 1994

• Reed MK. Social skills training to reduce depression in adolescents. *Adolescence* 1994; **29:** 293-302.

# 37. Fine 1991

• Fine S, Forth A, Gilbert M, Haley G. Group therapy for adolescent depressive disorder: a comparison of social skills and therapeutic support. *J Am Acad Child Adolesc Psychiatry* 1991; **30:** 79-85.

#### 38. Charkhandeh 2016

• Charkhandeh M, Talib MA, Hunt CJ. The clinical effectiveness of cognitive behavior therapy and an alternative medicine approach in reducing symptoms of depression in adolescents. *Psychiatry Res* 2016; **239**: 325-30.

#### 39. Clarke 1999

• Clarke GN, Rohde P, Lewinsohn PM, Hops H, Seeley JR. Cognitive-behavioral treatment of adolescent depression: efficacy of acute group treatment and booster sessions. *J Am Acad Child Adolesc Psychiatry* 1999; **38:** 272-9.

#### 40. Curtis 1992

• CurtisSE. Cognitive-behavioral treatment of adolescent depression. Doctoral dissertation, Utah State University, Logan, 1992.

#### 41. Lewinsohn 1990

• Lewinsohn PM, Clarke GN, Hops H, Andrews J. Cognitive-behavioraltreatment for depressed adolescents. *Behav Ther* 1990; **21:** 385-401.

#### 42. Brent 1997

• Brent DA, Holder D, Kolko D, et al. A clinical psychotherapy trial for adolescent depression comparing cognitive, family, and supportive therapy. *Arch Gen Psychiatry* 1997; **54:** 877-85.

#### 43. Rossello 1999

• Rosselló J, Bernal G. The efficacy of cognitive-behavioral and interpersonal treatments for depression in Puerto Rican adolescents. *J Consult Clin Psychol* 1999; **67:** 734-45.

#### 44. Rohde 2004

• Rohde P, Clarke GN, Mace DE, Jorgensen JS, Seeley JR. An efficacy/effectiveness study of cognitive-behavioral treatment for adolescents with comorbid major depression and conduct disorder. *J Am Acad Child Adolesc Psychiatry* 2004; **43:** 660-8.

#### 45. Goodyer 2017

• Goodyer IM, Reynolds S,Barrett B,et al. Cognitive behavioural therapy and short-term psychoanalytical psychotherapy versus a brief psychosocial intervention in adolescents with unipolar major depressive disorder (IMPACT): a multicentre, pragmatic, observer-blind, randomised controlled superiority trial. *Lancet psychiatry* 2017; **4:** 109-19.

#### 46. Vostanis 1996

• Vostanis P, Feehan C, Grattan E, Bickerton WL. A randomised controlled out-patient trial of cognitive-behavioural treatment for children and adolescents with depression: 9-month follow-up. *J Affect Disord* 1996; **40:** 105-16.

#### 47. Wood 1996

• Wood A, Moore A, Harrington R, Jayson D. Clinical validity of major depression-endogenous subtype in adolescent patients. *Eur Child Adolesc Psychiatry* 1996; **5:** 155-61.

#### 48. Clarke 2002

• Clarke G, Reid E, Eubanks D, et al. Overcoming depression on the Internet (ODIN): a randomized controlled trial of an Internet depression skills intervention program. *J Med Internet Res* 2002; **4:** E14.

#### 49. Kobak 2015

• Kobak KA, Mundt JC, Kennard B. Integrating technology into cognitive behavior therapy for adolescent depression: a pilot study. *Ann Gen Psychiatry* 2015; **14:** 37.

#### 50. Shirk 2014

• Shirk SR, Deprince AP, Crisostomo PS, Labus J. Cognitive behavioral therapy for depressed adolescents exposed to interpersonal trauma: an initial effectiveness trial. *Psychotherapy (Chic)* 2014; **51:** 167-79.

## 51. Weisz 2009

• Weisz JR, Southam-Gerow MA, Gordis EB, et al.Cognitive-behavioral therapy versus usual clinical care for youth depression: an initial test of transportability to community clinics and clinicians. *J Consult Clin Psychol* 2009; **77:** 383-96.

#### 52. Trowell 2007

• Trowell J, Joffe I, Campbell J,et al. Childhood depression: a place for psychotherapy. An outcome study comparing individual psychodynamic psychotherapy and family therapy. *Eur Child Adolesc Psychiatry* 2007; **16:** 157-67.

#### 53. Diamond 2002

• Diamond GS, Reis BF, Diamond GM, Siqueland L, Isaacs L. Attachment-based family therapy for depressed adolescents: a treatment development study. *J Am Acad Child Adolesc Psychiatry* 2002; **41:** 1190-6.

#### 54. Luby 2012

• Luby J, Lenze S, Tillman R. A novel early intervention for preschool depression: findings from a pilot randomized controlled trial. *J Child Psychol Psychiatry* 2012; **53:** 313-22.

# 55. Tompson 2017

• Tompson MC, Sugar CA, Langer DA, Asarnow JR.A randomized clinical trial comparing family-focused treatment and individual supportive therapy for depression in childhood and early adolescence. *J Am Acad Child Adolesc Psychiatry* 2017; **56:** 515-23.

#### 56. Israel 2013

• Israel P, Diamond GS. Feasibility of Attachment Based Family Therapy for depressed clinic-referred Norwegian adolescents. *Clin Child Psychol Psychiatry* 2013; **18:** 334-50.

#### 57. Poole 2017

• Poole LA, Knight T, Toumbourou JW, Lubman DI, Bertino MD, Lewis AJ. A Randomized Controlled Trial of the Impact of a Family-Based Adolescent Depression Intervention on both Youth and Parent Mental Health Outcomes. *J Abnorm Child Psychol* 2018; **46:** 169-81.

#### 58. Dietz 2015

• Dietz LJ, Weinberg RJ, Brent DA, Mufson L. Family-based interpersonal psychotherapy for depressed preadolescents: examining efficacy and potential treatment mechanisms. *J Am Acad Child Adolesc Psychiatry* 2015; **54:** 191-9.

#### 59. Mufson 1999

• Mufson L, Weissman MM, Moreau D, Garfinkel R. Efficacy of Interpersonal Psychotherapy for Depressed Adolescents. *Arch Gen Psychiatry* 1999; **56:** 573-9.

#### 60. Mufson 2004b

• Mufson L, Dorta KP, Wickramaratne P, Nomura Y, Olfson M, Weissman MM. A Randomized Effectiveness Trial of Interpersonal Psychotherapy for DepressedAdolescents. *Arch Gen Psychiatry* 2004; **61:** 577-84.

# 61. Tang 2009

• Tang TC, Jou SH, Ko CH, Huang SY, Yen CF. Randomized study of school-based intensive interpersonal psychotherapy for depressed adolescents with suicidal risk and parasuicide behaviors. *Psychiatry Clin Neurosci* 2009; **63:** 463-70.

# 62. Eskin 2008

• Eskin M, Ertekin K, Harlak H, Dereboy C. Prevalence of and factors related to depression in high school students. *Turk Psikiyatri Derg* 2008; **19:** 382-9.

## 63. Cornelius 2009

Cornelius JR, Bukstein OG, Wood DS, Kirisci L, Douaihy A, Clark DB. Double-blind

placebo-controlled trial of fluoxetine in adolescents with comorbid major depression and an alcohol use disorder. *Addict Behav* 2009; **34:** 905-9.

#### 64. March 2004

• March J, Silva S, Petrycki S, et al. Fluoxetine, cognitive-behavioral therapy, and their combination for adolescents with depression: Treatment for Adolescents With Depression Study (TADS) randomized controlled trial. *JAMA* 2004; **292:** 807-20.

# 65. Goodyer 2008

• Goodyer IM, Dubicka B, Wilkinson P, et al. A randomised controlled trial of cognitive behaviour therapy in adolescents with major depression treated by selective serotonin reuptake inhibitors. The ADAPT trial. *Health Technol Assess* 2008; **12:** iii-iv, ix-60.

#### 66. Riggs 2007

• Riggs PD, Mikulich-Gilbertson SK, Davies RD, Lohman M, Klein C, Stover SK. A randomized controlled trial of fluoxetine and cognitive behavioral therapy in adolescents with major depression, behavior problems, and substance use disorders. *Arch PediatrAdolesc Med* 2007; **161**: 1026-34.

#### **67. Bernstein 2000**

• Bernstein LR, Tanner T, Godfrey C, Noll B. Chemistry and pharmacokinetics of gallium maltolate, a compound with high oral gallium bioavailability. *Met Based Drugs* 2000; **7:** 33-47.

# 68. Melvin 2006

• Melvin GA, Tonge BJ, King NJ, Heyne D, Gordon MS, Klimkeit E. A comparison of cognitive-behavioral therapy, sertraline, and their combination for adolescent depression. *J Am Acad Child Adolesc Psychiatry* 2006; **45:** 1151-61.

#### 69. Deas 2000

• Deas D, Randall CL, Roberts JS, Anton RF. A double-blind, placebo-controlled trial of sertraline in depressed adolescent alcoholics: a pilot study. *Hum Psychopharmacol* 2000; **15:** 461-69.

# 70. Iftene F 2015

• Iftene F, Predescu E, Stefan S, David D. Rational-emotive and cognitive-behavior therapy (REBT/CBT) versus pharmacotherapy versus REBT/CBT plus pharmacotherapy in the treatment of major depressive disorder in youth; a randomized clinical trial. *Psychiatry Res* 2015; **225**: 687-94.

#### 71. Mandoki 1997

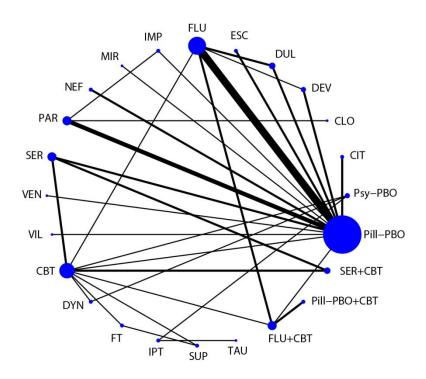
• Mandoki MW, Tapia MR, Tapia MA, Sumner GS, Parker JL. Venlafaxine in the treatment of children and adolescents with major depression. *Psychopharmacol Bull* 1997; **33:** 149-54.

Risk of bias assessment

The details of rating criteria are in the published protocol (Zhou X, et al. BMJ Open 2017; 7:e016608).

| Study | 7 <b>ID</b>            | Sequence<br>generation | Allocation concealment | Blinding of<br>performance<br>and personnel* | Blinding of<br>outcome<br>assessment | Incomplete outcome data | Selective<br>outcome<br>reporting | Other sources of bias | Risk of bias for trial# |
|-------|------------------------|------------------------|------------------------|----------------------------------------------|--------------------------------------|-------------------------|-----------------------------------|-----------------------|-------------------------|
| 1.    | Kye 1996               | Low risk of bias       | Unclear risk of bias   | Unclear risk of bias                         | Unclear risk of bias                 | Low risk of bias        | Unclear risk of bias              | Unclear risk of bias  | Unclear risk of bias    |
| 2.    | Von Knorring 2006      | Unclear risk of bias   | Unclear risk of bias   | Unclear risk of bias                         | Unclear risk of bias                 | High risk of bias       | High risk of bias                 | Unclear risk of bias  | High risk of bias       |
| 3.    | Wagner 2004            | Unclear risk of bias   | Unclear risk of bias   | Unclear risk of bias                         | Unclear risk of bias                 | High risk of bias       | High risk of bias                 | Unclear risk of bias  | High risk of bias       |
| 4.    | Braconnier 2003        | Low risk of bias       | Low risk of bias       | Low risk of bias                             | Low risk of bias                     | Low risk of bias        | Low risk of bias                  | Low risk of bias      | Low risk of bias        |
| 5.    | Klein 1998             | Unclear risk of bias   | Unclear risk of bias   | Unclear risk of bias                         | Unclear risk of bias                 | Unclear risk of bias    | Unclear risk of bias              | Unclear risk of bias  | Unclear risk of bias    |
| 6.    | Kutcher 1994           | Unclear risk of bias   | Unclear risk of bias   | Unclear risk of bias                         | Unclear risk of bias                 | Unclear risk of bias    | Unclear risk of bias              | Low risk of bias      | Unclear risk of bias    |
| 7.    | Atkinson 2018          | Unclear risk of bias   | Unclear risk of bias   | Low risk of bias                             | Low risk of bias                     | Low risk of bias        | Low risk of bias                  | Low risk of bias      | Low risk of bias        |
| 8.    | Weihs 2018             | Unclear risk of bias   | Unclear risk of bias   | Low risk of bias                             | Low risk of bias                     | Low risk of bias        | Low risk of bias                  | Low risk of bias      | Low risk of bias        |
| 9.    | Emslie 2014            | Low risk of bias       | Unclear risk of bias   | Low risk of bias                             | Low risk of bias                     | Low risk of bias        | Low risk of bias                  | Low risk of bias      | Low risk of bias        |
| 10.   | Atkinson 2014          | Low risk of bias       | Unclear risk of bias   | Low risk of bias                             | Low risk of bias                     | Low risk of bias        | Low risk of bias                  | Low risk of bias      | Low risk of bias        |
| 11.   | Emslie 2009            | Unclear risk of bias   | Unclear risk of bias   | Unclear risk of bias                         | Unclear risk of bias                 | Low risk of bias        | High risk of bias                 | Low risk of bias      | Unclear risk of bias    |
| 12.   | Wagner 2006            | Unclear risk of bias   | Unclear risk of bias   | Unclear risk of bias                         | Unclear risk of bias                 | Unclear risk of bias    | Unclear risk of bias              | Low risk of bias      | Unclear risk of bias    |
| 13.   | Attari 2006            | Unclear risk of bias   | Unclear risk of bias   | Low risk of bias                             | Low risk of bias                     | Unclear risk of bias    | Unclear risk of bias              | Unclear risk of bias  | Unclear risk of bias    |
| 14.   | Almeida-Montes<br>2005 | Low risk of bias       | Low risk of bias       | Unclear risk of bias                         | Low risk of bias                     | High risk of bias       | Unclear risk of bias              | Unclear risk of bias  | Unclear risk of bias    |
| 15.   | Eli Lilly 1986         | Unclear risk of bias   | Unclear risk of bias   | Unclear risk of bias                         | Unclear risk of bias                 | Unclear risk of bias    | Low risk of bias                  | Low risk of bias      | Unclear risk of bias    |
| 16.   | Emslie 1997            | Low risk of bias       | Unclear risk of bias   | Low risk of bias                             | Low risk of bias                     | Low risk of bias        | High risk of bias                 | Unclear risk of bias  | Unclear risk of bias    |
| 17.   | Emslie 2002a           | Low risk of bias       | Unclear risk of bias   | Low risk of bias                             | Unclear risk of bias                 | Unclear risk of bias    | High risk of bias                 | High risk of bias     | High risk of bias       |

| 18. | Findling 2009                | Low risk of bias     | Low risk of bias     | Unclear risk of bias | Low risk of bias     | Low risk of bias     | Unclear risk of bias | Unclear risk of bias | Unclear risk of bias |
|-----|------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| 19. | Hongfen 2009                 | Low risk of bias     | Unclear risk of bias | Unclear risk of bias | Unclear risk of bias | Unclear risk of bias | Unclear risk of bias | Unclear risk of bias | Unclear risk of bias |
| 20. | Puig-Antich 1987             | Low risk of bias     | Unclear risk of bias | Low risk of bias     | Low risk of bias     | Unclear risk of bias | Unclear risk of bias | Unclear risk of bias | Unclear risk of bias |
| 21. | Organon 2002a                | Unclear risk of bias | High risk of bias    | High risk of bias    | High risk of bias    |
| 22. | Organon 2002b                | Unclear risk of bias | High risk of bias    | Unclear risk of bias | Unclear risk of bias |
| 23. | Bristol-Myers<br>Squibb 2002 | Unclear risk of bias |
| 24. | Emslie 2002b                 | Unclear risk of bias |
| 25. | Geller 1990                  | Unclear risk of bias | Unclear risk of bias | Low risk of bias     | High risk of bias    | Unclear risk of bias | Unclear risk of bias | Unclear risk of bias | Unclear risk of bias |
| 26. | Geller 1992                  | Unclear risk of bias | Unclear risk of bias | Low risk of bias     | Low risk of bias     | Low risk of bias     | Unclear risk of bias | Unclear risk of bias | Unclear risk of bias |
| 27. | Berard 2006                  | Low risk of bias     | Low risk of bias     | Low risk of bias     | Unclear risk of bias | Unclear risk of bias | Low risk of bias     | Unclear risk of bias | Unclear risk of bias |
| 28. | Emslie 2006                  | Low risk of bias     | Unclear risk of bias | Unclear risk of bias | Unclear risk of bias | Low risk of bias     | Low risk of bias     | Unclear risk of bias | Unclear risk of bias |
| 29. | GlaxoSmithKline<br>2009      | Unclear risk of bias | High risk of bias    | Unclear risk of bias | Unclear risk of bias |
| 30. | Noury 2015                   | Low risk of bias     |
| 31. | Wagner 2003a                 | Low risk of bias     | Unclear risk of bias | Low risk of bias     | Unclear risk of bias | Low risk of bias     | High risk of bias    | High risk of bias    | High risk of bias    |
| 32. | Wagner 2003b                 | Low risk of bias     | Unclear risk of bias | Low risk of bias     | Unclear risk of bias | Low risk of bias     | High risk of bias    | High risk of bias    | High risk of bias    |
| 33. | Emslie 2007 †                | Unclear risk of bias | Low risk of bias     | High risk of bias    | High risk of bias    | High risk of bias    |
| 34. | Durgam 2018                  | Low risk of bias     | Unclear risk of bias | Low risk of bias     | Low risk of bias     | Low risk of bias     | Low risk of bias     | Low risk of bias     | Low risk of bias     |
| 35. | Reed 1994                    | Unclear risk of bias | Unclear risk of bias | High risk of bias    | High risk of bias    | Unclear risk of bias | High risk of bias    | Low risk of bias     | High risk of bias    |
| 36. | Fine 1991                    | Unclear risk of bias | Unclear risk of bias | High risk of bias    | High risk of bias    | Low risk of bias     | Low risk of bias     | Low risk of bias     | High risk of bias    |
| 37. | Charkhandeh 2016             | Low risk of bias     | Unclear risk of bias | High risk of bias    | High risk of bias    | High risk of bias    | Low risk of bias     | Low risk of bias     | High risk of bias    |


| 38. | Clarke 1999    | Unclear risk of bias | Unclear risk of bias | High risk of bias | Unclear risk of bias | Low risk of bias     | Low risk of bias     | Low risk of bias     | Unclear risk of bias |
|-----|----------------|----------------------|----------------------|-------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| 39. | Curtis 1992    | Unclear risk of bias | Unclear risk of bias | High risk of bias | High risk of bias    | Low risk of bias     | Low risk of bias     | Unclear risk of bias | High risk of bias    |
| 40. | Lewinsohn 1990 | Unclear risk of bias | Unclear risk of bias | High risk of bias | High risk of bias    | Unclear risk of bias | Low risk of bias     | Low risk of bias     | High risk of bias    |
| 41. | Brent 1997     | Low risk of bias     | Unclear risk of bias | High risk of bias | High risk of bias    | Low risk of bias     | Low risk of bias     | Low risk of bias     | High risk of bias    |
| 42. | Rossello 1999  | Unclear risk of bias | Unclear risk of bias | High risk of bias | High risk of bias    | Low risk of bias     | Low risk of bias     | Low risk of bias     | High risk of bias    |
| 43. | Rohde 2004     | Low risk of bias     | Unclear risk of bias | High risk of bias | Unclear risk of bias | Low risk of bias     | Low risk of bias     | Unclear risk of bias | Unclear risk of bias |
| 44. | Goodyer 2017   | Low risk of bias     | Unclear risk of bias | High risk of bias | High risk of bias    | Low risk of bias     | Low risk of bias     | Low risk of bias     | High risk of bias    |
| 45. | Vostanis 1996  | Unclear risk of bias | Unclear risk of bias | High risk of bias | High risk of bias    | Low risk of bias     | Low risk of bias     | Low risk of bias     | High risk of bias    |
| 46. | Wood 1996      | Unclear risk of bias | Unclear risk of bias | High risk of bias | Unclear risk of bias | Low risk of bias     | Low risk of bias     | Unclear risk of bias | Unclear risk of bias |
| 47. | Clarke 2002    | Unclear risk of bias | Unclear risk of bias | High risk of bias | Unclear risk of bias | High risk of bias    | Low risk of bias     | Low risk of bias     | High risk of bias    |
| 48. | Kobak 2015     | Unclear risk of bias | Unclear risk of bias | High risk of bias | High risk of bias    | Unclear risk of bias | Unclear risk of bias | Low risk of bias     | High risk of bias    |
| 49. | Shirk 2014     | Unclear risk of bias | Unclear risk of bias | High risk of bias | High risk of bias    | High risk of bias    | High risk of bias    | High risk of bias    | High risk of bias    |
| 50. | Weisz 2009     | Low risk of bias     | Low risk of bias     | High risk of bias | High risk of bias    | Low risk of bias     | Low risk of bias     | Unclear risk of bias | High risk of bias    |
| 51. | Trowell 2007   | Unclear risk of bias | Unclear risk of bias | High risk of bias | High risk of bias    | Unclear risk of bias | Low risk of bias     | Unclear risk of bias | High risk of bias    |
| 52. | Diamond 2002   | Unclear risk of bias | Unclear risk of bias | High risk of bias | Unclear risk of bias | Unclear risk of bias | High risk of bias    | Low risk of bias     | High risk of bias    |
| 53. | Luby 2012      | Low risk of bias     | Unclear risk of bias | High risk of bias | High risk of bias    | Low risk of bias     | Low risk of bias     | Unclear risk of bias | High risk of bias    |
| 54. | Tompson 2017   | Low risk of bias     | Unclear risk of bias | High risk of bias | Low risk of bias     | High risk of bias    | Low risk of bias     | Unclear risk of bias | High risk of bias    |
| 55. | Israel 2013    | Low risk of bias     | Low risk of bias     | High risk of bias | Unclear risk of bias | Low risk of bias     | Low risk of bias     | Low risk of bias     | Unclear risk of bias |
| 56. | Poole 2018     | Low risk of bias     | Low risk of bias     | High risk of bias | Low risk of bias     | Low risk of bias     | High risk of bias    | Unclear risk of bias | High risk of bias    |
| 57. | Dietz 2015     | Unclear risk of bias | Unclear risk of bias | High risk of bias | High risk of bias    | Low risk of bias     | Low risk of bias     | Low risk of bias     | High risk of bias    |

| 58. | Mufson 1999    | Low risk of bias     | Unclear risk of bias | High risk of bias    | Unclear risk of bias | Low risk of bias     | Low risk of bias     | Unclear risk of bias | Unclear risk of bias |
|-----|----------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| 59. | Mufson 2004    | Low risk of bias     | Unclear risk of bias | High risk of bias    | Unclear risk of bias | Low risk of bias     | Low risk of bias     | Low risk of bias     | Unclear risk of bias |
| 60. | Tang 2009      | Unclear risk of bias | Unclear risk of bias | High risk of bias    | High risk of bias    | Low risk of bias     | Low risk of bias     | High risk of bias    | High risk of bias    |
| 61. | Eskin 2008     | Unclear risk of bias | Unclear risk of bias | High risk of bias    | High risk of bias    | Low risk of bias     | Low risk of bias     | Low risk of bias     | High risk of bias    |
| 62. | Cornelius 2009 | Low risk of bias     | Low risk of bias     | Low risk of bias     | Unclear risk of bias | Unclear risk of bias | Unclear risk of bias | High risk of bias    | Unclear risk of bias |
| 63. | March 2004     | Low risk of bias     | High risk of bias    | Unclear risk of bias | Unclear risk of bias |
| 64. | Goodyer 2008   | Low risk of bias     | Low risk of bias     | High risk of bias    | Low risk of bias     | Low risk of bias     | Low risk of bias     | Low risk of bias     | Unclear risk of bias |
| 65. | Riggs 2007     | High risk of bias    | Low risk of bias     | Low risk of bias     | Low risk of bias     | Low risk of bias     | Unclear risk of bias | Low risk of bias     | Unclear risk of bias |
| 66. | Bernstein 2000 | Unclear risk of bias | Unclear risk of bias | Low risk of bias     | Low risk of bias     | Low risk of bias     | Unclear risk of bias | High risk of bias    | Unclear risk of bias |
| 67. | Melvin 2006    | Low risk of bias     | Low risk of bias     | High risk of bias    | High risk of bias    | Low risk of bias     | Low risk of bias     | Low risk of bias     | High risk of bias    |
| 68. | Deas 2000      | Low risk of bias     | Low risk of bias     | Low risk of bias     | Unclear risk of bias | Unclear risk of bias | Low risk of bias     | Unclear risk of bias | Unclear risk of bias |
| 69. | Iftene 2015    | Unclear risk of bias | Low risk of bias     | Low risk of bias     | Low risk of bias     | Unclear risk of bias |
| 70. | Mandoki 1997   | Unclear risk of bias | Unclear risk of bias | Low risk of bias     | Low risk of bias     | High risk of bias    | High risk of bias    | Low risk of bias     | High risk of bias    |

<sup>\*</sup>As it is difficult to use a double-blind design for patients in trials of psychotherapy, we rated all the psychotherapy alone trials with high risk of bias in 'Blinding of performance and personnel'.

#We rated risk of bias for trial follows: high risk study (2 or more items rated as high risk of bias); low risk study (5 or more items rated as low risk and no more than one as high risk); moderate risk study (all remaining situations).

Network plot for secondary outcome



Network of eligible comparisons for suicidality

Results from pairwise meta-analysis for each outcome: numbers, estimates and heterogeneity

# a. Summary numbers of studies and patients from pair-wise meta-analysis of direct comparisons

|          | Mean overall change<br>in symptoms<br>(N / n)* | All-cause discontinuation (N / n) | Suicidality<br>(N / n) |
|----------|------------------------------------------------|-----------------------------------|------------------------|
| AMIvs.   |                                                |                                   |                        |
| Pill-PBO | 1/31                                           | 1/31                              | NA                     |
| BT vs.   |                                                |                                   |                        |
| SUP      | 1/47                                           | 1/66                              | NA                     |
| Psy-PBO  | NA                                             | 1/18                              | NA                     |
| CBT vs.  |                                                |                                   |                        |
| FT       | 1/64                                           | 1/72                              | 1/72                   |
| SUP      | 1/68                                           | 1/72                              | 1/72                   |
| WL       | 5/338                                          | 5/388                             | NA                     |
| TAU      | 4/240                                          | 3/176                             | NA                     |
| DYN      | 1/214                                          | 1/312                             | 1/312                  |
| Psy-PBO  | 4/418                                          | 4/520                             | 1/313                  |
| SER      | 2/109                                          | 2/109                             | 2/109                  |
| SER+CBT  | 2/102                                          | 2/102                             | 2/102                  |
| FLU      | 1/220                                          | 1/220                             | 1/220                  |
| FLU+CBT  | 1/218                                          | 1/218                             | 1/218                  |
| Pill-PBO | 1/223                                          | 1/223                             | 1/223                  |
| IPT      | 1/40                                           | 1/48                              | NA                     |
| CIT vs.  |                                                |                                   |                        |
| Pill-PBO | 2/361                                          | 2/422                             | 2/422                  |
| CLO vs.  |                                                |                                   |                        |
| PAR      | 1/121                                          | 1/121                             | 1/121                  |
| DES vs.  |                                                |                                   |                        |
| Pill-PBO | 2/78                                           | 2/105                             | NA                     |
| DEV vs.  |                                                |                                   |                        |
| Pill-PBO | 2/568                                          | 2/590                             | 2/590                  |
| DUL vs.  |                                                |                                   |                        |

| FLU          | 2/557  | 2/575  | 2/575  |
|--------------|--------|--------|--------|
| Pill-PBO     | 2/552  | 2/566  | 2/566  |
| DYN vs.      |        |        |        |
| Psy-PBO      | 1/220  | 1/315  | 1/315  |
| FT           | 1/72   | 1/72   | NA     |
| ESC vs.      |        |        |        |
| Pill-PBO     | 2/572  | 2/584  | 2/584  |
| FLU vs.      |        |        |        |
| DEV          | 1/225  | 1/228  | 1/228  |
| NOR          | 1/40   | 1/40   | NA     |
| FLU+CBT      | 2/415  | 2/424  | 2/424  |
| VEN          | 1/59   | 1/60   | NA     |
| Pill-PBO     | 9/1288 | 9/1317 | 7/1260 |
| FLU+CBT vs.  |        |        |        |
| Pill-PBO+CBT | 2/176  | 2/176  | 2/176  |
| Pill-PBO     | 1/219  | 1/219  | 1/219  |
| FT vs.       |        |        |        |
| SUP          | 2/178  | 2/204  | 1/70   |
| WL           | 1/32   | NA     | NA     |
| TAU          | 2/71   | 2/84   | NA     |
| Psy-PBO      | 1/43   | 1/54   | NA     |
| IMP vs.      |        |        |        |
| PAR          | 1/184  | 1/188  | 1/188  |
| Pill-PBO     | 2/219  | 2/224  | 1/182  |
| IMP+CBT vs.  |        |        |        |
| Pill-PBO+CBT | 1/63   | 1/63   | NA     |
| IPT vs.      |        |        |        |
| Psy-PBO      | 2/86   | 2/90   | 1/48   |
| TAU          | 2/136  | 2/137  | 1/64   |
| WL           | 1/37   | 1/46   | NA     |
|              |        |        |        |

| MIR vs.      |       |       |       |
|--------------|-------|-------|-------|
| Pill-PBO     | 2/250 | 2/259 | 2/259 |
| NEF vs.      |       |       |       |
| Pill-PBO     | 2/468 | 1/195 | 2/479 |
| NOR vs.      |       |       |       |
| Pill-PBO     | 2/81  | 1/60  | NA    |
| PAR vs.      |       |       |       |
| Pill-PBO     | 4/702 | 4/728 | 4/728 |
| PST vs.      |       |       |       |
| WL           | 1/23  | 1/24  | NA    |
| SER vs.      |       |       |       |
| Pill-PBO     | 2/364 | 2/376 | 2/376 |
| SER+CBT      | 2/111 | 2/111 | 1/51  |
| SER+CBT vs.  |       |       |       |
| Pill-PBO+CBT | 1/10  | 1/10  | NA    |
| VEN vs.      |       |       |       |
| Pill-PBO     | 2/334 | 2/367 | 2/367 |
| VEN+CBT vs.  |       |       |       |
| Pill-PBO+CBT | 1/40  | 1/40  | NA    |
| VIL vs.      |       |       |       |
| Pill-PBO     | 1/524 | 1/529 | 1/529 |

<sup>\*</sup>N= number of studies; n= number of patients. AMI=Amitriptyline. BT=Behavioural therapy. CBT=Cognitive-behavioural therapy. CIT=Citalopram. CLO=Clomipramine. DYN=Psychodynamic therapy. DES=Desipramine. DEV=Desvenlafaxine. DUL=Duloxetine. ESC=Escitalopram. FT=Family therapy. FLU=Fluoxetine. IPT=Interpersonal therapy. IMP=Imipramine. MIR=Mirtazapine. NA=not available. NEF=Nefazodone. NOR=Nortriptyline. PST=Problem-solving therapy. PAR=Paroxetine. Pill-PBO=Pill placebo. Psy-PBO=Psychological placebo. SUP=Supportive therapy. SER=Sertraline. TAU= Treatment as usual. VEN=Venlafaxine. VIL=Vilazodone. WL= Waitlist.

# b. Summary estimates from pair-wise meta-analysis of direct comparisons $\!\!\!^*$

|          | Mean overall change<br>in symptoms<br>SMD (95% CI) | All-cause discontinuation<br>OR (95% CI) | Suicidality<br>OR (95% CI) |
|----------|----------------------------------------------------|------------------------------------------|----------------------------|
| AMIvs.   |                                                    |                                          |                            |
| Pill-PBO | 0.09 (-0.63 to 0.80)                               | 1.67 (0.33 to 8.42)                      | NA                         |
| BT vs.   |                                                    |                                          |                            |
| SUP      | 0.47 (-0.12 to 1.05)                               | 1.50 (0.51 to 4.37)                      | NA                         |
| Psy-PBO  | NA                                                 | 1.70 (0.06 to 47.95)                     | NA                         |
| CBT vs.  |                                                    |                                          |                            |
| FT       | <u>-0.60 (-1.10 to -0.10)</u>                      | 0.51 (0.17 to 1.51)                      | 1.46 (0.23 to 9.28)        |
| SUP      | -0.29 (-0.77 to 0.19)                              | 0.51 (0.17 to 1.51)                      | 0.53 (0.12 to 2.40)        |
| WL       | -0.97 (-1.66 to -0.28)                             | 0.69 (0.36 to 1.31)                      | NA                         |
| TAU      | -0.04 (-0.29 to 0.22)                              | 0.82 (0.25 to 2.68)                      | NA                         |
| DYN      | -0.18 (-0.45 to 0.08)                              | 0.69 (0.38 to 1.28)                      | 1.01 (0.06 to 16.34)       |
| Psy-PBO  | -0.28 (-0.48 to -0.09)                             | 0.90 (0.51 to 1.59)                      | 1.02 (0.06 to 16.45)       |
| SER      | -0.03 (-0.71 to 0.65)                              | 0.62 (0.11 to 3.48)                      | 0.11 (0.01 to 2.19)        |
| SER+CBT  | -0.22 (-0.61 to 0.17)                              | 0.60 (0.10 to 3.67)                      | 0.36 (0.01 to 9.37)        |
| FLU      | <u>0.67 (0.40 to 0.94)</u>                         | 1.40 (0.71 to 2.75)                      | 0.52 (0.17 to 1.62)        |
| FLU+CBT  | 1.24 (0.95 to 1.53)                                | 1.69 (0.83 to 3.44)                      | 0.79 (0.24 to 2.68)        |
| Pill-PBO | 0.25 (-0.02 to 0.51)                               | 1.07 (0.56 to 2.03)                      | 1.27 (0.33 to 4.87)        |
| IPT      | 0.50 (-0.13 to 1.13)                               | 0.91 (0.20 to 4.13)                      | NA                         |
| CIT vs.  |                                                    |                                          |                            |
| Pill-PBO | -0.18 (-0.51 to 0.15)                              | 0.99 (0.65 to 1.51)                      | 1.39 (0.48 to 4.01)        |
| CLO vs.  |                                                    |                                          |                            |
| PAR      | <u>0.49 (0.13 to 0.85)</u>                         | 1.52 (0.72 to 3.20)                      | 0.82 (0.29 to 2.38)        |
| DES vs.  |                                                    |                                          |                            |
| Pill-PBO | -0·46 (-1·48 to 0·57)#                             | 2.38 (0.80 to 7.02)                      | NA                         |
| DEV vs.  |                                                    |                                          |                            |
| Pill-PBO | -0.04(-0.21 to 0.13)                               | 0.89(0.54 to 1.44)                       | 0.79(0.45 to 1.39)         |
| DUL vs.  |                                                    |                                          |                            |

| FLU          | -0.10 (-0.27 to 0.07)         | 1.51 (0.78 to 1.68)  | 0.92 (0.56 to 1.51)  |
|--------------|-------------------------------|----------------------|----------------------|
| Pill-PBO     | -0.12 (-0.32 to 0.09)         | 1.31 (0.71 to 2.40)  | 0.90 (0.55 to 1.48)  |
| DYN vs.      |                               |                      |                      |
| Psy-PBO      | -0.02 (-0.28 to 0.25)         | 1.33 (0.73 to 2.42)  | 1.01 (0.06 to 16.23) |
| FT           | 0.66 (0.19 to 1.13)           | 0.14 (0.01 to 2.79)  | NA                   |
| ESC vs.      |                               |                      |                      |
| Pill-PBO     | -0.17 (-0.34 to -0.01)        | 1.47 (0.96 to 2.24)  | 0.99 (0.47 to 2.08)  |
| FLU vs.      |                               |                      |                      |
| DEV          | -0.18(-0.44 to 0.09)          | 0.80(0.37 to 1.76)   | 1.40(0.57 to 3.46)   |
| NOR          | -4.33 (-5.48 to -3.17)        | 0.44 (0.07 to 2.76)  | NA                   |
| FLU+CBT      | 0.21 (-0.58 to 1.00)          | 0.87 (0.39 to 1.93)  | 1.33 (0.63 to 2.83)  |
| VEN          | 0.00 (-0.51 to 0.51)          | 1.00 (0.06 to 16.67) | NA                   |
| Pill-PBO     | -0.25 (-0.45 to -0.05)        | 0.88 (0.58 to 1.33)  | 1.56(0.78 to 1.71)   |
| FLU+CBT vs.  |                               |                      |                      |
| Pill-PBO+CBT | -0.02 (-0.48 to 0.45)         | 0.66 (0.09 to 4.97)  | 4.20 (0.46 to 38.71) |
| Pill-PBO     | -1.08 (-1.36 to -0.79)        | 0.63 (0.31 to 1.29)  | 1.60 (0.44 to 5.85)  |
| FT vs.       |                               |                      |                      |
| SUP          | -0.01(-0.47 to 0.44)          | 1.69(0.58 to 4.94)   | 0.36 (0.07 to 2.02)  |
| WL           | -1.10 (-1.85 to -0.36)        | NA                   | NA                   |
| TAU          | -0.68 (-1.78 to 0.42)         | 0.65 (0.23 to 1.85)  | NA                   |
| Psy-PBO      | -0.15 (-0.75 to 0.46)         | 0.25 (0.08 to 0.77)  | NA                   |
| IMP vs.      |                               |                      |                      |
| PAR          | 0.22 (-0.07 to 0.51)          | 1.80 (0.98 to 3.30)  | 0.33 (0.10 to 1.07)  |
| Pill-PBO     | -0.01 (-0.28 to 0.25)         | 2.75 (0.87 to 8.75)  | 1.87 (0.33 to 10.46) |
| IMP+CBT vs.  |                               |                      |                      |
| Pill-PBO+CBT | -0.44 (-0.94 to 0.06)         | 0.75 (0.24 to 2.33)  | NA                   |
| IPT vs.      |                               |                      |                      |
| Psy-PBO      | -0.69 (-1.14 to -0.65)        | 0.60 (0.02 to 23.86) | 0.46 (0.08 to 2.76)  |
| TAU          | -0.84 (-1.19 to -0.48)        | 0.61 (0.08 to 4.43)  | 2.73 (0.11 to 69.60) |
| WL           | <u>-0.90 (-1.58 to -0.22)</u> | 0.76 (0.18 to 3.28)  | NA                   |

| MIR vs.      |                        |                            |                        |
|--------------|------------------------|----------------------------|------------------------|
| Pill-PBO     | -0.23 (-0.52 to 0.05)  | 0.91 (0.48 to 1.74)        | 1.58 (0.06 to 39.29)   |
| NEF vs.      |                        |                            |                        |
| Pill-PBO     | -0.14 (-0.40 to 0.13)  | <u>0.55 (0.30 to 1.00)</u> | NA                     |
| NOR vs.      |                        |                            |                        |
| Pill-PBO     | -0.11 (-0.55 to 0.34)  | 0.62 (0.16 to 2.45)        | NA                     |
| PAR vs.      |                        |                            |                        |
| Pill-PBO     | -0.11 (-0.26 to 0.04)  | 1.28 (0.91 to 1.79)        | 1.74 (0.46 to 6.62)    |
| PST vs.      |                        |                            |                        |
| WL           | -1.31 (-2.23 to -0.40) | 0.26 (0.01 to 7.03)        | NA                     |
| SER vs.      |                        |                            |                        |
| Pill-PBO     | -0.23 (-0.44 to -0.03) | 1.52 (0.48 to 4.82)        | 1.92 (0.33 to 11.06)   |
| SER+CBT      | -0.20 (-0.61 to 0.21)  | 0.99 (0.37 to 2.67)        | 4.36 (0.45 to 42.09)   |
| SER+CBT vs.  |                        |                            |                        |
| Pill-PBO+CBT | 0.40 (-0.86 to 1.65)   | 7.86 (0.28 to 217.11)      | NA                     |
| VEN vs.      |                        |                            |                        |
| Pill-PBO     | -0.14 (-0.36to 0.07)   | 1.26 (0.80 to 1.97)        | 17.67 (1.01 to 308.51) |
| VEN+CBT vs.  |                        |                            |                        |
| Pill-PBO+CBT | 0.75 (0.11 to 1.39)    | 1.42 (0.27 to 7.34)        | NA                     |
| VIL vs.      |                        |                            |                        |
| Pill-PBO     | -0.09(-0.27 to 0.09)   | 0.64(0.393 to 1.06)        | 2.47(0.29 to 21.32)    |

Significant results are bolded and underscored. \*DerSimonian R, Laird N. Meta-analysis in clinical trials. *Control Clin Trials*1986; **7:** 177–87. #:for Kutcher 1994 we used the followingstandard deviations(7.56 for desipramine and 7.38 for placebo) rather than the standard deviationsused in the Cochrane review by Hazell & Mirzaie, 2013 (4.61 and 4.32, respectively), as reported in the original publication of the trial and confirmed by the study author. AMI=Amitriptyline. BT=Behavioural therapy. CBT=Cognitive-behavioural therapy. CIT=Citalopram. CLO=Clomipramine. DYN=Psychodynamic therapy. DES=Desipramine. DEV=Desvenlafaxine. DUL=Duloxetine. ESC=Escitalopram. FT=Family therapy. FLU=Fluoxetine. IPT=Interpersonal therapy. IMP=Imipramine. MIR=Mirtazapine. NA=not available. NEF=Nefazodone. NOR=Nortriptyline. PST=Problem-solving therapy. PAR=Paroxetine. Pill-PBO=Pill placebo. Psy-PBO=Psychological placebo. SUP=Supportive therapy. SER=Sertraline. TAU= Treatment as usual. VEN=Venlafaxine. VIL=Vilazodone. WL= Waitlist.

# c. Heterogeneity test result, I<sup>2</sup> and heterogeneity estimate

# Mean overall change in symptoms

|                          | No. of studies | P-value | $I^2$ | $	au^2$ |
|--------------------------|----------------|---------|-------|---------|
| CBT vs Psy-PBO           | 4              | 0.6649  | 0.0%  | 0.0000  |
| CBT vs SER*              | 2              | 0.0762  | 68.2% | 0.1634  |
| CBT vs SER+CBT           | 2              | 0.5714  | 0.0%  | 0.0000  |
| CBT vs TAU               | 4              | 0.5103  | 0.0%  | 0.0000  |
| CBT vs WL*               | 5              | 0.0000  | 86.4% | 0.5146  |
| CIT vs Pill-PBO*         | 2              | 0.1109  | 60.7% | 0.0345  |
| DES vs Pill-PBO*         | 2              | 0.0225  | 80.8% | 0.4720  |
| DEV vs Pill-PBO          | 2              | 0.4291  | 0.0%  | 0.0000  |
| DUL vs FLU               | 2              | 0.6265  | 0.0%  | 0.0000  |
| DUL vs Pill-PBO          | 2              | 0.2388  | 27.9% | 0.0062  |
| ESC vs Pill-PBO          | 2              | 0.6070  | 0.0%  | 0.0000  |
| FLU vs FLU+CBT*          | 2              | 0.0001  | 93.9% | 0.3032  |
| FLU vs Pill-PBO*         | 9              | 0.0043  | 64.2% | 0.0536  |
| FLU+CBT vs Pill-PBO+CBT* | 2              | 0.1503  | 51.7% | 0.0604  |
| FT vs SUP*               | 2              | 0.1373  | 54.7% | 0.0605  |
| FT vs TAU*               | 2              | 0.0482  | 74.4% | 0.4779  |
| IMP vs Pill-PBO          | 2              | 0.6721  | 0.0%  | 0.0000  |
| IPT vs Psy-PBO           | 2              | 0.8388  | 0.0%  | 0.0000  |
| IPT vs TAU               | 2              | 0.3203  | 0.0%  | 0.0000  |
| MIR vs Pill-PBO          | 2              | 0.2810  | 14.0% | 0.0058  |
| NEF vs Pill-PBO          | 2              | 0.1659  | 47.9% | 0.0170  |
| NOR vs Pill-PBO          | 2              | 0.3214  | 0.0%  | 0.0000  |
| PAR vs Pill-PBO          | 4              | 0.4844  | 0.0%  | 0.0000  |
| SER vs Pill-PBO          | 2              | 0.7951  | 0.0%  | 0.0000  |
| SER vs SER+CBT           | 2              | 0.2765  | 15.6% | 0.0136  |
| VEN vs Pill-PBO          | 2              | 0.9094  | 0.0%  | 0.0000  |

<sup>\*</sup>The comparisons between CBT and SER, between CBT and WL, between CIT and Pill-PBO, between DES and Pill-PBO, between FLU and FLU+CBT, between FLU and Pill-PBO, between FLU+CBT and Pill-PBO+CBT, between FT and SUP, and between FT and TAU had higher I² values than the other comparisons. CBT=Cognitive-behavioural therapy. CIT=Citalopram. DES=Desipramine. DEV=Desvenlafaxine. DUL=Duloxetine. ESC=Escitalopram. FT=Family therapy. FLU=Fluoxetine. IPT=Interpersonal therapy. IMP=Imipramine. MIR=Mirtazapine. NEF=Nefazodone. NOR=Nortriptyline. PAR=Paroxetine. Pill-PBO=Pill placebo. Psy-PBO=Psychological placebo. SUP=Supportive therapy. SER=Sertraline. TAU= Treatment as usual. VEN=Venlafaxine. WL=Waitlist.

#### All-cause discontinuation

|                         | No. of studies | P-value | $\mathbf{I}^2$ | $	au^2$ |
|-------------------------|----------------|---------|----------------|---------|
| CBT vs Psy-PBO          | 4              | 0.9891  | 0.0%           | 0.0000  |
| CBT vs SER              | 2              | 0.1713  | 46.6%          | 0.7735  |
| CBT vs SER+CBT          | 2              | 0.1612  | 49.0%          | 0.8830  |
| CBT vs TAU              | 2              | 0.2536  | 23.3%          | 0.1745  |
| CBT vs WL               | 4              | 0.9355  | 0.0%           | 0.0000  |
| CIT vs Pill-PBO         | 2              | 0.6071  | 0.0%           | 0.0000  |
| DES vs Pill-PBO         | 2              | 0.2480  | 25.1%          | 0.1567  |
| DEV vs Pill-PBO         | 2              | 0.2966  | 8.2%           | 0.0110  |
| DUL vs FLU              | 2              | 0.8322  | 0.0%           | 0.0000  |
| DULvs Pill-PBO*         | 2              | 0.1379  | 54.6%          | 0.1074  |
| ESC vs Pill-PBO         | 2              | 0.6838  | 0.0%           | 0.0000  |
| FLU vs FLU+CBT          | 2              | 0.2012  | 38.8%          | 0.1340  |
| FLU vs Pill-PBO*        | 9              | 0.0337  | 52.0%          | 0.1899  |
| FLU+CBT vs Pill-PBO+CBT | 2              | 0.1614  | 49.0%          | 1.2537  |
| FT vs SUP*              | 2              | 0.1495  | 51.9%          | 0.3107  |
| FT vs TAU               | 2              | 0.3327  | 0.0%           | 0.0000  |
| IMP vs Pill-PBO         | 2              | 0.2649  | 19.5%          | 0.2957  |
| IPT vs Psy-PBO*         | 2              | 0.0259  | 79.8%          | 5.7112  |
| IPT vs TAU              | 2              | 0.2091  | 36.6%          | 0.8647  |
| MIR vs Pill-PBO         | 2              | 0.5374  | 0.0%           | 0.0000  |
| PAR vs Pill-PBO         | 4              | 0.7785  | 0.0%           | 0.0000  |
| SER vs Pill-PBO*        | 2              | 0.0279  | 79.3%          | 0.5501  |
| SER vs SER+CBT          | 2              | 0.9408  | 0.0%           | 0.0000  |

\*The comparisons between DUL and Pill-PBO, between FLU and Pill-PBO, between FT and SUP, between IPT and Psy-PBO, and between SER and Pill-PBO had higher I² values than the other comparisons. CBT=Cognitive-behavioural therapy. CIT=Citalopram. CLO=Clomipramine. DES=Desipramine. DEV=Desvenlafaxine. DUL=Duloxetine. ESC=Escitalopram. FT=Family therapy. FLU=Fluoxetine. IPT=Interpersonal therapy. IMP=Imipramine. MIR=Mirtazapine. PAR=Paroxetine. Pill-PBO=Pill placebo. Psy-PBO=Psychological placebo. SUP= Supportive therapy. SER=Sertraline. TAU= Treatment as usual. WL= Waitlist.

# Suicidality

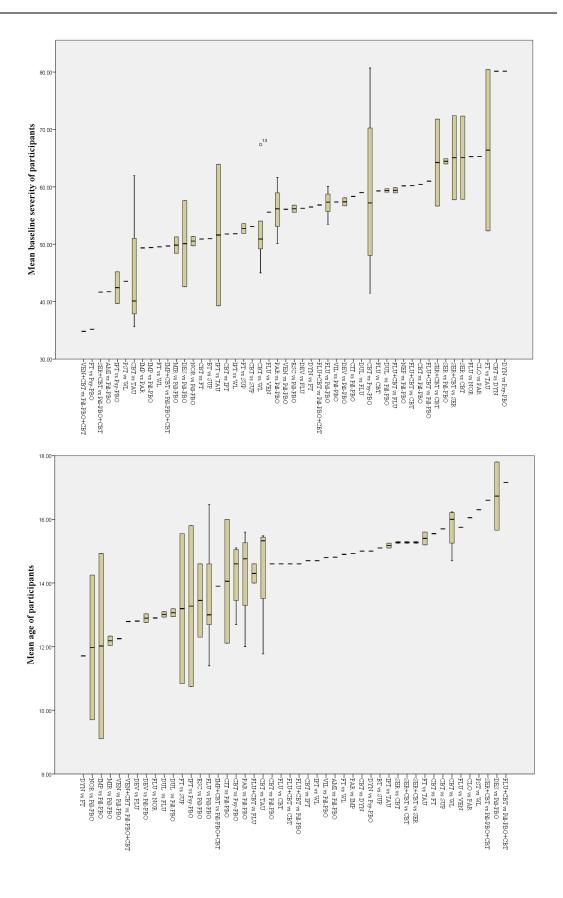
|                 | No. of studies | P-value | $I^2$ | $	au^2$ |
|-----------------|----------------|---------|-------|---------|
| CIT vs Pill-PBO | 2              | 0.3090  | 3.4%  | 0.0325  |
| DEV vs Pill-PBO | 2              | 0.4284  | 0.0%  | 0.0000  |
| DUL vs FLU      | 2              | 0.8295  | 0.0%  | 0.0000  |
| DUL vs Pill-PBO | 2              | 0.9188  | 0.0%  | 0.0000  |
| ESC vs Pill-PBO | 2              | 0.4711  | 0.0%  | 0.0000  |
| FLU vs FLU+CBT  | 2              | 0.7432  | 0.0%  | 0.0000  |
| FLU vs Pill-PBO | 7              | 0.8037  | 0.0%  | 0.0000  |
| PAR vs Pill-PBO | 4              | 0.1532  | 43.1% | 0.7880  |
| SER vs Pill-PBO | 2              | 0.2947  | 8.9%  | 0.1630  |

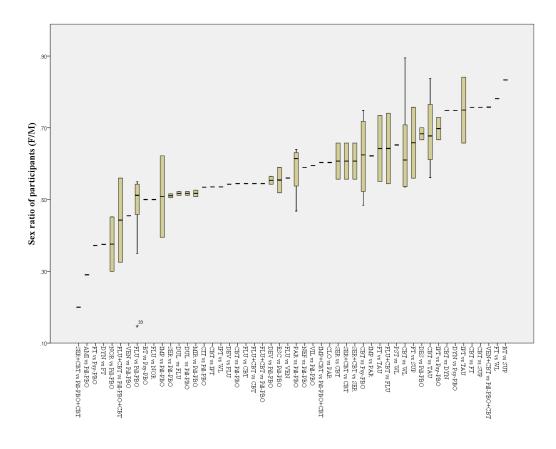
No comparison had higher I<sup>2</sup> value. CBT=Cognitive-behavioural therapy. CIT=Citalopram. DEV=Desvenlafaxine. DUL=Duloxetine. ESC=Escitalopram. FLU=Fluoxetine. PAR=Paroxetine. Pill-PBO=Pill placebo. SER=Sertraline.

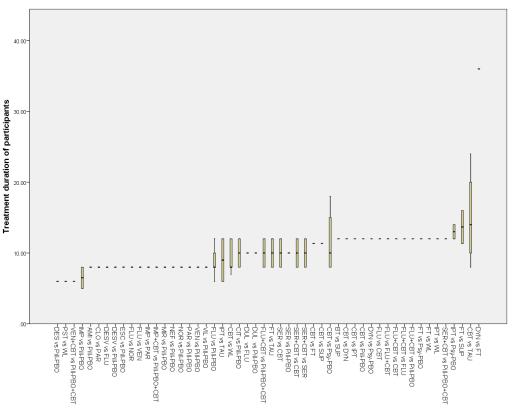
Network meta-analysis of suicidality

| CBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0·70<br>(0·11 to 2·23) <b>CIT</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0-71 1-46<br>(0-07 to 2-87) (0-14 to 6-07) CLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1·10 2·23 2·82 pev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (0.25 to 2.93) (0.50 to 6.79) (0.41 to 10.04)  0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.52 10.2-05/00-10 10.11-35/00-10 10.2-05/2/10-20 10.55/00/00-20 11/10-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (0.16 to 2-67) (0.32 to 5-73) (0.27 to 8-66) (0.25 to 2-18) (0.32 to 2-58) (0.01 to 40-56)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (0.20 to 1.73) (0.38 to 4.21) (0.29 to 6.39) (0.33 to 1.41) (0.48 to 1.51) (0.01 to 33.87) (0.35 to 2.46)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0-88   1-88   2-36   (0.93 to 6-20)   (0.95 to 6-20)   (0.92 to 8-71)   (0.28 to 2-30)   (0.35 to 6-20)   (0.92 to 8-71)   (0.28 to 2-30)   (0.35 to 6-20)   (0.92 to 8-72)   (0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2.75 8.05 8.96 3.57 4.39 43.41 4.98 1.26 1.03 (0.21 to 12.02) (0.25 to 41.04) (0.22 to 49.68) (0.71 to 18.98) (0.21 to 22.8) (0.01 to 144.3) (0.20 to 26.75) (0.26 to 25.43) (0.21 to 22.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1-41 2-83 3-15 1-41 1-74 21-24 2-00 2-00 1-88 1-64 (0-16 to 5-44) (0-30 to 11-67) (0-35 to 12-85) (0-22 to 5-04) (0-28 to 5-68) (0-01 to 76-63) (0-27 to 7-27) (0-34 to 6-42) (0-24 to 7-67) (0-04 to 8-54)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 40-48 113-80 156-30 60-16 72-83 33-4 88-53 81-88 69-03 43-5 0-04 IPT (0-02 to 207-3) (0-04 to 515-1) (0-03 to 692-9) (0-02 to 279) (0-03 to 355-9) (0-03 to 355-9) (0-03 to 365-9) (0-03 to 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1.60 3.22 3.91 1.58 1.92 29.61 2.19 2.18 1.97 1.91 1.88 28.35 (0.02 to 8.74) (0.03 to 17.46) (0.04 to 25.01) (0.02 to 8.46) (0.02 to 10.02) (0.00 to 72.01) (0.02 to 11.46) (0.03 to 11.13) (0.02 to 11.12) (0.02 to 11.46)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.81 5.75 7.55 2.87 3.45 55.59 4.05 3.94 3.65 3.13 3.23 58.09 28.99 (0.09 to 15.50) (0.17 to 33.14) (0.14 to 41.80) (0.11 to 14.34) (0.14 to 17.04) (0.01 to 112.4) (0.14 to 19.95) (0.17 to 19.44) (0.13 to 20.46) (0.02 to 22.56) (0.08 to 17.79) (0.00 to 109.7) (0.07 to 152.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0-48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0-61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7.78 16.55 19.45 8.14 9.90 173.00 11.50 11.22 8.98 7.39 9.56 194.8 91.44 12.28 20.45 9.81 SHEROLGET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (0.29 to 45-30) (0.56 to 100-7) (0.52 to 126-8) (0.34 to 45-63) (0.45 to 55-03) (0.03 to 289-2) (0.41 to 64-32) (0.56 to 58-67) (0.61 to 43-66) (0.09 to 46-01) (0.24 to 58-01) (0.01 to 262-6) (0.20 to 286-6) (0.11 to 84-86) (0.85 to 124-1) (0.50 to 54-81)  11.31 32.76 43-48 17.39 20.89 8-64 25.659 23.54 19.09 11.31 18.46 0.64 50.90 38.22 44.35 21.15 8-83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.33 0.75 0.93 0.37 0.45 4.67 0.52 0.52 0.48 0.38 0.46 4.66 4.00 0.58 0.97 0.45 0.20 8.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (0-0-0-0-1-0) (0-0-0-0-1-1) (0-0-0-0-1-1) (0-0-0-0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (0.09 to 6.77) (0.14 to 16.85) (0.13 to 22.43) (0.10 to 7.39) (0.12 to 9.14) (0.01 to 64.51) (0.11 to 10.64) (0.16 to 10.31) (0.11 to 10.63) (0.03 to 11.82) (0.06 to 10.53) (0.00 to 46.38) (0.05 to 71.25) (0.03 to 14.93) (0.21 to 20.44) (0.01 to 5.42) (0.01 to 89.73) (0.54 to 22.34)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (0.09 to 2.48) (0.10 to 10.31) (0.01 to 12.53) (0.07 to 4.41) (0.09 to 5.32) (0.01 to 45.41) (0.08 to 6.71) (0.11 to 5.90) (0.09 to 5.28) (0.04 to 1.96) (0.05 to 6.62) (0.00 to 42.03) (0.03 to 42.98) (0.02 to 9.82) (0.15 to 12.17) (0.10 to 5.16) (0.01 to 2.75) (0.01 to 76.84) (0.20 to 21.34) (0.04 to 9.51)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $ \begin{array}{c} (0.02 \text{ to } 1163) \\ (0.04 \text{ to } 3352) \\ (0.04 \text{ to } 3352) \\ (0.04 \text{ to } 3352) \\ (0.04 \text{ to } 3572) \\ (0.03 \text{ to } 2073) \\ (0.03 \text{ to } $ |
| 0-10 0-20 0-25 0-10 0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Treatment Suicidality (OR [95% Crl])


Interventions are reported in alphabetical order. Comparisons between treatments should be read from left to right, and the estimate is in the cell in common between the column-defining treatment and the row-defining treatment. For suicidality, an odds ratio (OR) below 1 favors the column-defining treatment.


Number of patients with suicidality according to treatments


|                                                                                     | Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Events/total (%) |         |               | Number     | Events/total (%) |        |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------|---------------|------------|------------------|--------|
| Comparisons                                                                         | of trials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Group            | Group   | Comparisons   | of trials  | Group            | Group  |
|                                                                                     | or tritais                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                | 2       |               | or tritais | 1                | 2      |
| CBT vs DYN                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1/155            | 1/157   | FLU vs        | 7          | 62/634           | 53/626 |
|                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1%)             | (1%)    | Pill-PBO      | ,          | (10%)            | (8%)   |
| CBT vs                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1/155            | 1/158   | FLU vs        | 2          | 17/212           | 13/212 |
| Psy-PBO                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1%)             | (1%)    | FLU+CBT       | 2          | (8%)             | (6%)   |
| CBT vs                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5/111            | 4/112   | FLU+CBT vs    | 1          | 6/107            | 4/112  |
| Pill-PBO                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (5%)             | (4%)    | Pill-PBO      | 1          | (6%)             | (4%)   |
| CBT vs                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5/111            | 6/107   | FLU+CBT vs    | 2          | 4/87             | 1/89   |
| FLU+CBT                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (5%)             | (6%)    | Pill-PBO+CBT  | 2          | (5%)             | (1%)   |
| CBT vs FT                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3/37             | 2/35    | FT vs SUP     | 1          | 2/35             | 5/35   |
| CDI VSI I                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (8%)             | (6%)    | 11 18 501     | 1          | (6%)             | (14%)  |
| CBT vs SUP                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3/37             | 5/35    | IMP vs PAR    | 1          | 4/95             | 11/93  |
| CBI VS SUF                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (8%)             | (14%)   | IIVIF VS FAIX | 1          | (4%)             | (12%)  |
| CBT vs                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0/50             | 1/52    | IMP vs        | 1          | 4/95             | 2/87   |
| SER+CBT                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (0%)             | (2%)    | Pill-PBO      | 1          | (4%)             | (2%)   |
| CIT vs                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10/217           | 7/205   | IPT vs        | 1          | 2/24             | 4/24   |
| Pill-PBO                                                                            | $\frac{2}{100} = \frac{2}{100} = \frac{2}$ |                  | Psy-PBO | 1             | (8%)       | (17%)            |        |
| CLO DAD                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7/58             | 9/63    | IPT vs TAU    | 1          | 1/34             | 0/30   |
| CLO vs PAR                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (12%)            | (14%)   | IPT VS TAU    | 1          | (3%)             | (0%)   |
| DEV vs FLU                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9/115            | 12/113  | NEF vs        | 2          | 0/289            | 0/190  |
| DEV VS FLU                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (8%)             | (11%)   | Pill-PBO      | 2          | (0%)             | (0%)   |
| DEV vs                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 32/358           | 24/232  | PAR vs        | 4          | 19/413           | 8/315  |
| Pill-PBO                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (9%)             | (10%)   | Pill-PBO      | 4          | (5%)             | (3%)   |
| DUL vs FLU                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 44/341           | 33/234  | CED CDT       | 2          | 4/59             | 0/50   |
| DUL VS FLU                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (13%)            | (14%)   | SER vs CBT    | 2          | (7%)             | (0%)   |
| DUL vs                                                                              | OUL vs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 44/341           | 32/225  | SER vs        | 2          | 5/189            | 2/187  |
| Pill-PBO                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (13%)            | (14%)   | Pill-PBO      | 2          | (3%)             | (1%)   |
| DYN vs                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1/157            | 1/158   | SER vs        | 2          | 4/59             | 1/52   |
| Psy-PBO                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1%)             | (1%)    | SER+CBT       | 2          | (7%)             | (2%)   |
| ESC vs                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15/290           | 15/294  | VEN vs        | 2          | 8/184            | 0/183  |
| Pill-PBO                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (5%)             | (5%)    | Pill-PBO      | 2          | (4%)             | (0%)   |
|                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9/109            | 5/111   | VIL vs        | 1          | 5/355            | 1/174  |
| FLU vs CBT                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (8%)             | (5%)    | Pill-PBO      | 1          | (1%)             | (1%)   |
| MIR vs                                                                              | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1/170            | 0/89    |               |            | , ,              | , ,    |
| Pill-PBO                                                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1%)             | (0%)    |               |            |                  |        |
| CPT—Cognitive behavioural therapy CIT—Citalogram CI Q—Cleminamina DVN—Psychodynamic |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |         |               |            |                  |        |

CBT=Cognitive-behavioural therapy. CIT=Citalopram. CLO=Clomipramine. DYN=Psychodynamic therapy. DES=Desipramine. DUL=Duloxetine. ESC=Escitalopram. FT=Family therapy. FLU=Fluoxetine. IMP=Imipramine. MIR=Mirtazapine. NA=not available. NEF=Nefazodone. PAR=Paroxetine. Pill-PBO=Pill placebo. Psy-PBO=Psychological placebo. SUP=Supportive therapy. SER=Sertraline. TAU=Treatment as usual. VEN=Venlafaxine. VIL=Vilazodone.

Assessment of transitivity







 ${\bf Assessment\ of\ incoherence\ for\ each\ outcome:\ global,\ local\ and\ from\ the}\\ {\bf node\text{-}splitting\ model}$ 

# a. The summary of results for incoherence

| Outcome                         | Number of study | Number of inconsistent loops out of total | Percentage<br>of the<br>inconsistent<br>loops | Number of inconsistent comparisons out of total | Percentage<br>of the<br>inconsistent<br>comparisons |
|---------------------------------|-----------------|-------------------------------------------|-----------------------------------------------|-------------------------------------------------|-----------------------------------------------------|
| Mean overall change in symptoms | 71              | 6/25                                      | 24.0%                                         | 4/51                                            | 7.8%                                                |
| All-cause discontinuation       | 66              | 1/24                                      | 4.2%                                          | 4/51                                            | 7.8%                                                |
| Suicidality                     | 34              | 0/11                                      | 0.0%                                          | 0/31                                            | 0.0%                                                |

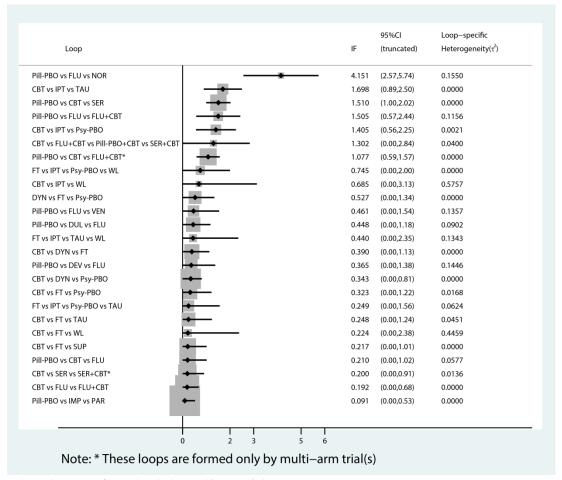
# b. Evaluation of the global incoherence

For evaluating the global incoherence, we present the mean posterior deviance (D), the number of data points and the Deviance Information Criterion (DIC) of the NMA model. The mean posterior deviance should approximate the number of data points for models with good fit to the data. The DIC is a Bayesian model evaluation criterion that measures model fit adjusted with complexity of the model; smaller DIC values correspond to more preferable models.

| Model assumption                                                       | D      | # of data points | DIC    |  |  |  |  |
|------------------------------------------------------------------------|--------|------------------|--------|--|--|--|--|
| Mean overall change in symptoms [Test of global incoherence: P<0.0001] |        |                  |        |  |  |  |  |
| Consistency 156.20 151 664.00                                          |        |                  |        |  |  |  |  |
| Inconsistency                                                          | 156.30 | 151              | 655.90 |  |  |  |  |
| All-cause discontinuation [Test of global incoherence: P = 0.5531]     |        |                  |        |  |  |  |  |
| Consistency                                                            | 147.90 | 143              | 773.20 |  |  |  |  |
| Inconsistency                                                          | 149.80 | 143              | 782.30 |  |  |  |  |
| Suicidality [Test of global incoherence: P=0.5941]                     |        |                  |        |  |  |  |  |
| Consistency                                                            | 74.92  | 76               | 354.70 |  |  |  |  |
| Inconsistency                                                          | 76.88  | 76               | 358.70 |  |  |  |  |

# c. Evaluation of the local incoherence

Tests of local incoherence revealed that the percentages for inconsistent loops were to be expected according to empirical data with the methods of Veroniki et al (Int J Epidemiol 2013; 42:332-45).

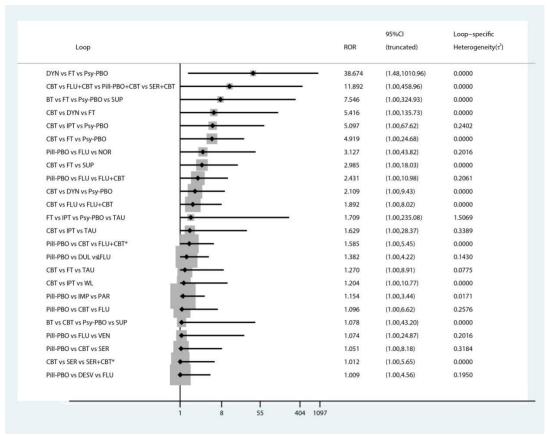

# Mean overall change in symptoms

| Loop                              | IF    | z-value | P-value | 95%CI        | $	au^2$ |
|-----------------------------------|-------|---------|---------|--------------|---------|
| Pill-PBO vs FLU vs NOR            | 4.151 | 5.131   | 0.0000  | (2.57,5.74)  | 0.1550  |
| CBT vs IPT vs TAU                 | 1.698 | 4.130   | 0.0000  | (0.89, 2.50) | 0.0000  |
| Pill-PBO vs CBT vs SER            | 1.510 | 5.764   | 0.0000  | (1.00,2.02)  | 0.0000  |
| Pill-PBO vs FLU vs FLU+CBT        | 1.505 | 3.168   | 0.0015  | (0.57, 2.44) | 0.1156  |
| CBT vs IPT vs Psy-PBO             | 1.405 | 3.266   | 0.0011  | (0.56, 2.25) | 0.0021  |
| CBT vs FLU+CBT vs Pill-PBO+CBT vs | 1.302 | 1.663   | 0.0963  | (0.00, 2.84) | 0.0400  |
| SER+CBT                           |       |         |         |              |         |
| Pill-PBO vs CBT vs FLU+CBT*       | 1.077 | 4.296   | 0.0000  | (0.59, 1.57) | 0.0000  |
| FT vs IPT vs Psy-PBO vs WL        | 0.745 | 1.160   | 0.2461  | (0.00, 2.00) | 0.0000  |
| CBT vs IPT vs WL                  | 0.685 | 0.549   | 0.5833  | (0.00,3.13)  | 0.5757  |
| DYN vs FT vs Psy-PBO              | 0.527 | 1.269   | 0.2046  | (0.00, 1.34) | 0.0000  |

| Pill-PBO vs FLU vs VEN      | 0.461 | 0.836 | 0.4033 | (0.00, 1.54) | 0.1357 |
|-----------------------------|-------|-------|--------|--------------|--------|
| Pill-PBO vs DUL vs FLU      | 0.448 | 1.203 | 0.2288 | (0.00, 1.18) | 0.0902 |
| FT vs IPT vs TAU vs WL      | 0.440 | 0.451 | 0.6518 | (0.00, 2.35) | 0.1343 |
| CBT vs DYN vs FT            | 0.390 | 1.035 | 0.3006 | (0.00, 1.13) | 0.0000 |
| Pill-PBO vs DEV vs FLU      | 0.365 | 0.705 | 0.4810 | (0.00, 1.38) | 0.1446 |
| CBT vs DYN vs Psy-PBO       | 0.343 | 1.438 | 0.1505 | (0.00, 0.81) | 0.0000 |
| CBT vs FT vs Psy-PBO        | 0.323 | 0.704 | 0.4812 | (0.00, 1.22) | 0.0168 |
| FT vs IPT vs Psy-PBO vs TAU | 0.249 | 0.371 | 0.7104 | (0.00, 1.56) | 0.0624 |
| CBT vs FT vs TAU            | 0.248 | 0.492 | 0.6226 | (0.00, 1.24) | 0.0451 |
| CBT vs FT vs WL             | 0.224 | 0.203 | 0.8390 | (0.00, 2.38) | 0.4459 |
| CBT vs FT vs SUP            | 0.217 | 0.533 | 0.5943 | (0.00, 1.01) | 0.0000 |
| Pill-PBO vs CBT vs FLU      | 0.210 | 0.509 | 0.6107 | (0.00, 1.02) | 0.0577 |
| CBT vs SER vs SER+CBT*      | 0.200 | 0.555 | 0.5790 | (0.00, 0.91) | 0.0136 |
| CBT vs FLU vs FLU+CBT       | 0.192 | 0.770 | 0.4416 | (0.00,0.68)  | 0.0000 |
| Pill-PBO vs IMP vs PAR      | 0.091 | 0.407 | 0.6838 | (0.00, 0.53) | 0.0000 |

<sup>\*</sup>These loops are formed only by multi-arm trials.

AMI=Amitriptyline. BT=Behavioural therapy. CBT=Cognitive-behavioural therapy. CIT=Citalopram. CLO=Clomipramine. DYN=Psychodynamic therapy. DES=Desipramine. DEV=Desvenlafaxine. DUL=Duloxetine. ESC=Escitalopram. FT=Family therapy. FLU=Fluoxetine. IPT=Interpersonal therapy. IMP=Imipramine. MIR=Mirtazapine. NEF=Nefazodone. NOR=Nortriptyline. PST=Problem-solving therapy. PAR=Paroxetine. Pill-PBO=Pill placebo. Psy-PBO=Psychological placebo. SUP= Supportive therapy. SER=Sertraline. TAU=Treatment as usual. VEN=Venlafaxine. VIL=Vilazodone. WL=Waitlist.

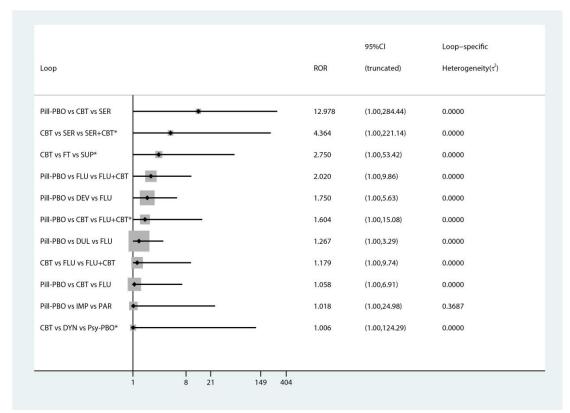



<sup>\*</sup>These loops are formed only by multi-arm trials.

#### All-cause discontinuation

| Loop                              | RoR    | z-value | P-value | 95%CI         | $	au^2$ |
|-----------------------------------|--------|---------|---------|---------------|---------|
| DYN vs FT vs Psy-PBO              | 38.674 | 2.195   | 0.0282  | (1.48,1010.9) | 0.0000  |
| CBT vs FLU+CBT vs Pill-PBO+CBT vs | 11.892 | 1.328   | 0.1841  | (1.00,458.96) | 0.0000  |
| SER+CBT                           |        |         |         |               |         |
| BT vs FT vs Psy-PBO vs SUP        | 7.546  | 1.053   | 0.2924  | (1.00,324.93) | 0.0000  |
| CBT vs DYN vs FT                  | 5.416  | 1.028   | 0.3040  | (1.00,135.73) | 0.0000  |
| CBT vs IPT vs Psy-PBO             | 5.097  | 1.235   | 0.2169  | (1.00,67.62)  | 0.2402  |
| CBT vs FT vs Psy-PBO              | 4.919  | 1.936   | 0.0529  | (1.00,24.68)  | 0.0000  |
| Pill-PBO vs FLU vs NOR            | 3.127  | 0.846   | 0.3974  | (1.00,43.82)  | 0.2016  |
| CBT vs FT vs SUP                  | 2.985  | 1.192   | 0.2333  | (1.00,18.03)  | 0.0000  |
| Pill-PBO vs FLU vs FLU+CBT        | 2.431  | 1.154   | 0.2485  | (1.00,10.98)  | 0.2061  |
| CBT vs DYN vs Psy-PBO             | 2.109  | 0.976   | 0.3289  | (1.00,9.43)   | 0.0000  |
| CBT vs FLU vs FLU+CBT             | 1.892  | 0.865   | 0.3869  | (1.00,8.02)   | 0.0000  |
| FT vs IPT vs Psy-PBO vs TAU       | 1.709  | 0.213   | 0.8310  | (1.00,235.08) | 1.5069  |
| CBT vs IPT vs TAU                 | 1.629  | 0.335   | 0.7380  | (1.00,28.37)  | 0.3389  |
| Pill-PBO vs CBT vs FLU+CBT*       | 1.585  | 0.731   | 0.4646  | (1.00, 5.45)  | 0.0000  |
| Pill-PBO vs DUL vs FLU            | 1.382  | 0.568   | 0.5702  | (1.00,4.22)   | 0.1430  |
| CBT vs FT vs TAU                  | 1.270  | 0.240   | 0.8102  | (1.00,8.91)   | 0.0775  |
| CBT vs IPT vs WL                  | 1.204  | 0.166   | 0.8683  | (1.00,10.77)  | 0.0000  |
| Pill-PBO vs IMP vs PAR            | 1.154  | 0.257   | 0.7973  | (1.00,3.44)   | 0.0171  |
| Pill-PBO vs CBT vs FLU            | 1.096  | 0.100   | 0.9205  | (1.00,6.62)   | 0.2576  |
| BT vs CBT vs Psy-PBO vs SUP       | 1.078  | 0.040   | 0.9683  | (1.00,43.20)  | 0.0000  |
| Pill-PBO vs FLU vs VEN            | 1.074  | 0.044   | 0.9646  | (1.00,24.87)  | 0.2016  |
| Pill-PBO vs CBT vs SER            | 1.051  | 0.047   | 0.9624  | (1.00,8.18)   | 0.3184  |
| CBT vs SER vs SER+CBT*            | 1.012  | 0.014   | 0.9888  | (1.00,5.65)   | 0.0000  |
| Pill-PBO vs DEV vs FLU            | 1.009  | 0.012   | 0.9907  | (1.00,4.56)   | 0.1950  |

<sup>\*</sup>These loops are formed only by multi-arm trials.




<sup>\*</sup>These loops are formed only by multi-arm trials.

# Suicidality

| Loop                        | RoR    | z-value | P-value | 95%CI         | $\tau^2$ |
|-----------------------------|--------|---------|---------|---------------|----------|
| Pill-PBO vs CBT vs SER      | 12.978 | 1.627   | 0.1037  | (1.00,284.44) | 0.0000   |
| CBT vs SER vs SER+CBT*      | 4.364  | 0.736   | 0.4620  | (1.00,221.14) | 0.0000   |
| CBT vs FT vs SUP*           | 2.750  | 0.668   | 0.5039  | (1.00,53.42)  | 0.0000   |
| Pill-PBO vs FLU vs FLU+CBT  | 2.020  | 0.869   | 0.3846  | (1.00,9.86)   | 0.0000   |
| Pill-PBO vs DEV vs FLU      | 1.750  | 0.938   | 0.3482  | (1.00,5.63)   | 0.0000   |
| Pill-PBO vs CBT vs FLU+CBT* | 1.604  | 0.413   | 0.6795  | (1.00,15.08)  | 0.0000   |
| Pill-PBO vs DUL vs FLU      | 1.267  | 0.487   | 0.6261  | (1.00,3.29)   | 0.0000   |
| CBT vs FLU vs FLU+CBT       | 1.179  | 0.153   | 0.8785  | (1.00,9.74)   | 0.0000   |
| Pill-PBO vs CBT vs FLU      | 1.058  | 0.059   | 0.9528  | (1.00,6.91)   | 0.0000   |
| Pill-PBO vs IMP vs PAR      | 1.018  | 0.011   | 0.9914  | (1.00,24.98)  | 0.3687   |
| CBT vs DYN vs Psy-PBO*      | 1.006  | 0.003   | 0.9979  | (1.00,124.29) | 0.0000   |

<sup>\*</sup>These loops are formed only by multi-arm trials.



<sup>\*</sup>These loops are formed only by multi-arm trials.

# $\ensuremath{\mathbf{d}}.$ Evaluation of the incoherence by node-splitting model

Tests of incoherence by node-splitting method fitted the node-splitting model of Dias et al (Stat Med 2010; 29:932-44). The results reported the estimated direct and indirect treatment effects and their difference; the P-value for the difference is the test of incoherence.

# Mean overall change in symptoms

| G                          | Dir   | ect  | Ind   | irect  |       | Differen | ce      | _2      |
|----------------------------|-------|------|-------|--------|-------|----------|---------|---------|
| Comparisons                | SMD   | SE   | SMD   | SE     | SMD   | SE       | P-value | $	au^2$ |
| SER vs Pill-PBO            | -0.23 | 0.24 | 0.29  | 0.39   | -0.52 | 0.46     | 0.2606  | 0.3043  |
| VEN vs Pill-PBO            | -0.14 | 0.25 | -0.40 | 0.43   | 0.26  | 0.49     | 0.5970  | 0.3160  |
| VIL vs Pill-PBO            |       | •••  |       |        |       |          | •••     |         |
| Pill-PBO vs AMI            |       | •••  |       |        |       |          |         |         |
| SUP vs BT*                 | -0.46 | 0.43 | 0.36  | 632.08 | -0.82 | 632.08   | 0.9990  | 0.3096  |
| Pill-PBO vs CBT            | -0.25 | 0.35 | -0.04 | 0.32   | -0.21 | 0.47     | 0.6603  | 0.3188  |
| DYNvs CBT                  | 0.18  | 0.34 | 0.58  | 0.39   | -0.40 | 0.52     | 0.4388  | 0.3122  |
| FTvs CBT                   | 0.56  | 0.39 | -0.26 | 0.23   | 0.81  | 0.45     | 0.0724  | 0.2970  |
| FLU vs CBT                 | -0.69 | 0.34 | -0.37 | 0.34   | -0.32 | 0.48     | 0.5046  | 0.3152  |
| FLU+CBT vs CBT             | -1.29 | 0.30 | 0.07  | 0.41   | -1.35 | 0.51     | 0.0077  | 0.2597  |
| IPT vs CBT                 | -0.52 | 0.45 | -0.44 | 0.24   | -0.08 | 0.51     | 0.8710  | 0.3155  |
| Psy-PBO vs CBT             | 0.30  | 0.19 | 0.19  | 0.33   | 0.11  | 0.38     | 0.7691  | 0.3160  |
| SUP vs CBT                 | 0.30  | 0.40 | -0.18 | 0.43   | 0.47  | 0.58     | 0.4167  | 0.3141  |
| SER vs CBT                 | 0.01  | 0.29 | -0.64 | 0.37   | 0.65  | 0.47     | 0.1692  | 0.3021  |
| SER+CBTvs CBT              | 0.22  | 0.29 | -0.86 | 0.65   | 1.08  | 0.71     | 0.1311  | 0.3000  |
| TAU vs CBT                 | 0.01  | 0.20 | 0.58  | 0.29   | -0.57 | 0.35     | 0.1085  | 0.3052  |
| WL vs CBT                  | 0.93  | 0.19 | 0.85  | 0.48   | 0.08  | 0.52     | 0.8739  | 0.3151  |
| Pill-PBO vs CIT            |       |      |       |        |       |          |         |         |
| PAR vs CLO*                | -0.49 | 0.36 | -0.31 | 626.39 | -0.18 | 626.39   | 0.9998  | 0.3096  |
| FT vs DYN                  | -0.65 | 0.39 | -0.21 | 0.36   | -0.45 | 0.54     | 0.4039  | 0.3107  |
| Psy-PBO vs DYN             | 0.02  | 0.34 | -0.22 | 0.42   | 0.24  | 0.54     | 0.6606  | 0.3165  |
| Pill-PBO vs DES            |       |      |       |        |       |          |         |         |
| Pill-PBO vsDEV*            | 0.03  | 0.24 | 0.53  | 0.65   | -0.50 | 0.69     | 0.4701  | 0.3159  |
| FLU vs DEV                 | -0.18 | 0.35 | -0.41 | 0.33   | 0.23  | 0.48     | 0.6300  | 0.3183  |
| Pill-PBO vs DUL*           | 0.11  | 0.22 | 1.09  | 0.47   | -0.98 | 0.52     | 0.0601  | 0.2908  |
| FLU vs DUL*                | 0.10  | 0.22 | -0.88 | 0.47   | 0.98  | 0.52     | 0.0601  | 0.2908  |
| Pill-PBO vs ESC            |       |      |       |        |       |          |         |         |
| Psy-PBO vs FT              | 0.14  | 0.44 | 0.40  | 0.26   | -0.25 | 0.51     | 0.6243  | 0.3150  |
| SUP vs FT*                 | 0.00  | 0.26 | 1.34  | 0.82   | -1.34 | 0.87     | 0.1231  | 0.3030  |
| TAUvs FT                   | 0.54  | 0.34 | 0.05  | 0.29   | 0.49  | 0.45     | 0.2706  | 0.3127  |
| WL vs FT                   | 1.07  | 0.49 | 0.95  | 0.29   | 0.13  | 0.57     | 0.8242  | 0.3144  |
| Pill-PBO vs FLU*           | 0.24  | 0.12 | 1.26  | 0.30   | -1.02 | 0.33     | 0.0019  | 0.2882  |
| FLU+CBT vs FLU             | -0.20 | 0.24 | -0.68 | 0.52   | 0.48  | 0.57     | 0.4057  | 0.3054  |
| NOR vs FLU                 | 4.22  | 0.64 | 0.17  | 0.30   | 4.06  | 0.71     | 0.0000  | 0.2449  |
| VEN vs FLU                 | 0.00  | 0.41 | 0.26  | 0.28   | -0.26 | 0.49     | 0.5970  | 0.3160  |
| Pill-PBOvs<br>FLU+CBT      | 1.03  | 0.33 | 0.38  | 0.30   | 0.66  | 0.44     | 0.1354  | 0.2960  |
| Pill-PBO+CBT vs<br>FLU+CBT | 0.00  | 0.27 | 0.61  | 0.80   | -0.61 | 0.85     | 0.4744  | 0.3124  |

| Psy-PBO vs IPT              | 0.68  | 0.32 | 0.79  | 0.31   | -0.12 | 0.45   | 0.7931 | 0.3150 |
|-----------------------------|-------|------|-------|--------|-------|--------|--------|--------|
| TAU vs IPT                  | 0.82  | 0.28 | 0.45  | 0.32   | 0.37  | 0.43   | 0.3876 | 0.3106 |
| WL vs IPT                   | 0.87  | 0.46 | 1.62  | 0.31   | -0.76 | 0.55   | 0.1701 | 0.3046 |
| Pill-PBO vs IMP*            | 0.04  | 0.28 | -0.17 | 0.74   | 0.21  | 0.79   | 0.7861 | 0.3180 |
| PAR vs IMP                  | -0.21 | 0.35 | 0.00  | 0.46   | -0.21 | 0.58   | 0.7138 | 0.3164 |
| Pill-PBO+CBT vs<br>IMP+CBT* | 0.44  | 0.40 | -1.20 | 633.10 | 1.64  | 633.10 | 0.9979 | 0.3096 |
| Pill-PBO vs MIR             |       |      |       |        |       |        |        |        |
| Pill-PBO vs NEF             |       |      |       |        |       |        |        |        |
| Pill-PBO vs NOR             | 0.12  | 0.29 | -3.93 | 0.65   | 4.06  | 0.71   | 0.0000 | 0.2449 |
| WL vs PST*                  | 1.26  | 0.56 | 1.96  | 634.71 | -0.70 | 634.71 | 0.9991 | 0.3096 |
| Pill-PBO vs PAR*            | 0.14  | 0.18 | 0.50  | 1.09   | -0.36 | 1.11   | 0.7460 | 0.3157 |
| SER+CBT vs<br>Pill-PBO+CBT  | 0.35  | 0.71 | 0.96  | 0.46   | -0.61 | 0.85   | 0.4744 | 0.3124 |
| VEN+CBT vs<br>Pill-PBO+CBT* | 0.73  | 0.45 | 1.21  | 621.07 | -0.48 | 621.07 | 0.9994 | 0.3097 |
| SER+CBT vs SER              | 0.20  | 0.29 | 0.62  | 0.69   | -0.42 | 0.74   | 0.5733 | 0.3100 |

<sup>\*</sup>All the evidence about these contrasts comes from the trials which directly compare them.

AMI=Amitriptyline. BT=Behavioural therapy. CBT=Cognitive-behavioural therapy. CIT=Citalopram.

CLO=Clomipramine. DYN=Psychodynamic therapy. DES=Desipramine. DEV=Desvenlafaxine.

DUL=Duloxetine. ESC=Escitalopram. FT=Family therapy. FLU=Fluoxetine. IPT=Interpersonal therapy. IMP=Imipramine. MIR=Mirtazapine. NEF=Nefazodone. NOR=Nortriptyline.

PST=Problem-solving therapy. PAR=Paroxetine. Pill-PBO=Pill placebo. Psy-PBO=Psychological placebo. SUP= Supportive therapy. SER=Sertraline. TAU=Treatment as usual. VEN=Venlafaxine.

VIL=Vilazodone. WL=Waitlist.

#### All-cause discontinuation

|                 | Dir       | ect  | Indi      | irect  |           | Differen | ce      |         |
|-----------------|-----------|------|-----------|--------|-----------|----------|---------|---------|
| Comparisons     | LogO<br>R | SE   | LogO<br>R | SE     | LogO<br>R | SE       | P-value | $	au^2$ |
| SER vs Pill-PBO | 0.44      | 0.33 | 0.56      | 0.71   | -0.12     | 0.79     | 0.8823  | 0.2833  |
| VEN vs Pill-PBO | 0.23      | 0.36 | -0.24     | 1.47   | 0.47      | 1.52     | 0.7565  | 0.2724  |
| VIL vs Pill-PBO | •••       | •••  |           | •••    | •••       |          | •••     |         |
| Pill-PBO vs AMI |           |      |           |        |           |          | •••     |         |
| Psy-PBO vs BT   | -0.53     | 1.73 | 0.28      | 0.81   | -0.80     | 1.91     | 0.6733  | 0.2727  |
| SUPvs BT        | -0.41     | 0.61 | -1.21     | 1.81   | 0.80      | 1.91     | 0.6733  | 0.2727  |
| Pill-PBO vs CBT | -0.07     | 0.43 | -0.34     | 0.53   | 0.28      | 0.69     | 0.6861  | 0.2849  |
| DYNvs CBT       | 0.38      | 0.41 | 0.89      | 1.00   | -0.50     | 1.08     | 0.6420  | 0.2641  |
| FT vs CBT       | 0.63      | 0.62 | -0.14     | 0.48   | 0.77      | 0.77     | 0.3199  | 0.2657  |
| FLU vs CBT      | -0.33     | 0.45 | -0.53     | 0.55   | 0.20      | 0.72     | 0.7831  | 0.2839  |
| FLU+CBT vs CBT  | -0.51     | 0.45 | 0.04      | 0.87   | -0.54     | 0.99     | 0.5804  | 0.2770  |
| IPT vs CBT      | 0.10      | 0.82 | -0.44     | 0.55   | 0.54      | 0.99     | 0.5861  | 0.2714  |
| Psy-PBO vs CBT  | 0.11      | 0.33 | 1.60      | 0.58   | -1.49     | 0.67     | 0.0250  | 0.2048  |
| SUP vs CBT      | 0.67      | 0.60 | -1.30     | 0.72   | 1.97      | 0.94     | 0.0360  | 0.2179  |
| SER vs CBT      | 0.28      | 0.62 | 0.29      | 0.51   | -0.01     | 0.80     | 0.9936  | 0.2819  |
| SER+CBT vs CBT  | 0.26      | 0.64 | 0.83      | 1.16   | -0.57     | 1.36     | 0.6766  | 0.2772  |
| TAU vs CBT      | 0.22      | 0.54 | 0.44      | 0.58   | -0.22     | 0.80     | 0.7813  | 0.2790  |
| WL vs CBT*      | 0.37      | 0.36 | -0.84     | 1.83   | 1.21      | 1.87     | 0.5173  | 0.2697  |
| Pill-PBOvs CIT  |           |      |           |        |           |          |         |         |
| PAR vs CLO*     | -0.42     | 0.47 | 0.54      | 1274.4 | -0.96     | 1274.4   | 0.9994  | 0.2693  |

|                             |       |      |       | 7           |       | 7           |        |        |
|-----------------------------|-------|------|-------|-------------|-------|-------------|--------|--------|
| FT vs DYN                   | 1.97  | 1.55 | -0.56 | 0.51        | 2.54  | 1.63        | 0.1206 | 0.2659 |
| Psy-PBO vs DYN              | -0.29 | 0.38 | 1.87  | 0.96        | -2.15 | 1.04        | 0.0379 | 0.2239 |
| Pill-PBO vs DES             |       |      |       |             |       |             |        |        |
| Pill-PBO vs DEV*            | 0.10  | 0.32 | 0.24  | 0.94        | -0.14 | 1.00        | 0.8847 | 0.2870 |
| FLU vs DEV                  | -0.23 | 0.49 | -0.04 | 0.43        | -0.19 | 0.66        | 0.7745 | 0.2888 |
| Pill-PBO vs DUL*            | -0.25 | 0.26 | 0.83  | 0.59        | -1.08 | 0.66        | 0.1007 | 0.2153 |
| FLU vs DUL*                 | -0.13 | 0.25 | -1.21 | 0.59        | 1.08  | 0.66        | 0.1007 | 0.2153 |
| Pill-PBO vs ESC             |       | •••  | •••   | •••         | •••   |             | •••    |        |
| Psy-PBO vs FT               | 1.40  | 0.62 | -0.35 | 0.50        | 1.74  | 0.80        | 0.0295 | 0.2242 |
| SUP vs FT                   | -0.51 | 0.41 | 1.82  | 1.22        | -2.33 | 1.29        | 0.0715 | 0.2357 |
| TAU vs FT                   | 0.45  | 0.58 | -0.16 | 0.63        | 0.62  | 0.86        | 0.4697 | 0.2785 |
| Pill-PBO vs FLU*            | 0.18  | 0.17 | 0.96  | 0.59        | -0.78 | 0.61        | 0.2025 | 0.2678 |
| FLU+CBT vs FLU              | 0.13  | 0.38 | -0.46 | 0.80        | 0.58  | 0.88        | 0.5069 | 0.2925 |
| NORvs FLU                   | 0.81  | 0.97 | -0.27 | 0.77        | 1.08  | 1.24        | 0.3850 | 0.2730 |
| VEN vs FLU                  | 0.00  | 1.46 | 0.47  | 0.39        | -0.47 | 1.52        | 0.7565 | 0.2724 |
| Pill-PBO vs<br>FLU+CBT      | 0.45  | 0.46 | -0.07 | 0.51        | 0.52  | 0.67        | 0.4410 | 0.2810 |
| Pill-PBO+CBT vs<br>FLU+CBT  | 0.02  | 0.53 | -1.43 | 1.83        | 1.44  | 1.90        | 0.4480 | 0.2739 |
| Psy-PBO vs IPT              | 1.36  | 0.70 | 0.29  | 0.63        | 1.08  | 0.94        | 0.2525 | 0.2552 |
| TAU vs IPT                  | 0.31  | 0.75 | 0.82  | 0.67        | -0.51 | 1.01        | 0.6133 | 0.2702 |
| WL vs IPT                   | 0.29  | 0.79 | 0.83  | 0.70        | -0.54 | 1.06        | 0.6088 | 0.2730 |
| Pill-PBO vs IMP*            | -0.91 | 0.42 | -0.93 | 0.94        | 0.02  | 1.05        | 0.9870 | 0.2922 |
| PAR vs IMP                  | -0.58 | 0.43 | -0.87 | 0.86        | 0.29  | 0.97        | 0.7641 | 0.2916 |
| Pill-PBO+CBT vs<br>IMP+CBT* | 0.29  | 0.64 | -0.61 | 1441.1<br>2 | 0.90  | 1441.1<br>2 | 0.9995 | 0.2693 |
| Pill-PBO vs MIR             | •••   | •••  |       | •••         | •••   | •••         | •••    |        |
| Pill-PBO vs NEF             | •••   | •••  |       | •••         | •••   | •••         | •••    | •••    |
| Pill-PBO vs NOR             | 0.49  | 0.76 | -0.59 | 0.99        | 1.08  | 1.24        | 0.3850 | 0.2730 |
| WL vs PST*                  | 1.45  | 1.71 | 1.28  | 2329.8      | 0.17  | 2329.8      | 0.9999 | 0.2693 |
| Pill-PBO vs PAR*            | -0.25 | 0.23 | -3.64 | 3.18        | 3.39  | 3.19        | 0.2877 | 0.2688 |
| SER+CBT vs<br>Pill-PBO+CBT  | 2.06  | 1.72 | 0.62  | 0.82        | 1.44  | 1.90        | 0.4480 | 0.2739 |
| VEN+CBT vs<br>Pill-PBO+CBT* | 0.35  | 0.88 | 0.58  | 1658.1<br>1 | -0.23 | 1658.1<br>1 | 0.9999 | 0.2693 |
| SER+CBT vs SER              | 0.03  | 0.54 | 0.57  | 1.25        | -0.53 | 1.36        | 0.6937 | 0.2842 |

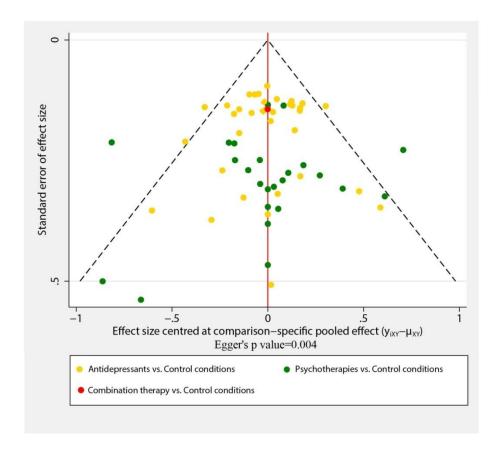
<sup>\*</sup>All the evidence about these contrasts comes from the trials which directly compare them.

# Suicidality

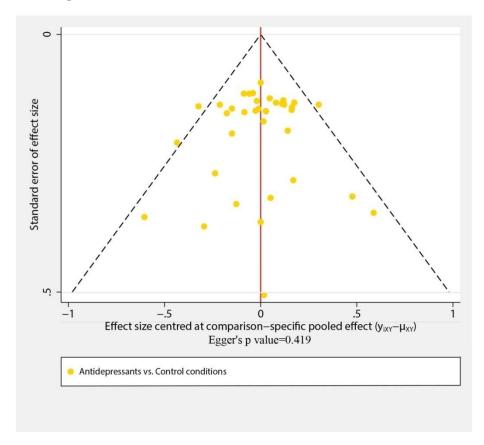
|                 | Direct    |      | Indirect  |             |           |             |         |         |
|-----------------|-----------|------|-----------|-------------|-----------|-------------|---------|---------|
| Comparisons     | LogO<br>R | SE   | LogO<br>R | SE          | LogO<br>R | SE          | P-value | $	au^2$ |
| SER vs Pill-PBO | 0.62      | 0.84 | 1.13      | 1.30        | -0.52     | 1.55        | 0.7395  | 0.0000  |
| VEN vs Pill-PBO |           |      |           |             |           |             |         |         |
| VIL vs Pill-PBO |           |      |           |             |           |             |         |         |
| Pill-PBO vs CBT | -0.23     | 0.68 | 1.18      | 0.83        | -1.41     | 1.11        | 0.2027  | 0.0000  |
| DYN vs CBT*     | -0.01     | 1.42 | 1.69      | 1683.8<br>1 | -1.70     | 1683.8<br>1 | 0.9992  | 0.0000  |

| FT vs CBT*                  | -0.38 | 0.95 | 0.04  | 2088.6      | -0.41 | 2088.6      | 0.9998 | 0.0000 |
|-----------------------------|-------|------|-------|-------------|-------|-------------|--------|--------|
| FLU vs CBT                  | 0.69  | 0.57 | -0.11 | 0.86        | 0.80  | 0.97        | 0.4091 | 0.0000 |
| FLU+CBT vs CBT              | 0.24  | 0.62 | 0.45  | 1.16        | -0.22 | 1.31        | 0.8679 | 0.0000 |
| Psy-PBO vs CBT*             | -0.02 | 1.42 | 0.85  | 845.51      | -0.87 | 845.51      | 0.9992 | 0.0000 |
| SUP vs CBT*                 | 0.64  | 0.77 | 1.14  | 2219.9<br>2 | -0.50 | 2219.9<br>2 | 0.9998 | 0.0000 |
| SER vs CBT*                 | 1.41  | 1.18 | 0.90  | 1.00        | 0.52  | 1.55        | 0.7395 | 0.0000 |
| SER+CBT vs CBT*             | 0.44  | 1.27 | -0.59 | 2.60        | 1.03  | 3.10        | 0.7395 | 0.0000 |
| Pill-PBO vs CIT             |       |      |       |             |       |             |        |        |
| PAR vs CLO*                 | 0.19  | 0.54 | 1.49  | 1884.0<br>9 | -1.29 | 1884.0<br>9 | 0.9995 | 0.0000 |
| Psy-PBO vs DYN*             | -0.01 | 1.42 | 1.74  | 1679.0<br>9 | -1.74 | 1679.0<br>9 | 0.9992 | 0.0000 |
| Pill-PBO vs DEV*            | 0.23  | 0.29 | 0.60  | 0.90        | -0.37 | 0.95        | 0.6976 | 0.0000 |
| FLU vs DEV                  | 0.36  | 0.46 | 0.40  | 0.40        | -0.03 | 0.61        | 0.9553 | 0.0000 |
| Pill-PBO vs DUL*            | 0.10  | 0.25 | -0.44 | 0.72        | 0.54  | 0.78        | 0.4872 | 0.0000 |
| FLU vs DUL*                 | 0.08  | 0.25 | 0.62  | 0.72        | -0.54 | 0.78        | 0.4872 | 0.0000 |
| Pill-PBO vs ESC             | •••   | •••  | •••   |             | •••   |             | •••    |        |
| SUP vs FT                   | •••   | •••  | •••   | •••         | •••   | •••         | •••    | • • •  |
| Pill-PBO vs FLU*            | -0.14 | 0.20 | 0.32  | 0.83        | -0.46 | 0.86        | 0.5906 | 0.0000 |
| FLU+CBT vs FLU*             | -0.29 | 0.38 | 1.11  | 1.18        | -1.39 | 1.22        | 0.2531 | 0.0000 |
| Pill-PBO vs<br>FLU+CBT      | -0.40 | 0.66 | 0.36  | 0.53        | -0.76 | 0.86        | 0.3773 | 0.0000 |
| Pill-PBO+CBT vs<br>FLU+CBT* | -1.11 | 0.99 | -0.05 | 2734.0      | -1.06 | 2734.0      | 0.9997 | 0.0000 |
| Psy-PBO vs IPT*             | 0.79  | 0.92 | -0.67 | 1340.9<br>9 | 1.46  | 1340.9<br>9 | 0.9991 | 0.0000 |
| TAU vs IPT*                 | -1.00 | 1.65 | 2.02  | 3696.3<br>7 | -3.02 | 3696.3<br>7 | 0.9993 | 0.0000 |
| Pill-PBO vs IMP*            | -0.62 | 0.88 | 2.67  | 1.66        | -3.29 | 2.01        | 0.1011 | 0.0000 |
| PAR vs IMP*                 | 1.12  | 0.60 | -2.18 | 2.00        | 3.29  | 2.01        | 0.1011 | 0.0000 |
| Pill-PBO vs MIR             |       |      |       |             | •••   |             |        |        |
| Pill-PBO vs NEF             |       |      |       |             |       |             |        |        |
| Pill-PBO vs PAR*            | -0.74 | 0.49 | -0.09 | 931.63      | -0.65 | 931.63      | 0.9994 | 0.0000 |
| SER+CBT vs SER*             | -0.97 | 0.88 | 0.06  | 3.04        | -1.03 | 3.10        | 0.7395 | 0.0000 |

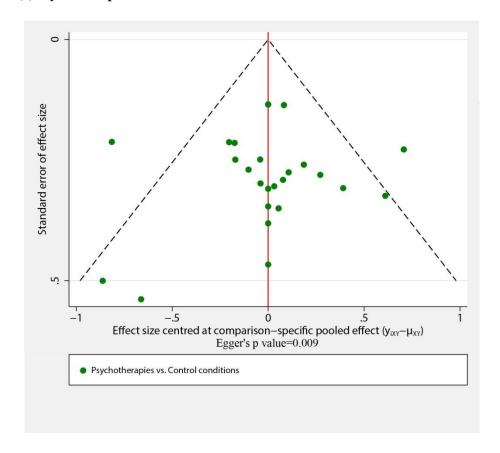
<sup>\*</sup>All the evidence about these contrasts comes from the trials which directly compare them.


# **APPENDIX 14**

Comparison-adjusted funnel plot for each outcome from the network meta-analysis

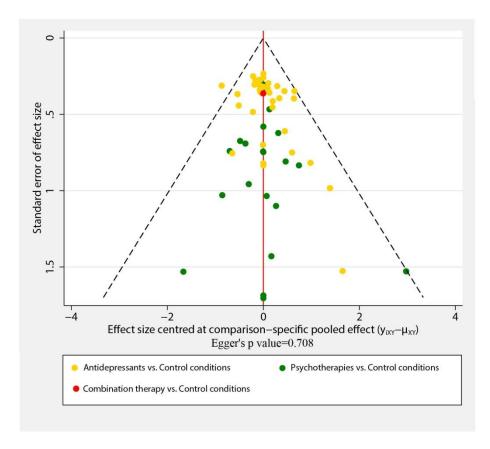

The comparison-adjusted funnel plot was conducted to assess small-study effects within network meta-analysis. All the active treatments vs. control conditions (Pill-PBO, Psy-PBO, TAU, WL) in our network were shown in the comparison-adjusted funnel plot. Then, two subheading comparison-adjusted funnel plots (Antidepressants vs. Control conditions and Psychotherapies vs. Control conditions) showed the node of specific comparisons from the comparison-adjusted funnel plot, respectively. The comparison-adjusted funnel plots of the network meta-analysis were suggestive of obvious publication bias for efficacy outcome, of which mainly resulted from psychotherapy trials, but not for acceptability.

#### a. Comparison-adjusted funnel plot for mean overall change


#### Active treatments vs. Control conditions



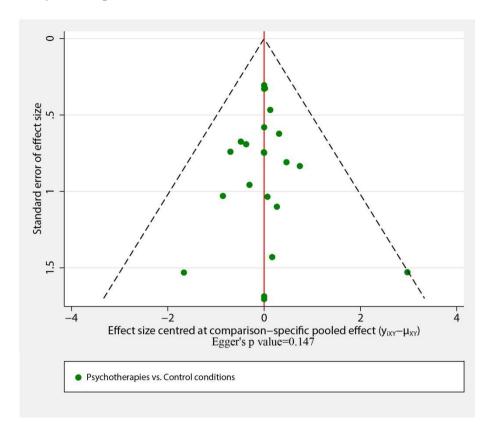
# (1) Antidepressants vs. Control conditions




# (2) Psychotherapies vs. Control conditions

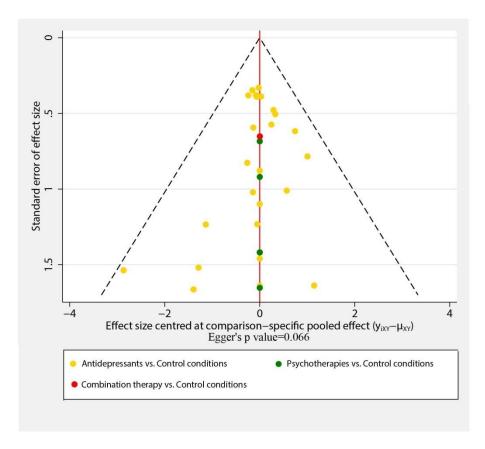


# b. Comparison-adjusted funnel plot for all-cause discontinuation

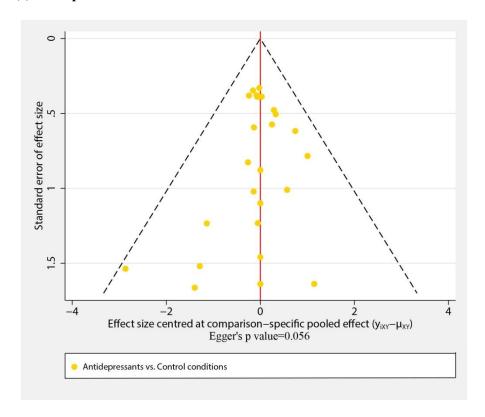

# Active treatments vs. Control conditions



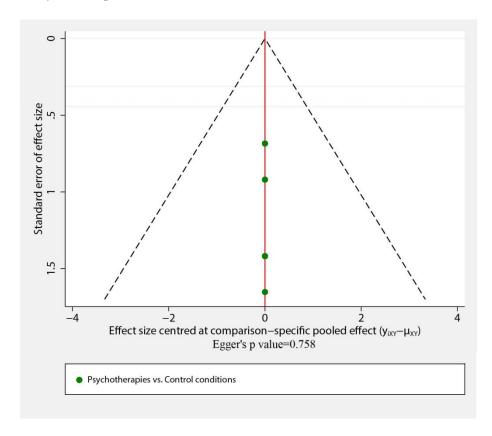
# (1) Antidepressants vs. Control conditions




# (2) Psychotherapies vs. Control conditions




# c. Comparison-adjusted funnel plot for suicidality


# Active treatments vs. Control conditions



# (1) Antidepressants vs. Control conditions



# (2) Psychotherapies vs. Control conditions



# **APPENDIX 15**

Network meta-regression and sensitivity analyses for each outcome

#### a. Summary of the network meta-regression and sensitivity analyses

We conducted network meta-regression and sensitivity analyses to estimate the impact of variable for each outcome.

The potential modifiers for network meta-regression we choose are listed below:

| Continuous variable                                          | Mean overall change in depressive symptoms | All-caused discontinuation |
|--------------------------------------------------------------|--------------------------------------------|----------------------------|
| Sample size of trials                                        | $\sqrt{}$                                  | $\sqrt{}$                  |
| Sex ratio of participants                                    | $\sqrt{}$                                  | $\sqrt{}$                  |
| Mean age of participants                                     | $\sqrt{}$                                  | $\sqrt{}$                  |
| Treatment duration                                           | $\sqrt{}$                                  | $\sqrt{}$                  |
| Publication year of trials                                   | $\sqrt{}$                                  | $\sqrt{}$                  |
| Mean baseline severity                                       | V                                          | V                          |
| Dichotomous variable                                         | Mean overall change in depressive symptoms | All-caused discontinuation |
| Risk of bias rating of trials                                | $\sqrt{}$                                  | $\sqrt{}$                  |
| Patients including in the trials with or without comorbidity | √                                          | √                          |
| Sponsorship                                                  |                                            |                            |
| Self-rating or other-rating scales*                          | √                                          |                            |

<sup>\*</sup>We did not perform meta-regression analysis with rating scale for all-caused discontinuation due to the scale just for rating depressive symptoms.

The potential modifiers for sensitivity analyses we choose are listed below:

| Sensitivity analyses                                                             | Mean overall change in depressive symptoms | All-caused discontinuation |
|----------------------------------------------------------------------------------|--------------------------------------------|----------------------------|
| Omitting unpublished trials                                                      | $\sqrt{}$                                  | $\sqrt{}$                  |
| Omitting non-blind trials                                                        | $\sqrt{}$                                  | $\checkmark$               |
| Omitting trials with sample $size \le 20$                                        | $\checkmark$                               | √                          |
| Omitting trials with imputed data*                                               | $\checkmark$                               |                            |
| Omitting trials with inconsistent of treatment duration and selected time-point# | V                                          |                            |

<sup>\*</sup>We did not perform sensitivity analysis with omitting trials where missing data have been imputed for all-caused discontinuation due to no available study.

In part b and c, network meta-regression results of primary outcomes for each condition with pill-PBO were listed. In continuous variable, we chose mean publication years, mean baseline severity when meta-regression centring due to normal distribution, and we chose the median of sample size, sex ratio, mean age and treatment duration when meta-regression centring due to abnormal distribution. In dichotomous variable, we defined low or unclear risk of bias as 0 and high risk of bias as 1 in meta-regression analysis. We defined no or not stated manufactory funder as 0 and manufactory funder as 1. We defined other-rating as 0 and self-rating as 1. We defined without comorbidity as 0 and with comorbidity as 1. The beta of meta-regression reflects the changes of SMD or OR when the covariate increase one unit. In part d and e the sensitivity analyses results of of primary outcomes for each condition with pill-PBO were listed.

<sup>\*</sup>We did not perform sensitivity analysis with omitting trials with inconsistent of treatment duration and selected time-point for all-caused discontinuation due to no available study.

# b. Network meta-regression of each condition for mean overall change in depressive symptoms with Pill-PBO\*

| Characteristics | All trials       | Sample size      | Sex ratio        | Mean age         | Treatment<br>duration | Mean baseline<br>severity <sup>#</sup> | Publication<br>year | Risk of bias     | Rating scale     | Comorbidity      | Sponsorship      |
|-----------------|------------------|------------------|------------------|------------------|-----------------------|----------------------------------------|---------------------|------------------|------------------|------------------|------------------|
| AMI             | 0.08             | 0.14             | 0.15             | 0.09             | 0.09                  | 1.17                                   | 0.12                | 0.08             | 0.09             | -0.50            | 0.09             |
|                 | (-1.11 to 1.27)  | (-1.06 to 1.34)  | (-1.11 to 1.41)  | (-1.14 to 1.30)  | (-1.11 to 1.28)       | (-0.46 to 2.83)                        | (-1.09 to 1.32)     | (-1.10 to 1.29)  | (-1.11 to 1.29)  | (-1.98 to 0.98)  | (-0.70 to 0.88)  |
| ВТ              | 0.56             | 0.42             | 0.56             | 0.68             | 0.55                  | 0.35                                   | 0.57                | 0.55             | 0.55             | 0.52             | 0.56             |
|                 | (-0.95 to 2.08)  | (-1.16 to 1.97)  | (-1.03 to 2.15)  | (-1.00 to 2.36)  | (-1.01 to 2.10)       | (-1.26 to 1.96)                        | (-0.99 to 2.12)     | (-1.03 to 2.14)  | (-1.00 to 2.11)  | (-1.02 to 2.04)  | (-0.36 to 1.46)  |
| СВТ             | 0.05             | -0.09            | 0.06             | 0.25             | 0.05                  | -0.16                                  | 0.06                | 0.05             | 0.05             | 0.02             | 0.06             |
|                 | (-0.61 to 0.70)  | (-0.82 to 0.63)  | (-0.64 to 0.75)  | (-0.61 to 1.11)  | (-0.64 to 0.73)       | (-0.90 to 0.57)                        | (-0.61 to 0.73)     | (-0.68 to 0.78)  | (-0.63 to 0.73)  | (-0.66 to 0.68)  | (-0.32 to 0.42)  |
| CIT             | -0.18            | -0.24            | -0.35            | -0.18            | -0.18                 | -0.46                                  | -0.18               | -0.19            | -0.23            | -0.35            | -0.35            |
|                 | (-0.89 to 0.55)  | (-0.97 to 0.49)  | (-1.42 to 0.72)  | (-0.92 to 0.57)  | (-0.91 to 0.55)       | (-1.52 to 0.59)                        | (-0.90 to 0.55)     | (-1.11 to 0.72)  | (-0.98 to 0.52)  | (-1.12 to 0.41)  | (-0.78 to 0.08)  |
| CLO             | 0.33             | 0.26(-0.91 to    | 0.34             | 0.35             | 0.34                  | 0.31                                   | 0.35                | 0.34             | 0.33             | 0.29             | 0.20             |
|                 | (-0.83 to 1.48)  | 1.43)            | (-0.86 to 1.55)  | (-0.85 to 1.54)  | (-0.84 to 1.51)       | (-0.89 to 1.50)                        | (-0.82 to 1.51)     | (-0.84 to 1.51)  | (-0.83 to 1.50)  | (-0.86 to 1.44)  | (-0.44 to 0.83)  |
| DYN             | 0.41             | 0.26             | 0.42             | 0.57             | 0.40                  | 0.21                                   | 0.42                | 0.40             | 0.41             | 0.37             | 0.38             |
|                 | (-0.58 to 1.38)  | (-0.77 to 1.29)  | (-0.62 to 1.44)  | (-0.58 to 1.72)  | (-0.60 to 1.41)       | (-0.85 to 1.26)                        | (-0.59 to 1.41)     | (-0.64 to 1.44)  | (-0.60 to 1.41)  | (-0.62 to 1.36)  | (-0.15 to 0.89)  |
| DES             | -0.43            | -0.40            | -0.50            | -0.45            | -0.41                 | -0.02                                  | -0.39               | -0.43            | -0.43            | -0.74            | -0.43            |
|                 | (-1.26 to 0.39)  | (-1.22 to 0.42)  | (-1.42 to 0.41)  | (-1.30 to 0.39)  | (-1.26 to 0.43)       | (-0.94 to 0.93)                        | (-1.23 to 0.44)     | (-1.26 to 0.40)  | (-1.25 to 0.40)  | (-1.67 to 0.20)  | (-0.95 to 0.10)  |
| DEV             | -0.12            | -0.27            | -0.12            | -0.12            | -0.13                 | -0.25                                  | -0.14               | -0.13            | -0.13            | -0.15            | -0.29            |
|                 | (-0.79 to 0.54)  | (-0.99 to 0.45)  | (-0.82 to 0.57)  | (-0.81 to 0.57)  | (-0.80 to 0.55)       | (-0.95 to 0.45)                        | (-0.81 to 0.53)     | (-0.80 to 0.55)  | (-0.80 to 0.54)  | (-0.81 to 0.51)  | (-0.71 to 0.14)  |
| DUL             | -0.22            | -0.35            | -0.20            | -0.20            | -0.22                 | -0.36                                  | -0.22               | -0.21            | -0.23            | -0.25            | -0.32            |
|                 | (-0.85 to 0.42)  | (-1.04 to 0.34)  | (-0.87 to 0.46)  | (-0.87 to 0.46)  | (-0.87 to 0.44)       | (-1.04 to 0.31)                        | (-0.87 to 0.43)     | (-0.86 to 0.44)  | (-0.87 to 0.42)  | (-0.89 to 0.38)  | (-0.71 to 0.09)  |
| ESC             | -0.17            | -0.27            | -0.17            | -0.16            | -0.17                 | -0.23                                  | -0.17               | -0.17            | -0.17            | -0.17            | -0.36            |
|                 | (-0.88 to 0.54)  | (-1.01 to 0.47)  | (-0.91 to 0.57)  | (-0.90 to 0.57)  | (-0.89 to 0.55)       | (-0.97 to 0.51)                        | (-0.89 to 0.54)     | (-0.89 to 0.55)  | (-0.89 to 0.55)  | (-0.88 to 0.54)  | (-0.78 to 0.06)  |
| FT              | -0.03            | -0.18            | -0.03            | 0.06             | -0.04                 | -0.23                                  | -0.03               | -0.04            | -0.04            | -0.07            | -0.06            |
|                 | (-0.87 to 0.79)  | (-1.07 to 0.71)  | (-0.91 to 0.85)  | (-0.98 to 1.10)  | (-0.90 to 0.82)       | (-1.15 to 0.68)                        | (-0.87 to 0.82)     | (-0.93 to 0.86)  | (-0.90 to 0.82)  | (-0.93 to 0.77)  | (-0.55 to 0.41)  |
| FLU             | -0.51            | -0.60            | -0.50            | -0.49            | <u>-0.51</u>          | -0.64                                  | <u>-0.51</u>        | <u>-0.51</u>     | <u>-0.53</u>     | <u>-0.58</u>     | <u>-0.50</u>     |
|                 | (-0.84 to -0.18) | (-0.98 to -0.23) | (-0.84 to -0.16) | (-0.83 to -0.15) | (-0.84 to -0.18)      | (-1.01 to -0.28)                       | (-0.84 to -0.18)    | (-0.87 to -0.16) | (-0.87 to -0.20) | (-0.93 to -0.24) | (-0.78 to -0.20) |

| FLU+CBT      | <u>-0.73</u>             | <u>-0.88</u>             | <u>-0.72</u>             | -0.69                    | <u>-0.74</u>             | <u>-0.95</u>             | -0.73                    | <u>-0.73</u>             | -0.75                    | <u>-0.79</u>             | <u>-0.77</u>                    |
|--------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------------|
|              | (-1.39 to -0.07)         | (-1.61 to -0.15)         | (-1.41 to -0.02)         | (-1.40 to 0.02)          | (-1.41 to -0.07)         | (-1.67 to -0.25)         | (-1.39 to -0.06)         | (-1.41 to -0.04)         | (-1.41 to -0.08)         | (-1.44 to -0.13)         | (-1.13 to -0.40)                |
| IPT          | -0.38                    | -0.53                    | -0.37                    | -0.21                    | -0.38                    | -0.58                    | -0.37                    | -0.38                    | -0.38                    | -0.42                    | -0.37                           |
|              | (-1.24 to 0.47)          | (-1.45 to 0.39)          | (-1.28 to 0.53)          | (-1.25 to 0.82)          | (-1.28 to 0.51)          | (-1.52 to 0.36)          | (-1.25 to 0.51)          | (-1.30 to 0.54)          | (-1.27 to 0.50)          | (-1.29 to 0.45)          | (-0.90 to 0.16)                 |
| IMP          | -0.03                    | 0.01                     | 0.08                     | 0.09                     | 0.04                     | 0.14                     | 0.13                     | -0.03                    | -0.03                    | -0.04                    | -0.06                           |
|              | (-0.75 to 0.68)          | (-0.71 to 0.73)          | (-0.83 to 0.99)          | (-0.85 to 1.03)          | (-0.87 to 0.95)          | (-0.82 to 1.09)          | (-0.75 to 1.01)          | (-0.76 to 0.70)          | (-0.76 to 0.69)          | (-0.75 to 0.67)          | (-0.45 to 0.33)                 |
| IMP+CBT      | -1.08                    | -1.22                    | -1.06                    | -0.76                    | -1.09                    | -1.08                    | -1.08                    | -1.08                    | -1.10                    | -1.14                    | -1.13                           |
|              | (-2.48 to 0.32)          | (-2.67 to 0.23)          | (-2.52 to 0.40)          | (-2.34 to 0.83)          | (-2.52 to 0.34)          | (-2.64 to 0.47)          | (-2.49 to 0.34)          | (-2.53 to 0.37)          | (-2.52 to 0.32)          | (-2.54 to 0.26)          | (-1.95 to -0.31)                |
| MIR          | -0.23                    | -0.26                    | -0.23                    | -0.23                    | -0.23                    | -0.10                    | -0.23                    | -0.24                    | -0.23                    | -0.45                    | -0.45                           |
|              | (-0.97 to 0.51)          | (-1.00 to 0.48)          | (-1.00 to 0.54)          | (-0.99 to 0.54)          | (-0.98 to 0.51)          | (-0.87 to 0.67)          | (-0.98 to 0.51)          | (-1.06 to 0.58)          | (-0.98 to 0.52)          | (-1.26 to 0.35)          | (-0.94 to 0.03)                 |
| NEF          | -0.14<br>(-0.85 to 0.57) | -0.22<br>(-0.95 to 0.51) | -0.28<br>(-1.34 to 0.78) |                          | -0.14<br>(-0.86 to 0.59) | -0.19<br>(-1.25 to 0.87) | -0.14<br>(-0.86 to 0.58) | -0.14<br>(-0.87 to 0.59) | -0.14<br>(-0.86 to 0.58) | -0.33<br>(-1.10 to 0.43) | -0.33<br>(-0.76 to 0.10)        |
| NOR          | 1.14                     | 1.12                     | 1.16                     | 1.16                     | 1.14                     | 1.21                     | 1.16                     | 1.14                     | 1.13                     | 1.12                     | -0.13                           |
|              | (0.46 to 1.81)           | (0.46 to 1.80)           | (0.46 to 1.86)           | (0.46 to 1.85)           | (0.46 to 1.82)           | (0.51 to 1.90)           | (0.48 to 1.84)           | (0.46 to 1.82)           | (0.46 to 1.80)           | (0.44 to 1.78)           | (-0.64 to 0.38)                 |
| PST          | -0.26<br>(-1.73 to 1.18) | -0.41<br>(-1.90 to 1.08) | -0.25<br>(-1.77 to 1.26) | -0.29<br>(-1.90 to 1.32) | -0.28<br>(-1.77 to 1.22) | -0.46<br>(-2.00 to 1.08) | -0.25<br>(-1.74 to 1.23) | -0.27<br>(-1.78 to 1.25) | -0.26<br>(-1.75 to 1.22) | -0.30<br>(-1.77 to 1.16) | -0.03<br>(-197.10 to<br>195.50) |
| PAR          | -0.16                    | -0.22                    | -0.15                    | -0.14                    | -0.15                    | -0.18                    | -0.14                    | -0.16                    | -0.16                    | -0.20                    | -0.29                           |
|              | (-0.67 to 0.35)          | (-0.75 to 0.30)          | (-0.68 to 0.39)          | (-0.67 to 0.40)          | (-0.67 to 0.38)          | (-0.72 to 0.36)          | (-0.65 to 0.37)          | (-0.67 to 0.36)          | (-0.67 to 0.36)          | (-0.71 to 0.31)          | (-0.63 to 0.04)                 |
| Pill-PBO+CBT | -0.64                    | -0.78                    | -0.63                    | -0.32                    | -0.66                    | -0.65                    | -0.64                    | -0.65                    | -0.66                    | -0.70                    | <u>-0.69</u>                    |
|              | (-1.54 to 0.24)          | (-1.73 to 0.16)          | (-1.56 to 0.31)          | (-1.42 to 0.80)          | (-1.57 to 0.26)          | (-1.72 to 0.43)          | (-1.54 to 0.26)          | (-1.57 to 0.29)          | (-1.57 to 0.25)          | (-1.59 to 0.20)          | (-1.22 to -0.17)                |
| Psy-PBO      | 0.32                     | 0.18                     | 0.33                     | 0.54                     | 0.32                     | 0.12                     | 0.33                     | 0.32                     | 0.33                     | 0.29                     | 0.33                            |
|              | (-0.47 to 1.11)          | (-0.68 to 1.03)          | (-0.51 to 1.16)          | (-0.44 to 1.53)          | (-0.50 to 1.14)          | (-0.75 to 0.99)          | (-0.48 to 1.14)          | (-0.54 to 1.18)          | (-0.49 to 1.14)          | (-0.52 to 1.09)          | (-0.12 to 0.77)                 |
| SUP          | 0.10                     | -0.04                    | 0.11                     | 0.23                     | 0.10                     | -0.10                    | 0.11                     | 0.10                     | 0.10                     | 0.07                     | 0.10                            |
|              | (-0.91 to 1.11)          | (-1.13 to 1.03)          | (-0.97 to 1.18)          | (-0.99 to 1.43)          | (-0.96 to 1.15)          | (-1.22 to 1.00)          | (-0.93 to 1.15)          | (-0.99 to 1.19)          | (-0.97 to 1.16)          | (-0.97 to 1.09)          | (-0.49 to 0.67)                 |
| SER          | -0.11                    | -0.21                    | -0.10                    | 0.23                     | -0.12                    | -0.35                    | -0.11                    | -0.12                    | -0.11                    | -0.13                    | -0.25                           |
|              | (-0.71 to 0.49)          | (-0.84 to 0.42)          | (-0.73 to 0.52)          | (-0.90 to 1.37)          | (-0.74 to 0.49)          | (-1.03 to 0.32)          | (-0.72 to 0.50)          | (-0.86 to 0.61)          | (-0.72 to 0.49)          | (-0.74 to 0.47)          | (-0.61 to 0.12)                 |
| SER+CBT      | 0.10                     | -0.03                    | 0.10                     | 0.37                     | 0.09                     | -0.09                    | 0.10                     | 0.09                     | 0.09                     | 0.06                     | 0.06                            |
|              | (-0.71 to 0.89)          | (-0.88 to 0.81)          | (-0.74 to 0.93)          | (-0.70 to 1.45)          | (-0.74 to 0.91)          | (-0.97 to 0.79)          | (-0.71 to 0.92)          | (-0.79 to 0.96)          | (-0.73 to 0.90)          | (-0.74 to 0.87)          | (-0.44 to 0.54)                 |

| TAU          | 0.28                    | 0.13                     | 0.29                    | 0.44                    | 0.27                    | 0.10                    | 0.28                    | 0.27                    | 0.28                    | 0.24                    | 0.20                    |
|--------------|-------------------------|--------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
|              | (-0.52 to 1.06)         | (-0.72 to 0.98)          | (-0.55 to 1.11)         | (-0.53 to 1.43)         | (-0.54 to 1.09)         | (-0.79 to 0.99)         | (-0.52 to 1.09)         | (-0.57 to 1.13)         | (-0.54 to 1.09)         | (-0.56 to 1.04)         | (-0.26 to 0.66)         |
| VEN          | -0.25                   | -0.31                    | -0.24                   | -0.24                   | -0.25                   | -0.34                   | -0.25                   | -0.26                   | -0.26                   | -0.42                   | -0.35                   |
|              | (-0.87 to 0.36)         | (-0.94 to 0.31)          | (-0.88 to 0.40)         | (-0.88 to 0.39)         | (-0.87 to 0.37)         | (-0.98 to 0.30)         | (-0.87 to 0.37)         | (-1.06 to 0.52)         | (-0.88 to 0.36)         | (-1.08 to 0.24)         | (-0.80 to 0.11)         |
| VEN+CBT      | 0.09<br>(-1.37 to 1.53) | -0.05<br>(-1.53 to 1.43) | 0.10<br>(-1.40 to 1.62) | 0.41<br>(-1.20 to 2.04) | 0.07<br>(-1.41 to 1.54) | 0.08<br>(-1.52 to 1.66) | 0.09<br>(-1.38 to 1.55) | 0.08<br>(-1.40 to 1.58) | 0.07<br>(-1.40 to 1.54) | 0.03<br>(-1.41 to 1.47) |                         |
| VIL          | -0.09                   | -0.35                    | -0.10                   | -0.09                   | -0.09                   | -0.20                   | -0.11                   | -0.09                   | -0.09                   | -0.32                   | -0.32                   |
|              | (-1.09 to 0.90)         | (-1.48 to 0.78)          | (-1.14 to 0.94)         | (-1.12 to 0.94)         | (-1.10 to 0.92)         | (-1.24 to 0.83)         | (-1.12 to 0.88)         | (-1.09 to 0.92)         | (-1.09 to 0.91)         | (-1.36 to 0.72)         | (-0.86 to 0.23)         |
| WL           | 0.99                    | 0.85                     | 1.00                    | 0.97                    | 0.99                    | 0.79                    | 1.00                    | 0.99                    | 0.99                    | 0.96                    | 0.63                    |
|              | (0.18to 1.79)           | (-0.01 to 1.70)          | (0.15 to 1.84)          | (-0.03 to 1.98)         | (0.16 to 1.81)          | (-0.10 to 1.67)         | (0.18 to 1.81)          | (0.12 to 1.85)          | (0.17 to 1.81)          | (0.14 to 1.76)          | (0.12 to 1.13)          |
| Beta of meta | a-regression            | 0.01<br>(-0.01 to 0.02)  | 0.35<br>(-1.34 to 2.05) | 0.04<br>(-0.15 to 0.23) | 0.04<br>(-0.30 to 0.38) | 0.41<br>(0.01 to 0.84)  | 0.02<br>(-0.04 to 0.07) | 0.21<br>(-8.18 to 8.78) | 1.77<br>(-4.34 to 7.94) | 2.73<br>(-1.44 to 6.86) | 2.75<br>(-0.97 to 6.40) |

<sup>\*</sup>Negative effect sizes indicate superiority of the specific intervention against placebo control. #The method for transforming other depressive scales to CDRS-R: Schünemann HJ, Oxman AD, Higgins JPT, Vist GE, Glasziou P, Guyatt GH, et al. Presenting results and "Summary of findings" tables. In: Higgins JPT, Green S, eds. Cochrane handbook for systematic reviews of interventions. Wiley, 2008:335-8. AMI=Amitriptyline. BT=Behavioural therapy. CBT=Cognitive-behavioural therapy. CIT=Citalopram. CLO=Clomipramine. DYN=Psychodynamic therapy. DES=Desipramine. DEV=Desvenlafaxine. DUL=Duloxetine. ESC=Escitalopram. FT=Family therapy. FLU=Fluoxetine. IPT=Interpersonal therapy. IMP=Imipramine.

# c. Network meta-regression of each condition for all-cause discontinuation with Pill-PBO\*

| Characteristics | All trials      | Sample size     | Sex ratio       | Mean age        | Treatment<br>duration | Publication year | Mean baseline<br>severity# | Risk of bias    | Comorbidity    | Sponsorship     |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------------|------------------|----------------------------|-----------------|----------------|-----------------|
| AMI             | 1.16            | 1.14            | 0.67            | 1.21            | 1.16                  | 1.29             | 1.46                       | 1.17            | 0.48           | 1.17            |
|                 | (0.29 to 12.13) | (0.28 to 12.70) | (0.15 to 8.91)  | (0.32 to 10.53) | (0.29 to 12.40)       | (0.32 to 14.71)  | (0.32 to 22.95)            | (0.30 to 11.03) | (0.11 to 6.85) | (0.29 to 12.79) |
| ВТ              | 1.20            | 1.30            | 1.13            | 1.44            | 1.23                  | 1.27             | 0.78                       | 1.60            | 1.23           | 1.18            |
|                 | (0.31 to 9.61)  | (0.35 to 11.58) | (0.30 to 9.00)  | (0.39 to 11.67) | (0.30 to 13.14)       | (0.36 to 10.07)  | (0.19 to 7.75)             | (0.46 to 10.43) | (0.35 to 8.94) | (0.32 to 10.16) |
| СВТ             | 1.08            | 1.14            | 0.97            | 1.05            | 1.31                  | 1.10             | 0.87                       | 1.32            | 1.04           | 1.03            |
|                 | (0.55 to 2.43)  | (0.52 to 3.24)  | (0.48 to 2.28)  | (0.57 to 2.19)  | (0.61 to 3.55)        | (0.56 to 2.48)   | (0.41 to 2.21)             | (0.71 to 2.87)  | (0.55 to 2.28) | (0.50 to 2.67)  |
| CIT             | 0.96            | 1.00            | 0.94            | 0.94            | 1.14                  | 0.95             | 0.90                       | 1.82            | 0.40           | 0.81            |
|                 | (0.52 to 1.97)  | (0.52 to 2.36)  | (0.37 to 3.16)  | (0.57 to 1.65)  | (0.56 to 2.85)        | (0.52 to 2.00)   | (0.36 to 3.06)             | (0.82 to 5.08)  | (0.15 to 1.46) | (0.35 to 2.54)  |
| CLO             | 1.75            | 1.81            | 1.85            | 1.68            | 1.72                  | 1.67             | 1.59                       | 1.75            | 1.64           | 1.55            |
|                 | (0.66 to 6.57)  | (0.65 to 7.84)  | (0.68 to 7.75)  | (0.72 to 5.07)  | (0.63 to 6.90)        | (0.63 to 6.54)   | (0.58 to 6.19)             | (0.70 to 5.83)  | (0.62 to 6.06) | (0.54 to 7.15)  |
| DYN             | 1.42            | 1.47            | 1.23            | 1.38            | 1.70                  | 1.42             | 1.11                       | 1.81            | 1.36           | 1.34            |
|                 | (0.54 to 4.92)  | (0.51 to 6.16)  | (0.44 to 4.64)  | (0.59 to 4.05)  | (0.59 to 7.06)        | (0.52 to 5.04)   | (0.39 to 4.30)             | (0.73 to 5.77)  | (0.53 to 4.57) | (0.48 to 5.35)  |
| DES             | 2.21            | 2.17            | 3.23            | 2.86            | 1.77                  | 2.38             | 2.35                       | 2.22            | 1.34           | 2.19            |
|                 | (0.88 to 7.67)  | (0.86 to 7.85)  | (1.04 to 17.06) | (1.21 to 9.70)  | (0.66 to 6.74)        | (0.90 to 8.64)   | (0.93 to 8.40)             | (0.94 to 7.24)  | (0.49 to 5.26) | (0.88 to 7.70)  |
| DEV             | 0.85            | 0.90            | 0.82            | 0.71            | 0.87                  | 0.75             | 0.76                       | 0.87            | 0.84           | 0.74            |
|                 | (0.47 to 1.74)  | (0.41 to 2.61)  | (0.43 to 1.75)  | (0.42 to 1.34)  | (0.47 to 1.84)        | (0.39 to 1.81)   | (0.40 to 1.67)             | (0.51 to 1.68)  | (0.47 to 1.69) | (0.34 to 2.19)  |
| DUL             | 1.04            | 1.11            | 0.92            | 0.90            | 1.19                  | 0.98             | 0.90                       | 1.12            | 1.01           | 0.93            |
|                 | (0.62 to 1.96)  | (0.53 to 3.03)  | (0.51 to 1.87)  | (0.57 to 1.52)  | (0.66 to 2.53)        | (0.57 to 1.98)   | (0.49 to 1.88)             | (0.70 to 1.96)  | (0.60 to 1.88) | (0.45 to 2.51)  |
| ESC             | 1.40            | 1.47            | 1.38            | 1.23            | 1.39                  | 1.35             | 1.33                       | 1.41            | 1.39           | 1.19            |
|                 | (0.77 to 2.86)  | (0.71 to 3.91)  | (0.73 to 2.98)  | (0.74 to 2.25)  | (0.74 to 2.95)        | (0.74 to 2.86)   | (0.71 to 2.82)             | (0.82 to 2.67)  | (0.77 to 2.82) | (0.51 to 3.71)  |
| FT              | 1.26            | 1.34            | 1.14            | 1.93            | 1.51                  | 1.30             | 0.95                       | 1.56            | 1.21           | 1.19            |
|                 | (0.49 to 4.31)  | (0.50 to 5.26)  | (0.44 to 4.02)  | (0.79 to 6.64)  | (0.56 to 6.04)        | (0.51 to 4.41)   | (0.35 to 3.59)             | (0.66 to 4.81)  | (0.49 to 3.96) | (0.46 to 4.57)  |
| FLU             | 0.78            | 0.83            | 0.67            | 0.70            | 0.86                  | 0.77             | 0.67                       | 0.89            | 0.73           | 0.72            |
|                 | (0.56 to 1.15)  | (0.48 to 1.65)  | (0.44 to 1.09)  | (0.51 to 0.99)  | (0.58 to 1.37)        | (0.54 to 1.15)   | (0.44 to 1.09)             | (0.63 to 1.29)  | (0.51 to 1.07) | (0.42 to 1.48)  |

| FLU+CBT      | 0.75<br>(0.39 to 1.65) | 0.78<br>(0.34 to 2.30)  | 0.66<br>(0.32 to 1.57) | 0.70<br>(0.39 to 1.40) | 0.87<br>(0.41 to 2.30)  | 0.74<br>(0.38 to 1.68) | 0.62<br>(0.30 to 1.57) | 0.83(0.44 to 1.78)      | 0.71<br>(0.37 to 1.58) | 0.71<br>(0.34 to 1.84) |
|--------------|------------------------|-------------------------|------------------------|------------------------|-------------------------|------------------------|------------------------|-------------------------|------------------------|------------------------|
| IPT          | 0.76                   | 0.83                    | 0.69                   | 0.68                   | 0.94                    | 0.78                   | 0.58                   | 0.92                    | 0.73                   | 0.84                   |
|              | (0.28 to 2.88)         | (0.29 to 3.64)          | (0.25 to 2.82)         | (0.26 to 2.25)         | (0.33 to 4.18)          | (0.29 to 3.07)         | (0.21 to 2.44)         | (0.36 to 3.31)          | (0.28 to 2.71)         | (0.30 to 3.76)         |
| IMP          | 2.51                   | 2.63                    | 2.76                   | 2.29                   | 2.44                    | 2.44                   | 2.17                   | 2.47                    | 2.44                   | 2.43                   |
|              | (1.26 to 6.24)         | (1.24 to 7.63)          | (1.31 to 7.37)         | (1.27 to 4.83)         | (1.19 to 6.37)          | (1.20 to 6.40)         | (0.99 to 5.81)         | (1.31 to 5.61)          | (1.24 to 5.94)         | (1.18 to 6.63)         |
| IMP+CBT      | 0.40<br>(0.10 to 3.64) | 0.40<br>(0.10 to 4.77)  | 0.34<br>(0.08 to 3.66) | 0.25<br>(0.06 to 2.00) | 0.45<br>(0.11 to 5.05)  | 0.39<br>(0.10 to 3.90) | 0.20<br>(0.05 to 2.30) | 0.44<br>(0.11 to 3.72)  | 0.37<br>(0.09 to 3.61) | 0.37 (0.09 to 4.02)    |
| MIR          | 0.83                   | 0.86                    | 0.75                   | 0.64                   | 0.83                    | 0.86                   | 0.94                   | 1.16                    | 0.35                   | 0.72                   |
|              | (0.40 to 2.08)         | (0.41 to 2.23)          | (0.34 to 1.98)         | (0.32 to 1.55)         | (0.39 to 2.16)          | (0.41 to 2.16)         | (0.42 to 2.63)         | (0.55 to 2.99)          | (0.12 to 1.50)         | (0.29 to 2.59)         |
| NEF          | 0.49<br>(0.21 to 1.39) | 0.50<br>(0.21 to 1.60)  | 0.52<br>(0.22 to 1.65) |                        | 0.48<br>(0.20 to 1.45)  | 0.50<br>(0.21 to 1.43) |                        | 0.50<br>(0.24 to 1.25)  | 0.20<br>(0.07 to 0.93) | 0.41<br>(0.15 to 1.70) |
| NOR          | 0.76                   | 0.79                    | 0.55                   | 0.51                   | 0.80                    | 0.82                   | 0.78                   | 0.80                    | 0.74                   | 0.41                   |
|              | (0.28 to 3.41)         | (0.28 to 3.47)          | (0.18 to 2.77)         | (0.18 to 2.20)         | (0.29 to 3.46)          | (0.28 to 3.58)         | (0.28 to 3.36)         | (0.30 to 3.17)          | (0.26 to 3.08)         | (0.11 to 2.96)         |
| PST          | 0.08<br>(0.01 to 8.45) | 0.07<br>(0.01 to 10.61) | 0.06<br>(0.01 to 8.45) | 0.08<br>(0.01 to 6.30) | 0.04<br>(0.01 to 11.91) | 0.06<br>(0.01 to 9.67) | 0.05<br>(0.01 to 8.45) | 0.10<br>(0.02 to 10.44) | 0.06<br>(0.01 to 8.93) |                        |
| PAR          | 1.30                   | 1.36                    | 1.41                   | 1.22                   | 1.30                    | 1.26                   | 1.20                   | 1.30                    | 1.23                   | 1.18                   |
|              | (0.81 to 2.27)         | (0.77 to 2.81)          | (0.85 to 2.62)         | (0.82 to 1.92)         | (0.79 to 2.33)          | (0.78 to 2.28)         | (0.73 to 2.15)         | (0.85 to 2.13)          | (0.76 to 2.10)         | (0.62 to 2.69)         |
| Pill-PBO+CBT | 0.68                   | 0.70                    | 0.60                   | 0.43                   | 0.79                    | 0.68                   | 0.35                   | 0.77                    | 0.65                   | 0.65                   |
|              | (0.25 to 2.75)         | (0.23 to 3.60)          | (0.21 to 2.67)         | (0.16 to 1.63)         | (0.27 to 3.73)          | (0.25 to 2.84)         | (0.11 to 1.82)         | (0.29 to 2.81)          | (0.24 to 2.65)         | (0.23 to 3.02)         |
| Psy-PBO      | 1.66                   | 1.76                    | 1.50                   | 1.25                   | 2.07                    | 1.70                   | 1.32                   | 2.02                    | 1.59                   | 1.63                   |
|              | (0.71 to 5.13)         | (0.70 to 6.54)          | (0.60 to 4.81)         | (0.55 to 3.39)         | (0.81 to 7.48)          | (0.72 to 5.22)         | (0.54 to 4.53)         | (0.91 to 5.85)          | (0.70 to 4.74)         | (0.64 to 5.78)         |
| SUP          | 0.85                   | 0.92                    | 0.79                   | 1.15                   | 1.00                    | 0.89                   | 0.64                   | 1.09                    | 0.85                   | 0.83                   |
|              | (0.29 to 3.65)         | (0.31 to 4.55)          | (0.27 to 3.41)         | (0.43 to 4.64)         | (0.33 to 5.02)          | (0.32 to 3.81)         | (0.21 to 2.98)         | (0.41 to 4.01)          | (0.31 to 3.43)         | (0.29 to 3.87)         |
| SER          | 1.61                   | 1.66                    | 1.41                   | 1.52                   | 1.89                    | 1.63                   | 1.14                   | 2.75                    | 1.58                   | 1.41                   |
|              | (0.89 to 3.27)         | (0.86 to 3.84)          | (0.74 to 3.05)         | (0.52 to 7.10)         | (0.96 to 4.51)          | (0.89 to 3.32)         | (0.50 to 3.29)         | (1.31 to 6.88)          | (0.88 to 3.15)         | (0.65 to 3.97)         |
| SER+CBT      | 1.74                   | 1.82                    | 1.56                   | 1.68                   | 2.11                    | 1.77                   | 1.25                   | 2.51                    | 1.68                   | 1.60                   |
|              | (0.68 to 6.03)         | (0.67 to 7.27)          | (0.60 to 5.72)         | (0.58 to 7.28)         | (0.78 to 8.60)          | (0.69 to 6.23)         | (0.44 to 5.24)         | (0.97 to 9.11)          | (0.65 to 5.85)         | (0.57 to 6.79)         |

| TAU          | 1.50                    | 1.60                    | 1.36                     | 1.67                     | 1.84                     | 1.55                    | 1.02                    | 1.80                      | 1.45                    | 1.32                    |
|--------------|-------------------------|-------------------------|--------------------------|--------------------------|--------------------------|-------------------------|-------------------------|---------------------------|-------------------------|-------------------------|
|              | (0.60 to 5.45)          | (0.58 to 6.63)          | (0.51 to 4.96)           | (0.70 to 5.53)           | (0.67 to 7.48)           | (0.61 to 5.38)          | (0.36 to 4.43)          | (0.76 to 5.94)            | (0.59 to 4.93)          | (0.51 to 5.43)          |
| VEN          | 1.12                    | 1.19                    | 0.86                     | 0.89                     | 1.12                     | 1.10                    | 1.05                    | 2.11                      | 0.49                    | 0.97                    |
|              | (0.53 to 2.69)          | (0.48 to 4.15)          | (0.37 to 2.47)           | (0.48 to 1.90)           | (0.52 to 2.89)           | (0.52 to 2.76)          | (0.49 to 2.69)          | (0.89 to 6.28)            | (0.18 to 1.94)          | (0.38 to 3.70)          |
| VEN+CBT      | 0.65<br>(0.13 to 12.41) | 0.63<br>(0.13 to 14.74) | 0.55<br>(0.11 to 11.04)  | 0.44<br>(0.10 to 6.42)   | 0.74<br>(0.16 to 15.95)  | 0.64<br>(0.13 to 12.24) | 0.34<br>(0.07 to 7.08)  | 0.69<br>(0.15 to 10.71)   | 0.63<br>(0.13 to 10.77) |                         |
| VIL          | 0.59                    | 0.62                    | 0.64                     | 0.61                     | 0.58                     | 0.50                    | 0.54                    | 0.60                      | 0.24                    | 0.50                    |
|              | (0.27 to 1.54)          | (0.21 to 3.38)          | (0.28 to 1.87)           | (0.33 to 1.27)           | (0.26 to 1.63)           | (0.21 to 1.61)          | (0.24 to 1.51)          | (0.30 to 1.41)            | (0.08 to 1.07)          | (0.19 to 1.93)          |
| WL           | 1.40                    | 1.48                    | 1.27                     | 1.34                     | 1.70                     | 1.43                    | 1.12                    | 1.74                      | 1.35                    | 1.38                    |
|              | (0.58 to 4.54)          | (0.55 to 5.78)          | (0.49 to 4.43)           | (0.57 to 3.85)           | (0.64 to 6.62)           | (0.58 to 4.74)          | (0.43 to 4.07)          | (0.71 to 5.33)            | (0.56 to 4.32)          | (0.53 to 5.07)          |
| Beta of meta | n-regression            | 0.00<br>(-0.01 to 0.01) | -0.53<br>(-1.46 to 0.38) | -0.11<br>(-0.23 to 0.02) | -0.09<br>(-0.28 to 0.09) | 0.01<br>(-0.03 to 0.05) | 0.03<br>(-0.05 to 0.11) | -0.71<br>(-1.40 to -0.01) | 0.77<br>(-0.17 to 1.70) | 0.09<br>(-0.64 to 0.77) |

\*OR<1 indicate superiority of the specific intervention against placebo control. #The method for transforming other depressive scales to CDRS-R: Schünemann HJ, Oxman AD, Higgins JPT, Vist GE, Glasziou P, Guyatt GH, et al. Presenting results and "Summary of findings" tables. In: Higgins JPT, Green S, eds. Cochrane handbook for systematic reviews of interventions. Wiley, 2008:335-8. AMI=Amitriptyline. BT=Behavioural therapy. CBT=Cognitive-behavioural therapy. CIT=Citalopram. CLO=Clomipramine. DYN=Psychodynamic therapy. DES=Desipramine. DEV=Desvenlafaxine. DUL=Duloxetine. ESC=Escitalopram. FT=Family therapy. FLU=Fluoxetine. IPT=Interpersonal therapy. IMP=Imipramine. MIR=Mirtazapine. NEF=Nefazodone. NOR=Nortriptyline. PST=Problem-solving therapy. PAR=Paroxetine. Pill-PBO=Pill placebo. Psy-PBO=Psychological placebo. SUP= Supportive therapy. SER=Sertraline. TAU=Treatment as usual. VEN=Venlafaxine. VIL=Vilazodone. WL=Waitlist.

# d. Sensitivity network meta-analysis for mean overall change in depressive symptoms with Pill-PBO by standard mean difference $(95\%CrI)^*$

|                 |                          | Omitting the             | Omitting trials          | Omitting                 | Omitting trials<br>with<br>inconsistent of          | Omitting trials            |
|-----------------|--------------------------|--------------------------|--------------------------|--------------------------|-----------------------------------------------------|----------------------------|
| Characteristics | All trials               | unpublished<br>trials    | with imputed<br>data     | non-blind<br>trials      | treatment<br>duration and<br>selected<br>time-point | with sample size $\leq 20$ |
| AMI             | 0.08                     | 0.08                     | 0.08                     | 0.09                     | 0.09                                                | 0.09                       |
|                 | (-1.11 to 1.27)<br>0.56  | (-1.17 to 1.33)<br>0.52  | (-1.17 to 1.34)<br>0.69  | (-1.16 to 1.34)          | (-1.18 to 1.35)<br>0.56                             | (-1.09 to 1.27)<br>0.70    |
| BT              | (-0.95 to 2.08)          | (-1.12 to 2.15)          | (-1.04 to 2.40)          | •••                      | (-1.14 to 2.25)                                     | (-0.84 to 2.23)            |
| СВТ             | 0.05                     | 0.03                     | 0.20                     | 0.33                     | 0.02                                                | 0.09                       |
|                 | (-0.61 to 0.70)<br>-0.18 | (-0.68 to 0.73)<br>-0.18 | (-0.70 to 1.07)<br>-0.18 | (-0.62 to 1.28)<br>-0.18 | (-0.79 to 0.80)<br>-0.18                            | (-0.59 to 0.76)<br>-0.18   |
| CIT             | (-0.89 to 0.55)          | (-0.95 to 0.58)          | (-0.95 to 0.60)          | (-0.94 to 0.59)          | (-0.96 to 0.61)                                     | (-0.90 to 0.53)            |
| CLO             | 0.33                     | 0.38                     | 0.33                     | 0.34                     | 0.32                                                | 0.33                       |
| CLO             | (-0.83 to 1.48)          | (-0.88 to 1.63)          | (-0.91 to 1.56)          | (-0.90 to 1.57)          | (-0.97 to 1.61)                                     | (-0.81 to 1.49)            |
| DYN             | 0.41<br>(-0.58 to 1.38)  | 0.38<br>(-0.68 to 1.42)  | 0.55<br>(-0.65 to 1.72)  | 0.51<br>(-0.85 to 1.87)  | 0.63<br>(-0.93 to 2.16)                             | 0.51<br>(-0.49 to 1.51)    |
|                 | -0.43                    | -0.43                    | -0.43                    | -0.44                    | -0.43                                               | -0.43                      |
| DES             | (-1.26 to 0.39)          | (-1.29 to 0.43)          | (-1.29 to 0.44)          | (-1.30 to 0.42)          | (-1.30 to 0.45)                                     | (-1.24 to 0.38)            |
| DEV             | -0.12                    | -0.14                    | -0.13                    | -0.12                    | -0.13                                               | -0.13                      |
| DE (            | (-0.79 to 0.54)          | (-0.85 to 0.57)          | (-0.84 to 0.59)<br>-0.21 | (-0.83 to 0.59)<br>-0.21 | (-0.85 to 0.60)                                     | (-0.79 to 0.53)            |
| DUL             | -0.22<br>(-0.85 to 0.42) | -0.24<br>(-0.93 to 0.45) | -0.21<br>(-0.90 to 0.47) | -0.21<br>(-0.89 to 0.47) | -0.21<br>(-0.91 to 0.48)                            | -0.22<br>(-0.85 to 0.42)   |
| FGG             | -0.17                    | -0.17                    | -0.21                    | -0.17                    | -0.17                                               | -0.17                      |
| ESC             | (-0.88 to 0.54)          | (-0.93 to 0.59)          | (-1.29 to 0.85)          | (-0.92 to 0.59)          | (-0.94 to 0.61)                                     | (-0.87 to 0.54)            |
| FT              | -0.03                    | -0.07                    | 0.11                     | 0.00                     | -0.02                                               | 0.15                       |
|                 | (-0.87 to 0.79)<br>-0.51 | (-0.99 to 0.81)<br>-0.57 | (-0.96 to 1.14)<br>-0.51 | (-1.24 to 1.23)<br>-0.50 | (-1.04 to 0.97)<br>-0.51                            | (-0.73 to 1.00)<br>-0.51   |
| FLU             | (-0.84 to -0.18)         | (-0.94 to -0.19)         | (-0.88 to -0.15)         | (-0.85 to -0.15)         | (-0.86 to -0.16)                                    | (-0.84 to -0.19)           |
| FLU+CBT         | -0.73                    | <u>-0.76</u>             | -0.68                    | -0.74                    | <u>-0.73</u>                                        | -0.80                      |
| FLU+CB1         | (-1.39 to -0.07)         | (-1.47 to -0.05)         | (-1.42 to 0.06)          | (-1.50 to 0.00)          | (-1.46 to 0.00)                                     | (-1.49 to -0.12)           |
| IPT             | -0.38                    | -0.42                    | -0.23                    | -0.20                    | -0.40                                               | -0.37                      |
|                 | (-1.24 to 0.47)<br>-0.03 | (-1.34 to 0.50)<br>-0.02 | (-1.31 to 0.82)<br>-0.03 | (-1.41 to 1.01)<br>-0.03 | (-1.42 to 0.60)<br>-0.04                            | (-1.25 to 0.50)<br>-0.03   |
| IMP             | (-0.75 to 0.68)          | (-0.79 to 0.75)          | (-0.79 to 0.74)          | (-0.79 to 0.72)          | (-0.82 to 0.74)                                     | (-0.74 to 0.68)            |
| IMP+CBT         | -1.08                    | -1.11                    | -1.00                    | -1.19                    | -1.21                                               | -1.24                      |
|                 | (-2.48 to 0.32)          | (-2.60 to 0.39)          | (-2.53 to 0.52)          | (-2.79 to 0.40)          | (-2.86 to 0.46)                                     | (-2.73 to 0.24)            |
| MIR             | -0.23<br>(-0.97 to 0.51) |                          | -0.24<br>(-1.02 to 0.56) | -0.23<br>(-1.01 to 0.55) | -0.23<br>(-1.03 to 0.56)                            | -0.23<br>(-0.97 to 0.50)   |
| NUCLE           | -0.14                    |                          | (1.02 to 0.30)           | -0.14                    | -0.14                                               | -0.14                      |
| NEF             | (-0.85 to 0.57)          | •••                      |                          | (-0.91 to 0.62)          | (-0.93 to 0.64)                                     | (-0.86 to 0.57)            |
| NOR             | 1.14<br>(0.46.45.1.81)   | 1.12<br>(0.4140.1.83)    | 1.14<br>(0.424a 1.95)    | 1.14<br>(0.424a 1.84)    | 1.14                                                | 1.14<br>(0.47.45.1.91)     |
|                 | (0.46 to 1.81)<br>-0.26  | (0.41 to 1.83)<br>-0.38  | (0.43 to 1.85)<br>-0.12  | (0.43 to 1.84)           | (0.41 to 1.86)<br>-0.28                             | (0.47 to 1.81)<br>-0.20    |
| PST             | (-1.73 to 1.18)          | (-1.95 to 1.18)          | (-1.77 to 1.51)          |                          | (-1.89 to 1.32)                                     | (-1.68 to 1.27)            |
| PAR             | -0.16                    | -0.11                    | -0.16                    | -0.15                    | -0.17                                               | -0.16                      |
| 1711            | (-0.67 to 0.35)          | (-0.72 to 0.50)          | (-0.70 to 0.39)          | (-0.70 to 0.38)          | (-0.81 to 0.48)                                     | (-0.67 to 0.35)            |
| Pill-PBO+CBT    | -0.64<br>(-1.54 to 0.24) | -0.67<br>(-1.62 to 0.28) | -0.56<br>(-1.55 to 0.44) | -0.76<br>(-1.86 to 0.34) | -0.77<br>(-1.93 to 0.41)                            | -0.81<br>(-1.83 to 0.20)   |
| D DE 0          | 0.32                     | 0.30                     | 0.47                     | 0.53                     | 0.30                                                | 0.38                       |
| Psy-PBO         | (-0.47 to 1.11)          | (-0.57 to 1.14)          | (-0.55 to 1.47)          | (-0.56 to 1.60)          | (-0.69 to 1.26)                                     | (-0.43 to 1.18)            |
| SUP             | 0.10                     | 0.06                     | 0.24                     | 0.22                     | 0.10                                                | 0.24                       |
|                 | (-0.91 to 1.11)          | (-1.04 to 1.16)          | (-1.00 to 1.45)          | (-1.45 to 1.87)          | (-1.09 to 1.28)                                     | (-0.81 to 1.27)            |

| SER     | -0.11           | -0.12           | 0.15            | -0.23           | -0.08           | -0.07           |
|---------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| SEK     | (-0.71 to 0.49) | (-0.77 to 0.52) | (-1.03 to 1.30) | (-0.99 to 0.54) | (-0.77 to 0.61) | (-0.68 to 0.55) |
| SER+CBT | 0.10            | 0.08            | 0.28            |                 | -0.04           | 0.22            |
| SEK+CD1 | (-0.71 to 0.89) | (-0.79 to 0.93) | (-0.82 to 1.35) | •••             | (-1.12 to 1.03) | (-0.66 to 1.10) |
| TAU     | 0.28            | 0.25            | 0.42            | 0.57            | 0.26            | 0.23            |
| IAU     | (-0.52 to 1.06) | (-0.61 to 1.10) | (-0.59 to 1.41) | (-0.58 to 1.71) | (-0.69 to 1.19) | (-0.59 to 1.04) |
| VEN     | -0.25           | -0.14           | -0.26           | -0.25           | -0.26           | -0.25           |
| V EIN   | (-0.87 to 0.36) | (-0.91 to 0.62) | (-0.91 to 0.39) | (-0.90 to 0.40) | (-0.93 to 0.41) | (-0.86 to 0.36) |
| VEN+CBT | 0.09            | 0.06            | 0.17            | -0.03           | -0.04           | -0.08           |
| VENTCDI | (-1.37 to 1.53) | (-1.47 to 1.60) | (-1.40 to 1.74) | (-1.66 to 1.59) | (-1.73 to 1.66) | (-1.61 to 1.43) |
| VIL     | -0.09           | -0.09           | -0.09           | -0.09           | -0.09           | -0.09           |
| VIL     | (-1.09 to 0.90) | (-1.16 to 0.98) | (-1.15 to 0.98) | (-1.15 to 0.97) | (-1.18 to 1.00) | (-1.07 to 0.90) |
| WL      | 0.99            | 0.88            | <u>1.14</u>     | 0.81            | <u>0.97</u>     | <u>1.05</u>     |
| WL      | (0.18 to 1.79)  | (-0.01 to 1.75) | (0.11 to 2.14)  | (-0.51 to 2.12) | (0.00 to 1.89)  | (0.23 to 1.86)  |

<sup>\*</sup>Negative effect sizes indicate superiority of the specific intervention against placebo control

# e. Sensitivity network meta-analysis for all-cause discontinuation with Pill-PBO by standard mean difference (95% CrI)\*

| Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | All trials              | Omitting the unpublished trials | Omitting non-blind trials | Omitting trials with sample size ≤ 20 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------|---------------------------|---------------------------------------|
| AMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.16                    | 1.14                            | 1.19                      | 1.17                                  |
| D.T.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0.29 to 12.13)<br>1.20 | (0.28 to 13.09)<br>1.22         | (0.31 to 10.80)           | (0.30 to 12.07)<br>1.35               |
| ВТ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (0.31 to 9.61)          | (0.33 to 10.27)                 |                           | (0.36 to 10.53)                       |
| CBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.08                    | 1.06                            | 1.10<br>(0.54 to 2.71)    | 1.08                                  |
| CITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (0.55 to 2.43)<br>0.96  | (0.54 to 2.57)<br>0.95          | 0.96                      | (0.56 to 2.36)<br>0.96                |
| CIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.52 to 1.97)          | (0.50 to 2.05)                  | (0.53 to 1.92)            | (0.53 to 1.96)                        |
| CLO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.75                    | 1.70                            | 1.74                      | 1.74                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.66 to 6.57)<br>1.42  | (0.61 to 7.18)<br>1.33          | (0.69 to 6.27)<br>1.49    | (0.66 to 6.60)<br>1.45                |
| DYN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.54 to 4.92)          | (0.48 to 5.08)                  | (0.56 to 5.86)            | (0.55 to 5.10)                        |
| DES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.21                    | 2.15                            | 2.20                      | 2.19                                  |
| 220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.88 to 7.67)<br>0.85  | (0.85 to 7.67)<br>0.84          | (0.90 to 7.39)<br>0.86    | (0.87 to 7.69)<br>0.85                |
| DEV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.47 to 1.74)          | (0.45 to 1.81)                  | (0.49 to 1.70)            | (0.47 to 1.74)                        |
| DUL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.04                    | 1.02                            | 1.04                      | 1.05                                  |
| DOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.62 to 1.96)          | (0.58 to 2.02)<br>1.39          | (0.64 to 1.92)<br>1.41    | (0.62 to 1.99)                        |
| ESC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.40<br>(0.77 to 2.86)  | 1.39<br>(0.73 to 3.01)          | 1.41<br>(0.79 to 2.77)    | 1.40<br>(0.77 to 2.86)                |
| TOTAL STATE OF THE | 1.26                    | 1.24                            | 0.28                      | 1.40                                  |
| FT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (0.49 to 4.31)          | (0.49 to 4.58)                  | (0.08 to 1.75)            | (0.55 to 5.03)                        |
| FLU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.78                    | 0.75                            | 0.78                      | 0.79                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.56 to 1.15)<br>0.75  | (0.52 to 1.14)<br>0.72          | (0.57 to 1.15)<br>0.80    | (0.56 to 1.16)<br>0.79                |
| FLU+CBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (0.39 to 1.65)          | (0.36 to 1.70)                  | (0.42 to 1.83)            | (0.41 to 1.80)                        |
| IPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.76                    | 0.76                            | 0.33                      | 0.74                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.28 to 2.88)<br>2.51  | (0.28 to 3.11)<br>2.53          | (0.10 to 2.01)<br>2.48    | (0.29 to 2.73)<br><b>2.55</b>         |
| IMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (1.26 to 6.24)          | (1.22 to 6.83)                  | (1.27 to 6.01)            | (1.28 to 6.37)                        |
| IMP+CBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.40                    | 0.37                            | 0.47                      | 0.49                                  |
| IVII +CDI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0.10 to 3.64)          | (0.09 to 3.97)                  | (0.11 to 4.75)            | (0.12 to 5.03)                        |
| MIR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.83<br>(0.40 to 2.08)  |                                 | 0.84<br>(0.42 to 2.06)    | 0.84<br>(0.41 to 2.08)                |
| NEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.49                    |                                 | 0.49                      | 0.48                                  |
| NEF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.21 to 1.39)          | •••                             | (0.22 to 1.34)            | (0.21 to 1.38)                        |
| NOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.76                    | 0.75                            | 0.76                      | 0.78                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.28 to 3.41)<br>0.08  | (0.26 to 3.32)<br>0.02          | (0.28 to 3.05)            | (0.28 to 3.22)<br>0.04                |
| PST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.01 to 8.45)          | (0.02 to 9.96)                  |                           | (0.01 to 8.91)                        |
| PAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.30                    | 1.30                            | 1.29                      | 1.30                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.81 to 2.27)<br>0.68  | (0.77 to 2.44)<br>0.66          | (0.82 to 2.19)<br>0.82    | (0.82 to 2.27)<br>0.83                |
| Pill-PBO+CBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (0.25 to 2.75)          | (0.23 to 2.89)                  | (0.29 to 3.82)            | (0.29 to 3.85)                        |
| Psy-PBO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.66                    | 1.63                            | 1.18                      | 1.71                                  |
| 139-1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (0.71 to 5.13)          | (0.67 to 5.38)                  | (0.47 to 4.13)            | (0.73 to 5.15)                        |
| SUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.85<br>(0.29 to 3.65)  | 0.86<br>(0.30 to 3.88)          | 0.07<br>(0.02 to 0.86)    | 0.95<br>(0.33 to 3.96)                |
| CED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.61                    | 1.58                            | 1.47                      | 1.55                                  |
| SER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (0.89 to 3.27)          | (0.86 to 3.37)                  | (0.78 to 3.13)            | (0.85 to 3.19)                        |
| SER+CBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.74                    | 1.73                            |                           | 1.47                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0.68 to 6.03)          | (0.66 to 6.57)                  |                           | (0.54 to 5.43)                        |

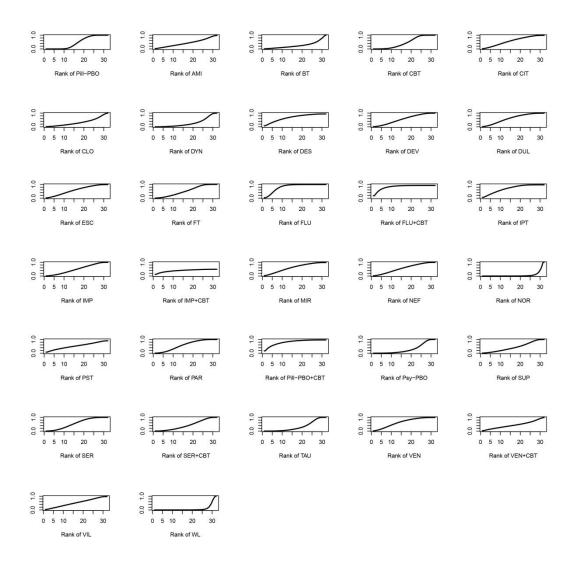
| TAU     | 1.50            | 1.49            | 0.50            | 1.35            |
|---------|-----------------|-----------------|-----------------|-----------------|
| IAU     | (0.60 to 5.45)  | (0.58 to 5.71)  | (0.14 to 3.59)  | (0.53 to 4.67)  |
| VEN     | 1.12            | 1.13            | 1.13            | 1.13            |
| VICIN   | (0.53 to 2.69)  | (0.50 to 3.17)  | (0.56 to 2.62)  | (0.54 to 2.75)  |
| VEN+CBT | 0.65            | 0.62            | 0.78            | 0.80            |
| VEN+CDI | (0.13 to 12.41) | (0.13 to 12.76) | (0.17 to 15.49) | (0.16 to 16.13) |
| VIL     | 0.59            | 0.57            | 0.59            | 0.58            |
| VIL     | (0.27 to 1.54)  | (0.25 to 1.68)  | (0.29 to 1.48)  | (0.27 to 1.54)  |
| WL      | 1.40            | 1.40            | 1.16            | 1.41            |
| WL      | (0.58 to 4.54)  | (0.55 to 5.19)  | (0.37 to 5.97)  | (0.58 to 4.44)  |

\*OR<1 indicate superiority of the specific intervention against placebo control

# **APPENDIX 16**

Treatment ranking and SUCRA plot for each outcome

## Treatment ranking and SUCRA plot for mean overall change in depressive symptoms


#### **Treatment ranking:**

| Rank | Treatments   | SUCRA (%) | Rank | Treatments | SUCRA (%) |
|------|--------------|-----------|------|------------|-----------|
| 1    | IMP+CBT      | 89.1%     | 17   | VIL        | 51.4%     |
| 2    | FLU+CBT      | 87.3%     | 18   | FT         | 49.5%     |
| 3    | Pill-PBO+CBT | 81.0%     | 19   | IMP        | 47.8%     |
| 4    | FLU          | 79.8%     | 20   | Pill-PBO   | 43.7%     |
| 5    | DES          | 71.0%     | 21   | VEN+CBT    | 43.2%     |
| 6    | IPT          | 70.4%     | 22   | AMI        | 43.1%     |
| 7    | VEN          | 62.0%     | 23   | CBT        | 42.7%     |
| 8    | MIR          | 60.3%     | 24   | SUP        | 41.5%     |
| 9    | PST          | 59.9%     | 25   | SER+CBT    | 39.9%     |
| 10   | DUL          | 59.5%     | 26   | CLO        | 31.3%     |
| 11   | CIT          | 56.9%     | 27   | TAU        | 28.9%     |
| 12   | ESC          | 56.5%     | 28   | Psy-PBO    | 26.5%     |
| 13   | PAR          | 56.2%     | 29   | DYN        | 24.7%     |
| 14   | NEF          | 54.6%     | 30   | BT         | 24.7%     |
| 15   | DEV          | 53.5%     | 31   | WL         | 5.4%      |
| 16   | SER          | 53.4%     | 32   | NOR        | 4.3%      |

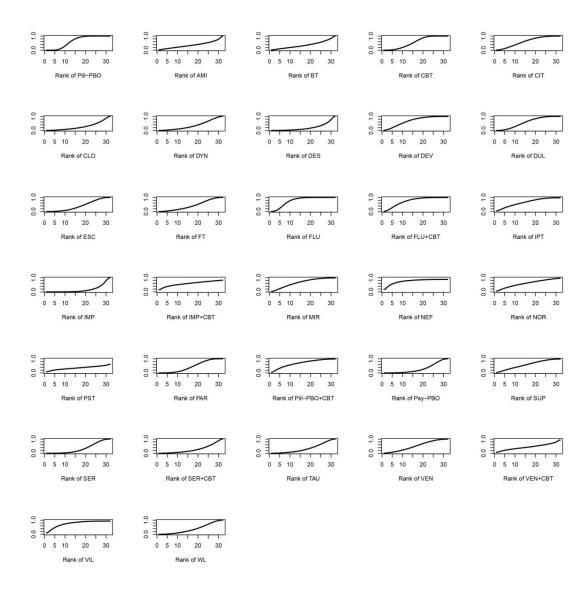
<sup>\*</sup> Larger SUCRAs denote more effective interventions.

AMI=Amitriptyline. BT=Behavioural therapy. CBT=Cognitive-behavioural therapy. CIT=Citalopram. CLO=Clomipramine. DYN=Psychodynamic therapy. DES=Desipramine. DEV=Desvenlafaxine. DUL=Duloxetine. ESC=Escitalopram. FT=Family therapy. FLU=Fluoxetine. IPT=Interpersonal therapy. IMP=Imipramine. MIR=Mirtazapine. NEF=Nefazodone. NOR=Nortriptyline. PST=Problem-solving therapy. PAR=Paroxetine. Pill-PBO=Pill placebo. Psy-PBO=Psychological placebo. SUP=Supportive therapy. SER=Sertraline. TAU= Treatment as usual. VEN=Venlafaxine. VIL=Vilazodone. WL= Waitlist.

# **Cumulative probability plots (Random Effects model):**



## Treatment ranking and SUCRA plot for all-cause discontinuation


#### **Treatment ranking:**

| Rank | Treatments   | SUCRA (%) | Rank | Treatments | SUCRA (%) |
|------|--------------|-----------|------|------------|-----------|
| 1    | NEF          | 84.9%     | 17   | VEN+CBT    | 49.1%     |
| 2    | VIL          | 79.9%     | 18   | VEN        | 48.5%     |
| 3    | FLU          | 75.1%     | 19   | PAR        | 42.7%     |
| 4    | IMP+CBT      | 74.0%     | 20   | FT         | 40.1%     |
| 5    | PST          | 72.8%     | 21   | ESC        | 37.9%     |
| 6    | FLU+CBT      | 72.4%     | 22   | AMI        | 36.6%     |
| 7    | Pill-PBO+CBT | 67.4%     | 23   | BT         | 35.3%     |
| 8    | DEV          | 66.3%     | 24   | WL         | 35.0%     |
| 9    | IPT          | 65.3%     | 25   | DYN        | 33.4%     |
| 10   | MIR          | 64.7%     | 26   | TAU        | 31.1%     |
| 11   | NOR          | 61.4%     | 27   | SER        | 30.5%     |
| 12   | Pill-PBO     | 61.1%     | 28   | Psy-PBO    | 26.4%     |
| 13   | CIT          | 59.1%     | 29   | CLO        | 25.8%     |
| 14   | SUP          | 57.7%     | 30   | SER+CBT    | 25.4%     |
| 15   | DUL          | 55.3%     | 31   | DES        | 18.1%     |
| 16   | CBT          | 53.1%     | 32   | IMP        | 13.7%     |

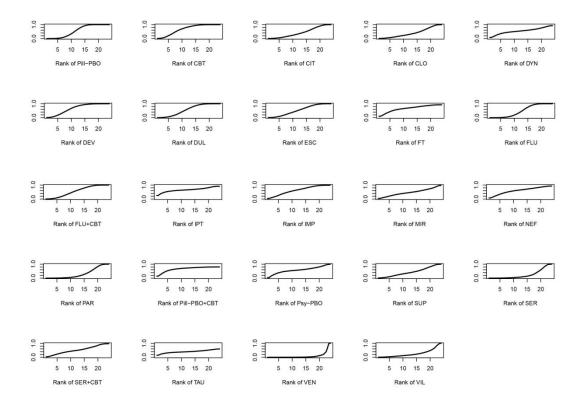
<sup>\*</sup>Larger SUCRAs denote less discontinuous interventions.

AMI=Amitriptyline. BT=Behavioural therapy. CBT=Cognitive-behavioural therapy. CIT=Citalopram. CLO=Clomipramine. DYN=Psychodynamic therapy. DES=Desipramine. DEV=Desvenlafaxine. DUL=Duloxetine. ESC=Escitalopram. FT=Family therapy. FLU=Fluoxetine. IPT=Interpersonal therapy. IMP=Imipramine. MIR=Mirtazapine. NEF=Nefazodone. NOR=Nortriptyline. PST=Problem-solving therapy. PAR=Paroxetine. Pill-PBO=Pill placebo. Psy-PBO=Psychological placebo. SUP=Supportive therapy. SER=Sertraline. TAU= Treatment as usual. VEN=Venlafaxine. VIL=Vilazodone. WL= Waitlist.

# **Cumulative probability plots (Random Effects model):**



## Treatment ranking and SUCRA plot for suicidality


#### **Treatment ranking:**

| Rank | Treatments   | SUCRA (%) | Rank | Treatments | SUCRA (%) |
|------|--------------|-----------|------|------------|-----------|
| 1    | Pill-PBO+CBT | 82.4%     | 13   | Pill-PBO   | 51.8%     |
| 2    | TAU          | 78.3%     | 14   | SER+CBT    | 50.6%     |
| 3    | IPT          | 70.3%     | 15   | ESC        | 49.9%     |
| 4    | FT           | 69.9%     | 16   | MIR        | 46.4%     |
| 5    | CBT          | 63.9%     | 17   | FLU        | 44.4%     |
| 6    | NEF          | 63.6%     | 18   | SUP        | 39.8%     |
| 7    | DEV          | 62.7%     | 19   | CIT        | 39.3%     |
| 8    | IMP          | 59.5%     | 20   | CLO        | 36.2%     |
| 9    | DYN          | 57.9%     | 21   | PAR        | 27.3%     |
| 10   | Psy-PBO      | 54.7%     | 22   | VIL        | 21.6%     |
| 11   | DUL          | 53.0%     | 23   | SER        | 19.8%     |
| 12   | FLU+CBT      | 52.1%     | 24   | VEN        | 4.5%      |

<sup>\*</sup> Larger SUCRAs denote safer interventions.

CBT=Cognitive-behavioural therapy. CIT=Citalopram. CLO=Clomipramine. DYN=Psychodynamic therapy. DEV=Desvenlafaxine. DUL=Duloxetine. ESC=Escitalopram. FT=Family therapy. FLU=Fluoxetine. IPT=Interpersonal therapy. IMP=Imipramine. MIR=Mirtazapine. NEF=Nefazodone. NOR=Nortriptyline. PAR=Paroxetine. Pill-PBO=Pill placebo. Psy-PBO=Psychological placebo. SUP=Supportive therapy. SER=Sertraline. TAU=Treatment as usualVEN=Venlafaxine. VIL=Vilazodone.

### **Cumulative probability plots (Random Effects model):**



# **APPENDIX 17**

Evaluation of the credibility of each outcome using CINeMA approach

Pill-PBO, and significant comparisons in primary and secondary outcomes according to the following domains: within-study bias, imprecision, heterogeneity, incoherence, indirectness and across-study bias. We used the Confidence In Network Meta-Analysis (CINeMA) software (<a href="https://cinema.ispm.unibe.ch/">https://cinema.ispm.unibe.ch/</a>), which is based on the framework developed by Salanti G et al (PLoS One 2014; 9(7): e99682) and refined by Nikolakopoulou et al (bioRxiv 2019; 597047). We assigned 'no concerns', 'some concerns' or 'major concerns' to each network estimate and domain based on the criteria described in the CINeMA documentation and those reported below for each domain. We derived an overall judgment of the confidence that goes from high to very low considering all domains judgments jointly.

We evaluated the confidence in network estimates for each direct comparison, camparisons with

- (1) Within-study bias: We assigned score 1 to study with low risk of bias, score 2 for moderate risk of bias and 3 for high risk of bias. The risk of bias of each study is reported in **Appendix 7**. We summarised the risk of bias across studies for the comparisons of interest by using the 'average' risk of bias. We assigned 'some concerns' to network estimates when more than 50% of contribution of studies to network estimates was from studies with moderate risk of bias, and "major concerns" when more than 50% of contribution was from studies with high risk of bias and 'no concerns' otherwise. The contribution matrix reporting the contribution of each study to each network estimate and the bar graph presenting the study risk of bias proportional to the percentage contribution are in DOI: 10.17632/kw6nmfn2tb.1. In the bar graph, the bars of each study are coloured according to the study risk of bias (green for low, yellow for unclear and red for high risk of bias).
- (2) Imprecision: We judged the imprecision of the network estimates considering whether confidence intervals of network estimates (see Figure 3 and Appendix 10) crossed the values of clinically meaningful difference. We considered a clinically meaningful threshold for SMD to be -0.20 or 0.20, and for OR to be 0.80 or 1.25. The specific criteria used to judge imprecision are reported in the explanatory document within CINeMA. For example, if the upper limit (or the lower limit) of the confidence interval of a network estimate for a continuous outcome was below -0.2 (or above 0.2) we assigned 'no concerns' to the estimate for imprecision.
- (3) **Heterogeneity:** We judged heterogeneity considering the agreement of conclusions based on confidence and prediction intervals output by OpenBUGS (shown at DOI: 10.17632/kw6nmfn2tb.1) as described in the CINeMA documentation. We used the clinically meaningful thresholds defined in Imprecision. For example, if the upper limit (or the lower limit) of both the confidence interval and prediction interval of a network estimate for a continuous outcome were below -0.2 (or above 0.2) we assigned 'no concerns' to the estimate for heterogeneity.
- (4) **Incoherence**: We judged incoherence based on whether the agreement between direct and indirect evidence had an impact on the clinical conclusion and on the p value of the design-by-treatment methods for estimates with only direct or indirect evidence (see **Appendix 13**) as described in Nikolakopoulou et al (bioRxiv 2019;597047).
- (5) **Indirectness:** We assigned score 1 to study with low indirectness, score 2 for moderate indirectness and 3 for high indirectness. We considered two aspects to assign the scores. First, as for the results of meta-regression, we found depressive symptoms in baseline were associated with a larger reduced

depression score. Thus, we assigned score 2 to those studies with lower or higher baseline depressive symptoms (out of the 95% reference interval of baseline depressive symptoms). In particular, we assigned score 2 to study *Goodyer 2017* and *Poole 2018* for higher baseline depressive symptoms, and to study *Mandoki 1997* and *Luby 2012* for lower baseline depressive symptoms. The transforming score of baseline in each study is reported in **Table 1**. Second, the assessment of transitivity (see **Appendix 12**) suggested there were a few comparisons that had relatively low or high values, so we assigned score 2 to studies for which the comparison had extreme value. In particular, we assigned score 2 to this tudy *Charkhandeh 2016* for higher baseline depressive symptoms in CBT vs. WL comparison, to the study *Findling 2009* for lower sex ratio of participants in Flu vs. Pill-PBO comparison, to *Trowell 2007* for higher treatment duration in DYN vs. FT comparison. All the other studies were rated as score 1. We summarised the indirectness across studies for the comparisons of interest by using the 'average' indirectness, similarly to within-study bias. The bar graph presenting the study indirectness proportional to the percentage contribution is reported in DOI: 10.17632/kw6nmfn2tb.1.

(6) Across-study bias: We considered the comprehensiveness of our search strategy and the potential presence of asymmetry by the visual inspection of the comparison-adjusted funnel plots (see Appendix 14). We considered our search strategy comprehensive. The comparison-adjusted funnel plots of the network meta-analysis were suggestive of obvious publication bias for efficacy outcome, of which mainly resulted from psychotherapy trials, but not for acceptability and suicide-related outcomes. We assigned 'suspected' to the comparisons with psychotherapies vs. control conditions for efficacy. All the other comparisons of interest for across-study bias were assigned 'undetected'.

# a. The confidence in SMD for mean overall change in depressive symptoms for camparisons with Pill-PBO, directed comparisons and significant comparisons by CINeMA approach

| Comparison             | Within-study<br>bias | Imprecision    | Heterogeneity  | Incoherence    | Indirectness | Across-studies<br>bias | Downgrading                                                           | Confidence<br>rating |
|------------------------|----------------------|----------------|----------------|----------------|--------------|------------------------|-----------------------------------------------------------------------|----------------------|
| AMI vs Pill-PBO        | Some concerns        | Major concerns | No concerns    | Major concerns | No concerns  | Undetected             | -1* within-study bias,<br>-1* imprecision, -1*<br>incoherence         | Very low             |
| CBT vs Pill-PBO        | Major concerns       | Major concerns | No concerns    | No concerns    | No concerns  | Suspected              | -2* within-study bias,<br>-2* imprecision, -1*<br>across-studies bias | Very low             |
| CIT vs Pill-PBO        | Major concerns       | Major concerns | No concerns    | Major concerns | No concerns  | Undetected             | -2* within-study bias,<br>-1* imprecision, -1*<br>incoherence         | Very low             |
| DES vs Pill-PBO        | Some concerns        | Major concerns | No concerns    | Major concerns | No concerns  | Undetected             | -1* within-study bias,<br>-1* imprecision, -1*<br>incoherence         | Very low             |
| DEV vs Pill-PBO        | No concerns          | Major concerns | No concerns    | No concerns    | No concerns  | Undetected             | -2* imprecision                                                       | Low                  |
| DUL vs Pill-PBO        | No concerns          | Major concerns | No concerns    | Some concerns  | No concerns  | Undetected             | -1* imprecision, -1* incoherence                                      | Low                  |
| ESC vs Pill-PBO        | Some concerns        | Major concerns | No concerns    | Major concerns | No concerns  | Undetected             | -1* within-study bias,<br>-1* imprecision, -1*<br>incoherence         | Very low             |
| FLU vs Pill-PBO        | Some concerns        | No concerns    | Major concerns | Some concerns  | No concerns  | Undetected             | -1* within-study bias,<br>-1* heterogeneity, -1*<br>incoherence       | Very low             |
| FLU+CBT vs<br>Pill-PBO | Some concerns        | No concerns    | Major concerns | No concerns    | No concerns  | Undetected             | -1* within-study bias,<br>-2* heterogeneity                           | Very low             |
| IMP vs Pill-PBO        | No concerns          | Major concerns | No concerns    | No concerns    | No concerns  | Undetected             | -2* imprecision                                                       | Low                  |
| MIR vs Pill-PBO        | Major concerns       | Major concerns | No concerns    | Major concerns | No concerns  | Undetected             | -2* within-study bias,<br>-1* imprecision, -1*<br>incoherence         | Very low             |

| NEF vs Pill-PBO        | Some concerns  | Major concerns | No concerns   | Major concerns | No concerns | Undetected | -1* within-study bias,<br>-1* imprecision, -1*<br>incoherence                             | Very low |
|------------------------|----------------|----------------|---------------|----------------|-------------|------------|-------------------------------------------------------------------------------------------|----------|
| NOR vs Pill-PBO        | Some concerns  | No concerns    | Some concerns | Major concerns | No concerns | Undetected | -1* within-study bias,<br>-1* heterogeneity, -1*<br>incoherence                           | Very low |
| PAR vs Pill-PBO        | Some concerns  | Major concerns | No concerns   | No concerns    | No concerns | Undetected | -1* within-study bias,<br>-2* imprecision                                                 | Very low |
| SER vs Pill-PBO        | Major concerns | Major concerns | No concerns   | No concerns    | No concerns | Undetected | -2* within-study bias,<br>-2* imprecision                                                 | Very low |
| VEN vs Pill-PBO        | Major concerns | Major concerns | No concerns   | No concerns    | No concerns | Undetected | -2* within-study bias,<br>-2* imprecision                                                 | Very low |
| VIL vs Pill-PBO        | No concerns    | Major concerns | No concerns   | Major concerns | No concerns | Undetected | -1* imprecision, -1* incoherence                                                          | Low      |
| BT vs Pill-PBO         | Major concerns | Major concerns | No concerns   | Major concerns | No concerns | Suspected  | -2* within-study bias,<br>-1* imprecision, -1*<br>incoherence, -1*                        | Very low |
| CLO vs Pill-PBO        | No concerns    | Major concerns | No concerns   | Major concerns | No concerns | Undetected | across-studies bias -1* imprecision, -1* incoherence                                      | Low      |
| DYN vs Pill-PBO        | Major concerns | Major concerns | No concerns   | Major concerns | No concerns | Suspected  | -2* within-study bias,<br>-1* imprecision, -1*<br>incoherence, -1*<br>across-studies bias | Very low |
| FT vs Pill-PBO         | Major concerns | Major concerns | No concerns   | Major concerns | No concerns | Suspected  | -2* within-study bias,<br>-1* imprecision, -1*<br>incoherence, -1*<br>across-studies bias | Very low |
| IPT vs Pill-PBO        | Major concerns | Major concerns | No concerns   | Major concerns | No concerns | Suspected  | -2* within-study bias,<br>-1* imprecision, -1*<br>incoherence, -1*<br>across-studies bias | Very low |
| IMP+CBT vs<br>Pill-PBO | Some concerns  | Major concerns | No concerns   | Major concerns | No concerns | Undetected | -1* within-study bias,<br>-1* imprecision, -1*<br>incoherence                             | Very low |

| PST vs Pill-PBO             | Major concerns | Major concerns | No concerns    | Major concerns | No concerns   | Suspected  | -2* within-study bias,<br>-1* imprecision, -1*<br>incoherence, -1*<br>across-studies bias | Very low |
|-----------------------------|----------------|----------------|----------------|----------------|---------------|------------|-------------------------------------------------------------------------------------------|----------|
| Pill-PBO+CBT vs<br>Pill-PBO | Some concerns  | Major concerns | No concerns    | Major concerns | No concerns   | Undetected | -1* within-study bias,<br>-1* imprecision, -1*<br>incoherence                             | Very low |
| Psy-PBO vs Pill-PBO         | Major concerns | Major concerns | No concerns    | Major concerns | No concerns   | Undetected | -2* within-study bias,<br>-1* imprecision, -1*<br>incoherence                             | Very low |
| SUP vs Pill-PBO             | Major concerns | Major concerns | No concerns    | Major concerns | No concerns   | Suspected  | -2* within-study bias,<br>-1* imprecision, -1*<br>incoherence, -1*<br>across-studies bias | Very low |
| SER+CBT vs<br>Pill-PBO      | Major concerns | Major concerns | No concerns    | Major concerns | No concerns   | Undetected | -2* within-study bias,<br>-1* imprecision, -1*<br>incoherence                             | Very low |
| TAU vs Pill-PBO             | Major concerns | Major concerns | No concerns    | Major concerns | No concerns   | Undetected | -2* within-study bias,<br>-1* imprecision, -1*<br>incoherence                             | Very low |
| VEN+CBT vs<br>Pill-PBO      | Some concerns  | Major concerns | No concerns    | Major concerns | No concerns   | Undetected | -1* within-study bias,<br>-1* imprecision, -1*<br>incoherence                             | Very low |
| WL vs Pill-PBO              | Major concerns | No concerns    | Major concerns | Major concerns | No concerns   | Undetected | -2* within-study bias,<br>-1* heterogeneity, -1*<br>incoherence                           | Very low |
| BT vs Psy-PBO               | Major concerns | Major concerns | No concerns    | Major concerns | No concerns   | Suspected  | -2* within-study bias,<br>-1* imprecision, -1*<br>incoherence, -1*<br>across-studies bias | Very low |
| BT vs SUP                   | Major concerns | Major concerns | No concerns    | No concerns    | No concerns   | Undetected | -2* within-study bias,<br>-2* imprecision                                                 | Very low |
| CBT vs DYN                  | Major concerns | Major concerns | No concerns    | No concerns    | Some concerns | Undetected | -2* within-study bias,<br>-2* imprecision, -1*<br>indirectness                            | Very low |

| CBT vs FT      | Major concerns | Major concerns | No concerns    | Some concerns  | No concerns   | Undetected | -2* within-study bias,<br>-1* imprecision, -1*<br>incoherence                               | Very low |
|----------------|----------------|----------------|----------------|----------------|---------------|------------|---------------------------------------------------------------------------------------------|----------|
| CBT vs FLU     | Major concerns | Some concerns  | Some concerns  | No concerns    | No concerns   | Undetected | -2* within-study bias,<br>-1* imprecision, -1*<br>heterogeneity                             | Very low |
| CBT vs FLU+CBT | Major concerns | No concerns    | Major concerns | Major concerns | No concerns   | Undetected | -2* within-study bias,<br>-1* heterogeneity, -1*<br>incoherence                             | Very low |
| CBT vs IPT     | Major concerns | Some concerns  | Some concerns  | No concerns    | No concerns   | Undetected | -2* within-study bias,<br>-1* imprecision, -1*<br>heterogeneity                             | Very low |
| CBT vs Psy-PBO | Major concerns | Some concerns  | Some concerns  | No concerns    | No concerns   | Suspected  | -2* within-study bias,<br>-1* imprecision, -1*<br>heterogeneity, -1*<br>across-studies bias | Very low |
| CBT vs SUP     | Major concerns | Major concerns | No concerns    | No concerns    | No concerns   | Undetected | -2* within-study bias,<br>-2* imprecision                                                   | Very low |
| CBT vs SER     | Major concerns | Major concerns | No concerns    | No concerns    | No concerns   | Undetected | -2* within-study bias,<br>-2* imprecision                                                   | Very low |
| CBT vs SER+CBT | Some concerns  | Major concerns | No concerns    | No concerns    | No concerns   | Undetected | -1* within-study bias,<br>-2* imprecision                                                   | Very low |
| CBT vs TAU     | Major concerns | Major concerns | No concerns    | No concerns    | No concerns   | Suspected  | -2* within-study bias,<br>-2* imprecision, -1*<br>across-studies bias                       | Very low |
| CBT vs WL      | Major concerns | No concerns    | Some concerns  | No concerns    | No concerns   | Suspected  | -2* within-study bias,<br>-1* heterogeneity, -1*<br>across-studies bias                     | Very low |
| CLO vs PAR     | No concerns    | Major concerns | No concerns    | No concerns    | No concerns   | Undetected | -2* imprecision                                                                             | Low      |
| DYN vs FT      | Major concerns | Major concerns | No concerns    | No concerns    | Some concerns | Undetected | -2* within-study bias,<br>-2* imprecision, -1*<br>indirectness                              | Very low |
| DYN vs Psy-PBO | Major concerns | Major concerns | No concerns    | No concerns    | Some concerns | Suspected  | -2* within-study bias,<br>-2* imprecision, -1*<br>indirectness, -1*                         | Very low |

|                            |                |                |                |                |               |            | across-studies bias                                                                        |          |
|----------------------------|----------------|----------------|----------------|----------------|---------------|------------|--------------------------------------------------------------------------------------------|----------|
| DEV vs FLU                 | No concerns    | Major concerns | No concerns    | No concerns    | No concerns   | Undetected | -2* imprecision                                                                            | Low      |
| DUL vs FLU                 | No concerns    | Major concerns | No concerns    | Some concerns  | No concerns   | Undetected | -1* imprecision, -1* incoherence                                                           | Low      |
| FT vs Psy-PBO              | Major concerns | Major concerns | No concerns    | No concerns    | Some concerns | Suspected  | -2* within-study bias,<br>-2* imprecision, -1*<br>indirectness, -1*<br>across-studies bias | Very low |
| FT vs SUP                  | Major concerns | Major concerns | No concerns    | No concerns    | No concerns   | Undetected | -2* within-study bias,<br>-2* imprecision                                                  | Very low |
| FT vs TAU                  | Major concerns | Major concerns | No concerns    | No concerns    | No concerns   | Suspected  | -2* within-study bias,<br>-2* imprecision, -1*<br>across-studies bias                      | Very low |
| FT vs WL                   | Major concerns | No concerns    | Some concerns  | No concerns    | No concerns   | Suspected  | -2* within-study bias,<br>-1* heterogeneity, -1*<br>across-studies bias                    | Very low |
| FLU vs FLU+CBT             | Some concerns  | Major concerns | No concerns    | No concerns    | No concerns   | Undetected | -1* within-study bias,<br>-2* imprecision                                                  | Very low |
| FLU vs NOR                 | Some concerns  | No concerns    | No concerns    | Major concerns | No concerns   | Undetected | -1* within-study bias,<br>-2* incoherence                                                  | Very low |
| FLU vs VEN                 | Some concerns  | Major concerns | No concerns    | No concerns    | No concerns   | Undetected | -1* within-study bias,<br>-2* imprecision                                                  | Very low |
| FLU+CBT vs<br>Pill-PBO+CBT | Some concerns  | Major concerns | No concerns    | No concerns    | No concerns   | Undetected | -1* within-study bias,<br>-2* imprecision                                                  | Very low |
| IPT vs Psy-PBO             | Major concerns | No concerns    | Major concerns | No concerns    | No concerns   | Suspected  | -2* within-study bias,<br>-2* heterogeneity, -1*<br>across-studies bias                    | Very low |
| IPT vs TAU                 | Major concerns | No concerns    | Major concerns | No concerns    | No concerns   | Suspected  | -2* within-study bias,<br>-2* heterogeneity, -1*<br>across-studies bias                    | Very low |
| IPT vs WL                  | Major concerns | No concerns    | Some concerns  | No concerns    | No concerns   | Suspected  | -2* within-study bias,<br>-1* heterogeneity, -1*<br>across-studies bias                    | Very low |
| IMP vs PAR                 | No concerns    | Major concerns | No concerns    | No concerns    | No concerns   | Undetected | -2* imprecision                                                                            | Low      |

| IMP+CBT vs<br>Pill-PBO+CBT | Some concerns  | Major concerns | No concerns    | No concerns    | No concerns   | Undetected | -1* within-study bias,<br>-2* imprecision                               | Very low |
|----------------------------|----------------|----------------|----------------|----------------|---------------|------------|-------------------------------------------------------------------------|----------|
| PST vs WL                  | Major concerns | No concerns    | Major concerns | No concerns    | No concerns   | Suspected  | -2* within-study bias,<br>-2* heterogeneity, -1*<br>across-studies bias | Very low |
| Pill-PBO+CBT vs<br>SER+CBT | Some concerns  | Major concerns | No concerns    | No concerns    | No concerns   | Undetected | -1* within-study bias,<br>-2* imprecision                               | Very low |
| Pill-PBO+CBT vs<br>VEN+CBT | Major concerns | Major concerns | No concerns    | No concerns    | Some concerns | Undetected | -2* within-study bias,<br>-2* imprecision, -1*<br>indirectness          | Very low |
| SER vs SER+CBT             | Major concerns | Major concerns | No concerns    | No concerns    | No concerns   | Undetected | -2* within-study bias,<br>-2* imprecision                               | Very low |
| DYN vs FLU+CBT             | Major concerns | No concerns    | Major concerns | Major concerns | No concerns   | Undetected | -2* within-study bias,<br>-1* heterogeneity, -1*<br>incoherence         | Very low |
| FLU vs Psy-PBO             | Major concerns | No concerns    | Major concerns | Major concerns | No concerns   | Undetected | -2* within-study bias,<br>-1* heterogeneity, -1*<br>incoherence         | Very low |
| FLU vs WL                  | Major concerns | No concerns    | No concerns    | Major concerns | No concerns   | Undetected | -2* within-study bias,<br>-2* incoherence                               | Very low |
| FLU+CBT vs<br>Psy-PBO      | Major concerns | No concerns    | Major concerns | Major concerns | No concerns   | Undetected | -2* within-study bias,<br>-1* heterogeneity, -1*<br>incoherence         | Very low |
| FLU+CBT vs TAU             | Major concerns | No concerns    | Major concerns | Major concerns | No concerns   | Undetected | -2* within-study bias,<br>-1* heterogeneity, -1*<br>incoherence         | Very low |
| FLU+CBT vs WL              | Major concerns | No concerns    | No concerns    | Major concerns | No concerns   | Undetected | -2* within-study bias,<br>-2* incoherence                               | Very low |

## b. The confidence in OR for all-caused discontinuation for camparisons with Pill-PBO, directed comparisons and significant comparisons by CINeMA approach

| Comparison             | Within-study<br>bias | Imprecision    | Heterogeneity | Incoherence | Indirectness | Across-studies<br>bias | Downgrading                                                     | Confidence<br>rating |
|------------------------|----------------------|----------------|---------------|-------------|--------------|------------------------|-----------------------------------------------------------------|----------------------|
| AMI vs Pill-PBO        | Some concerns        | Major concerns | No concerns   | No concerns | No concerns  | Undetected             | -1* within-study bias,<br>-2* imprecision                       | Very low             |
| CBT vs Pill-PBO        | Major concerns       | Major concerns | No concerns   | No concerns | No concerns  | Undetected             | -2* within-study bias,<br>-2* imprecision                       | Very low             |
| CIT vs Pill-PBO        | Major concerns       | Major concerns | No concerns   | No concerns | No concerns  | Undetected             | -2* within-study bias,<br>-2* imprecision                       | Very low             |
| DES vs Pill-PBO        | Some concerns        | Some concerns  | Some concerns | No concerns | No concerns  | Undetected             | -1* within-study bias,<br>-1* imprecision, -1*<br>heterogeneity | Very low             |
| DEV vs Pill-PBO        | No concerns          | Major concerns | No concerns   | No concerns | No concerns  | Undetected             | -2* imprecision                                                 | Low                  |
| DUL vs Pill-PBO        | No concerns          | Major concerns | No concerns   | No concerns | No concerns  | Undetected             | -2* imprecision                                                 | Low                  |
| ESC vs Pill-PBO        | Some concerns        | Major concerns | No concerns   | No concerns | No concerns  | Undetected             | -1* within-study bias,<br>-2* imprecision                       | Very low             |
| FLU vs Pill-PBO        | Some concerns        | Some concerns  | Some concerns | No concerns | No concerns  | Undetected             | -1* within-study bias,<br>-1* imprecision, -1*<br>heterogeneity | Very low             |
| FLU+CBT vs<br>Pill-PBO | Major concerns       | Major concerns | No concerns   | No concerns | No concerns  | Undetected             | -2* within-study bias,<br>-2* imprecision                       | Very low             |
| IMP vs Pill-PBO        | No concerns          | No concerns    | Some concerns | No concerns | No concerns  | Undetected             | -1* heterogeneity                                               | Moderate             |
| MIR vs Pill-PBO        | Some concerns        | Major concerns | No concerns   | No concerns | No concerns  | Undetected             | -1* within-study bias,<br>-2* imprecision                       | Very low             |
| NEF vs Pill-PBO        | Some concerns        | Major concerns | No concerns   | No concerns | No concerns  | Undetected             | -1* within-study bias,<br>-2* imprecision                       | Very low             |
| NOR vs Pill-PBO        | Some concerns        | Major concerns | No concerns   | No concerns | No concerns  | Undetected             | -1* within-study bias,<br>-2* imprecision                       | Very low             |
| PAR vs Pill-PBO        | Some concerns        | Some concerns  | Some concerns | No concerns | No concerns  | Undetected             | -1* within-study bias,<br>-1* imprecision, -1*<br>heterogeneity | Very low             |

| SER vs Pill-PBO             | Major concerns | Some concerns  | Some concerns | No concerns | No concerns | Undetected | -2* within-study bias,<br>-1* imprecision, -1*<br>heterogeneity | Very low |
|-----------------------------|----------------|----------------|---------------|-------------|-------------|------------|-----------------------------------------------------------------|----------|
| VEN vs Pill-PBO             | Major concerns | Major concerns | No concerns   | No concerns | No concerns | Undetected | -2* within-study bias,<br>-2* imprecision                       | Very low |
| VIL vs Pill-PBO             | No concerns    | Major concerns | No concerns   | No concerns | No concerns | Undetected | -2* imprecision                                                 | Low      |
| BT vs Pill-PBO              | Major concerns | Major concerns | No concerns   | No concerns | No concerns | Undetected | -2* within-study bias,<br>-2* imprecision                       | Very low |
| CLO vs Pill-PBO             | No concerns    | Major concerns | No concerns   | No concerns | No concerns | Undetected | -2* imprecision                                                 | Low      |
| DYN vs Pill-PBO             | Major concerns | Major concerns | No concerns   | No concerns | No concerns | Undetected | -2* within-study bias,<br>-2* imprecision                       | Very low |
| FT vs Pill-PBO              | Major concerns | Major concerns | No concerns   | No concerns | No concerns | Undetected | -2* within-study bias,<br>-2* imprecision                       | Very low |
| IPT vs Pill-PBO             | Major concerns | Major concerns | No concerns   | No concerns | No concerns | Undetected | -2* within-study bias,<br>-2* imprecision                       | Very low |
| IMP+CBT vs<br>Pill-PBO      | Some concerns  | Major concerns | No concerns   | No concerns | No concerns | Undetected | -1* within-study bias,<br>-2* imprecision                       | Very low |
| PST vs Pill-PBO             | Major concerns | Major concerns | No concerns   | No concerns | No concerns | Undetected | -2* within-study bias,<br>-2* imprecision                       | Very low |
| Pill-PBO+CBT vs<br>Pill-PBO | Some concerns  | Major concerns | No concerns   | No concerns | No concerns | Undetected | -1* within-study bias,<br>-2* imprecision                       | Very low |
| Psy-PBO vs Pill-PBO         | Major concerns | Major concerns | No concerns   | No concerns | No concerns | Undetected | -2* within-study bias,<br>-2* imprecision                       | Very low |
| SUP vs Pill-PBO             | Major concerns | Major concerns | No concerns   | No concerns | No concerns | Undetected | -2* within-study bias,<br>-2* imprecision                       | Very low |
| SER+CBT vs<br>Pill-PBO      | Major concerns | Major concerns | No concerns   | No concerns | No concerns | Undetected | -2* within-study bias,<br>-2* imprecision                       | Very low |
| TAU vs Pill-PBO             | Major concerns | Major concerns | No concerns   | No concerns | No concerns | Undetected | -2* within-study bias,<br>-2* imprecision                       | Very low |
| VEN+CBT vs<br>Pill-PBO      | Some concerns  | Major concerns | No concerns   | No concerns | No concerns | Undetected | -1* within-study bias,<br>-2* imprecision                       | Very low |
| WL vs Pill-PBO              | Major concerns | Major concerns | No concerns   | No concerns | No concerns | Undetected | -2* within-study bias,<br>-2* imprecision                       | Very low |
| BT vs Psy-PBO               | Major concerns | Major concerns | No concerns   | No concerns | No concerns | Undetected | -2* within-study bias,                                          | Very low |

|                |                |                |             |                |               |            | -2* imprecision                                                                    |          |
|----------------|----------------|----------------|-------------|----------------|---------------|------------|------------------------------------------------------------------------------------|----------|
| BT vs SUP      | Major concerns | Major concerns | No concerns | No concerns    | No concerns   | Undetected | -2* within-study bias,<br>-2* imprecision                                          | Very low |
| CBT vs DYN     | Major concerns | Major concerns | No concerns | No concerns    | Some concerns | Undetected | -2* within-study bias,<br>-2* imprecision, -1*<br>indirectness                     | Very low |
| CBT vs FT      | Major concerns | Major concerns | No concerns | No concerns    | No concerns   | Undetected | -2* within-study bias,<br>-2* imprecision                                          | Very low |
| CBT vs FLU     | Major concerns | Major concerns | No concerns | No concerns    | No concerns   | Undetected | -2* within-study bias,<br>-2* imprecision                                          | Very low |
| CBT vs FLU+CBT | Major concerns | Major concerns | No concerns | No concerns    | No concerns   | Undetected | -2* within-study bias,<br>-2* imprecision                                          | Very low |
| CBT vs IPT     | Major concerns | Major concerns | No concerns | No concerns    | No concerns   | Undetected | -2* within-study bias,<br>-2* imprecision                                          | Very low |
| CBT vs Psy-PBO | Major concerns | Some concerns  | No concerns | Major concerns | Some concerns | Undetected | -2* within-study bias,<br>-1* imprecision, -1*<br>incoherence, -1*<br>indirectness | Very low |
| CBT vs SUP     | Major concerns | Major concerns | No concerns | Some concerns  | No concerns   | Undetected | -2* within-study bias,<br>-1* imprecision, -1*<br>incoherence                      | Very low |
| CBT vs SER     | Major concerns | Major concerns | No concerns | No concerns    | No concerns   | Undetected | -2* within-study bias,<br>-2* imprecision                                          | Very low |
| CBT vs SER+CBT | Some concerns  | Major concerns | No concerns | No concerns    | No concerns   | Undetected | -1* within-study bias,<br>-2* imprecision                                          | Very low |
| CBT vs TAU     | Major concerns | Major concerns | No concerns | No concerns    | No concerns   | Undetected | -2* within-study bias,<br>-2* imprecision                                          | Very low |
| CBT vs WL      | Major concerns | Major concerns | No concerns | No concerns    | No concerns   | Undetected | -2* within-study bias,<br>-2* imprecision                                          | Very low |
| CLO vs PAR     | No concerns    | Major concerns | No concerns | No concerns    | No concerns   | Undetected | -2* imprecision                                                                    | Low      |
| DYN vs FT      | Major concerns | Major concerns | No concerns | No concerns    | Some concerns | Undetected | -2* within-study bias,<br>-2* imprecision, -1*<br>indirectness                     | Very low |
| DYN vs Psy-PBO | Major concerns | Major concerns | No concerns | Some concerns  | Some concerns | Undetected | -2* within-study bias,                                                             | Very low |

|                            |                |                |               |               |               |            | -1* imprecision, -1* incoherence, -1* indirectness                                 |          |
|----------------------------|----------------|----------------|---------------|---------------|---------------|------------|------------------------------------------------------------------------------------|----------|
| DEV vs FLU                 | No concerns    | Major concerns | No concerns   | No concerns   | No concerns   | Undetected | -2* imprecision                                                                    | Low      |
| DUL vs FLU                 | No concerns    | Major concerns | No concerns   | No concerns   | No concerns   | Undetected | -2* imprecision                                                                    | Low      |
| FT vs Psy-PBO              | Major concerns | Major concerns | No concerns   | Some concerns | Some concerns | Undetected | -2* within-study bias,<br>-1* imprecision, -1*<br>incoherence, -1*<br>indirectness | Very low |
| FT vs SUP                  | Major concerns | Major concerns | No concerns   | No concerns   | No concerns   | Undetected | -2* within-study bias,<br>-2* imprecision                                          | Very low |
| FT vs TAU                  | Major concerns | Major concerns | No concerns   | No concerns   | No concerns   | Undetected | -2* within-study bias,<br>-2* imprecision                                          | Very low |
| FT vs WL                   | Major concerns | Major concerns | No concerns   | No concerns   | No concerns   | Undetected | -2* within-study bias,<br>-2* imprecision                                          | Very low |
| FLU vs FLU+CBT             | Some concerns  | Major concerns | No concerns   | No concerns   | No concerns   | Undetected | -1* within-study bias,<br>-2* imprecision                                          | Very low |
| FLU vs NOR                 | Some concerns  | Major concerns | No concerns   | No concerns   | No concerns   | Undetected | -1* within-study bias,<br>-2* imprecision                                          | Very low |
| FLU vs VEN                 | Some concerns  | Major concerns | No concerns   | No concerns   | No concerns   | Undetected | -1* within-study bias,<br>-2* imprecision                                          | Very low |
| FLU+CBT vs<br>Pill-PBO+CBT | Some concerns  | Major concerns | No concerns   | No concerns   | No concerns   | Undetected | -1* within-study bias,<br>-2* imprecision                                          | Very low |
| IPT vs Psy-PBO             | Major concerns | Some concerns  | Some concerns | No concerns   | No concerns   | Undetected | -2* within-study bias,<br>-1* imprecision, -1*<br>heterogeneity                    | Very low |
| IPT vs TAU                 | Major concerns | Major concerns | No concerns   | No concerns   | No concerns   | Undetected | -2* within-study bias,<br>-2* imprecision                                          | Very low |
| IPT vs WL                  | Major concerns | Major concerns | No concerns   | No concerns   | No concerns   | Undetected | -2* within-study bias,<br>-2* imprecision                                          | Very low |
| IMP vs PAR                 | No concerns    | Some concerns  | Some concerns | No concerns   | No concerns   | Undetected | -1* imprecision, -1* heterogeneity                                                 | Low      |
| IMP+CBT vs<br>Pill-PBO+CBT | Some concerns  | Major concerns | No concerns   | No concerns   | No concerns   | Undetected | -1* within-study bias,<br>-2* imprecision                                          | Very low |

| PST vs WL                  | Major concerns | Major concerns | No concerns    | No concerns | No concerns   | Undetected | -2* within-study bias,<br>-2* imprecision                      | Very low |
|----------------------------|----------------|----------------|----------------|-------------|---------------|------------|----------------------------------------------------------------|----------|
| Pill-PBO+CBT vs<br>SER+CBT | Some concerns  | Major concerns | No concerns    | No concerns | No concerns   | Undetected | -1* within-study bias,<br>-2* imprecision                      | Very low |
| Pill-PBO+CBT vs<br>VEN+CBT | Major concerns | Major concerns | No concerns    | No concerns | Some concerns | Undetected | -2* within-study bias,<br>-2* imprecision, -1*<br>indirectness | Very low |
| SER vs SER+CBT             | Major concerns | Major concerns | No concerns    | No concerns | No concerns   | Undetected | -2* within-study bias,<br>-2* imprecision                      | Very low |
| DES vs FLU                 | Some concerns  | No concerns    | Some concerns  | No concerns | No concerns   | Undetected | -1* within-study bias,<br>-1* heterogeneity                    | Low      |
| DES vs NEF                 | Some concerns  | No concerns    | Some concerns  | No concerns | No concerns   | Undetected | -1* within-study bias,<br>-1* heterogeneity                    | Low      |
| DEV vs IMP                 | Some concerns  | No concerns    | Some concerns  | No concerns | No concerns   | Undetected | -1* within-study bias<br>-1* heterogeneity                     | Low      |
| FLU vs IMP                 | Some concerns  | No concerns    | No concerns    | No concerns | No concerns   | Undetected | -1* within-study bias                                          | Moderate |
| FLU vs SER                 | Some concerns  | No concerns    | Major concerns | No concerns | No concerns   | Undetected | -1* within-study bias,<br>-2* heterogeneity                    | Very low |
| FLU+CBT vs IMP             | Some concerns  | No concerns    | Some concerns  | No concerns | No concerns   | Undetected | -1* within-study bias,<br>-1* heterogeneity                    | Low      |
| IMP vs NEF                 | Some concerns  | No concerns    | No concerns    | No concerns | No concerns   | Undetected | -1* within-study bias                                          | Moderate |
| IMP vs VIL                 | No concerns    | No concerns    | No concerns    | No concerns | No concerns   | Undetected | No downgrade                                                   | High     |
| NEF vs SER                 | Some concerns  | No concerns    | Some concerns  | No concerns | No concerns   | Undetected | -1* within-study bias,<br>-1* heterogeneity                    | Low      |

AMI=Amitriptyline. BT=Behavioural therapy. CBT=Cognitive-behavioural therapy. CIT=Citalopram. CLO=Clomipramine. CrI=credibility interval. DYN=Psychodynamic therapy. DES=Desipramine. DEV=Desvenlafaxine. DUL=Duloxetine. ESC=Escitalopram. FT=Family therapy. FLU=Fluoxetine. IPT=Interpersonal therapy. IMP=Imipramine. MIR=Mirtazapine. NEF=Nefazodone. NOR=Nortriptyline. PST=Problem-solving therapy. PAR=Paroxetine. Pill-PBO=Pill placebo. Psy-PBO=Psychological placebo. SUP= Supportive therapy. SER=Sertraline. SMD=standardised mean difference. TAU=Treatment as usual. VEN=Venlafaxine. VIL=Vilazodone. WL=Waitlist.

## c. The confidence in OR for suicidality for camparisons with Pill-PBO, directed comparisons and significant comparisons by CINeMA approach

| Comparison             | Within-study<br>bias | Imprecision    | Heterogeneity | Incoherence | Indirectness  | Across-studies<br>bias | Downgrading                                                     | Confidence<br>rating |
|------------------------|----------------------|----------------|---------------|-------------|---------------|------------------------|-----------------------------------------------------------------|----------------------|
| Pill-PBO vs CBT        | Major concerns       | Major concerns | No concerns   | No concerns | No concerns   | Undetected             | -2* within-study bias,<br>-2* imprecision                       | Very low             |
| Pill-PBO vs CIT        | Major concerns       | Major concerns | No concerns   | No concerns | No concerns   | Undetected             | -2* within-study bias,<br>-2* imprecision                       | Very low             |
| Pill-PBO vs DEV        | No concerns          | Major concerns | No concerns   | No concerns | No concerns   | Undetected             | -2* imprecision                                                 | Low                  |
| Pill-PBO vs DUL        | No concerns          | Major concerns | No concerns   | No concerns | No concerns   | Undetected             | -2* imprecision                                                 | Low                  |
| Pill-PBO vs ESC        | Some concerns        | Major concerns | No concerns   | No concerns | No concerns   | Undetected             | -1* within-study bias,<br>-2* imprecision                       | Very low             |
| Pill-PBO vs FLU        | Some concerns        | Major concerns | No concerns   | No concerns | No concerns   | Undetected             | -1* within-study bias,<br>-2* imprecision                       | Very low             |
| Pill-PBO vs<br>FLU+CBT | Some concerns        | Major concerns | No concerns   | No concerns | No concerns   | Undetected             | -1* within-study bias,<br>-2* imprecision                       | Very low             |
| Pill-PBO vs IMP        | No concerns          | Major concerns | No concerns   | No concerns | No concerns   | Undetected             | -2* imprecision                                                 | Low                  |
| Pill-PBO vs MIR        | Major concerns       | Major concerns | No concerns   | No concerns | No concerns   | Undetected             | -2* within-study bias,<br>-2* imprecision                       | Very low             |
| Pill-PBO vs NEF        | Some concerns        | Major concerns | No concerns   | No concerns | No concerns   | Undetected             | -1* within-study bias,<br>-2* imprecision                       | Very low             |
| Pill-PBO vs PAR        | Some concerns        | Some concerns  | Some concerns | No concerns | No concerns   | Undetected             | -1* within-study bias,<br>-1* imprecision, -1*<br>heterogeneity | Very low             |
| Pill-PBO vs SER        | Major concerns       | Major concerns | No concerns   | No concerns | No concerns   | Undetected             | -2* within-study bias,<br>-2* imprecision                       | Very low             |
| Pill-PBO vs VEN        | Major concerns       | No concerns    | No concerns   | No concerns | No concerns   | Undetected             | -2* within-study bias                                           | Low                  |
| Pill-PBO vs VIL        | No concerns          | Major concerns | No concerns   | No concerns | No concerns   | Undetected             | -2* imprecision                                                 | Low                  |
| CBT vs DYN             | Major concerns       | Major concerns | No concerns   | No concerns | Some concerns | Undetected             | -2* within-study bias,<br>-2* imprecision, -1*<br>indirectness  | Very low             |

| CBT vs FT      | Major concerns | Major concerns | No concerns | No concerns | No concerns   | Undetected | -2* within-study bias,<br>-2* imprecision                      | Very low |
|----------------|----------------|----------------|-------------|-------------|---------------|------------|----------------------------------------------------------------|----------|
| CBT vs FLU     | Major concerns | Major concerns | No concerns | No concerns | No concerns   | Undetected | -2* within-study bias,<br>-2* imprecision                      | Very low |
| CBT vs FLU+CBT | Major concerns | Major concerns | No concerns | No concerns | No concerns   | Undetected | -2* within-study bias,<br>-2* imprecision                      | Very low |
| CBT vs IPT     | Major concerns | Major concerns | No concerns | No concerns | Some concerns | Undetected | -2* within-study bias,<br>-2* imprecision, -1*<br>indirectness | Very low |
| CBT vs Psy-PBO | Major concerns | Major concerns | No concerns | No concerns | Some concerns | Undetected | -2* within-study bias,<br>-2* imprecision, -1*<br>indirectness | Very low |
| CBT vs SUP     | Major concerns | Major concerns | No concerns | No concerns | No concerns   | Undetected | -2* within-study bias,<br>-2* imprecision                      | Very low |
| CBT vs SER     | Major concerns | Some concerns  | No concerns | No concerns | No concerns   | Undetected | -2* within-study bias,<br>-1* imprecision                      | Very low |
| CBT vs SER+CBT | Major concerns | Major concerns | No concerns | No concerns | No concerns   | Undetected | -2* within-study bias,<br>-2* imprecision                      | Very low |
| CBT vs TAU     | Some concerns  | Major concerns | No concerns | No concerns | No concerns   | Undetected | -1* within-study bias,<br>-2* imprecision                      | Very low |
| CLO vs PAR     | No concerns    | Major concerns | No concerns | No concerns | No concerns   | Undetected | -2* imprecision                                                | Low      |
| DYN vs FT      | Major concerns | Major concerns | No concerns | No concerns | Some concerns | Undetected | -2* within-study bias,<br>-2* imprecision, -1*<br>indirectness | Very low |
| DYN vs Psy-PBO | Major concerns | Major concerns | No concerns | No concerns | No concerns   | Undetected | -2* within-study bias,<br>-2* imprecision                      | Very low |
| DEV vs FLU     | No concerns    | Major concerns | No concerns | No concerns | No concerns   | Undetected | -2* imprecision                                                | Low      |
| DUL vs FLU     | No concerns    | Major concerns | No concerns | No concerns | No concerns   | Undetected | -2* imprecision                                                | Low      |
| FT vs Psy-PBO  | Major concerns | Major concerns | No concerns | No concerns | No concerns   | Undetected | -2* within-study bias,<br>-2* imprecision                      | Very low |
| FT vs SUP      | Major concerns | Major concerns | No concerns | No concerns | No concerns   | Undetected | -2* within-study bias,<br>-2* imprecision                      | Very low |
| FT vs TAU      | Major concerns | Major concerns | No concerns | No concerns | No concerns   | Undetected | -2* within-study bias,<br>-2* imprecision                      | Very low |

| FLU vs FLU+CBT              | Some concerns  | Major concerns | No concerns   | No concerns | No concerns | Undetected | -1* within-study bias,<br>-2* imprecision | Very low |
|-----------------------------|----------------|----------------|---------------|-------------|-------------|------------|-------------------------------------------|----------|
| FLU vs VEN                  | Some concerns  | No concerns    | No concerns   | No concerns | No concerns | Undetected | -1* within-study bias                     | Moderate |
| FLU+CBT vs<br>Pill-PBO+CBT  | Some concerns  | Major concerns | No concerns   | No concerns | No concerns | Undetected | -1* within-study bias,<br>-2* imprecision | Very low |
| IPT vs Psy-PBO              | Some concerns  | Major concerns | No concerns   | No concerns | No concerns | Undetected | -1* within-study bias,<br>-2* imprecision | Very low |
| IPT vs TAU                  | Some concerns  | Major concerns | No concerns   | No concerns | No concerns | Undetected | -1* within-study bias,<br>-2* imprecision | Very low |
| IMP vs PAR                  | No concerns    | Major concerns | No concerns   | No concerns | No concerns | Undetected | -2* imprecision                           | Low      |
| Pill-PBO+CBT vs<br>SER+CBT  | Some concerns  | Major concerns | No concerns   | No concerns | No concerns | Undetected | -1* within-study bias,<br>-2* imprecision | Very low |
| SER vs SER+CBT              | Major concerns | Major concerns | No concerns   | No concerns | No concerns | Undetected | -2* within-study bias,<br>-2* imprecision | Very low |
| Pill-PBO vs CLO             | No concerns    | Major concerns | No concerns   | No concerns | No concerns | Undetected | -2* imprecision                           | Low      |
| Pill-PBO vs DYN             | Major concerns | Major concerns | No concerns   | No concerns | No concerns | Undetected | -2* within-study bias,<br>-2* imprecision | Very low |
| Pill-PBO vs FT              | Major concerns | Major concerns | No concerns   | No concerns | No concerns | Undetected | -2* within-study bias,<br>-2* imprecision | Very low |
| Pill-PBO vs IPT             | Major concerns | Major concerns | No concerns   | No concerns | No concerns | Undetected | -2* within-study bias,<br>-2* imprecision | Very low |
| Pill-PBO vs<br>Pill-PBO+CBT | Some concerns  | Major concerns | No concerns   | No concerns | No concerns | Undetected | -1* within-study bias,<br>-2* imprecision | Very low |
| Pill-PBO vs Psy-PBO         | Major concerns | Major concerns | No concerns   | No concerns | No concerns | Undetected | -2* within-study bias,<br>-2* imprecision | Very low |
| Pill-PBO vs SUP             | Major concerns | Major concerns | No concerns   | No concerns | No concerns | Undetected | -2* within-study bias,<br>-2* imprecision | Very low |
| Pill-PBO vs<br>SER+CBT      | Major concerns | Major concerns | No concerns   | No concerns | No concerns | Undetected | -2* within-study bias,<br>-2* imprecision | Very low |
| Pill-PBO vs TAU             | Some concerns  | Major concerns | No concerns   | No concerns | No concerns | Undetected | -1* within-study bias,<br>-2* imprecision | Very low |
| CBT vs VEN                  | Major concerns | No concerns    | No concerns   | No concerns | No concerns | Undetected | -2* within-study bias                     | Low      |
| CIT vs VEN                  | Major concerns | No concerns    | Some concerns | No concerns | No concerns | Undetected | -2* within-study bias,                    | Very low |

|                        |                |                |               |             |             |            | -1* heterogeneity                                               |           |
|------------------------|----------------|----------------|---------------|-------------|-------------|------------|-----------------------------------------------------------------|-----------|
| ESC vs VEN             | Major concerns | No concerns    | No concerns   | No concerns | No concerns | Undetected | -2* within-study bias                                           | Low       |
| DEV vs VEN             | Some concerns  | No concerns    | No concerns   | No concerns | No concerns | Undetected | -1* within-study bias                                           | Morderate |
| DUL vs VEN             | Some concerns  | No concerns    | No concerns   | No concerns | No concerns | Undetected | -1* within-study bias                                           | Morderate |
| FLU+CBT vs VEN         | Some concerns  | No concerns    | No concerns   | No concerns | No concerns | Undetected | -1* within-study bias                                           | Morderate |
| FT vs VEN              | Major concerns | No concerns    | No concerns   | No concerns | No concerns | Undetected | -2* within-study bias                                           | Low       |
| IMP vs VEN             | Some concerns  | No concerns    | No concerns   | No concerns | No concerns | Undetected | -1* within-study bias                                           | Morderate |
| Pill-PBO+CBT vs<br>VEN | Some concerns  | No concerns    | No concerns   | No concerns | No concerns | Undetected | -1* within-study bias                                           | Morderate |
| VIL vs VEN             | Some concerns  | Major concerns | No concerns   | No concerns | No concerns | Undetected | -1* within-study bias,<br>-2* imprecision                       | Very low  |
| NEF vs VEN             | Major concerns | Some concerns  | No concerns   | No concerns | No concerns | Undetected | -2* within-study bias,<br>-1* imprecision                       | Very low  |
| SER+CBT vs VEN         | Major concerns | Major concerns | No concerns   | No concerns | No concerns | Undetected | -2* within-study bias,<br>-2* imprecision                       | Very low  |
| CLO vs VEN             | Some concerns  | Major concerns | No concerns   | No concerns | No concerns | Undetected | -1* within-study bias,<br>-2* imprecision                       | Very low  |
| PAR vs VEN             | Some concerns  | Some concerns  | Some concerns | No concerns | No concerns | Undetected | -1* within-study bias,<br>-1* imprecision, -1*<br>heterogeneity | Very low  |
| SUP vs VEN             | Major concerns | Major concerns | No concerns   | No concerns | No concerns | Undetected | -2* within-study bias,<br>-2* imprecision                       | Very low  |
| SER vs VEN             | Major concerns | Major concerns | No concerns   | No concerns | No concerns | Undetected | -2* within-study bias,<br>-2* imprecision                       | Very low  |
| MIR vs VEN             | Major concerns | Major concerns | No concerns   | No concerns | No concerns | Undetected | -2* within-study bias,<br>-2* imprecision                       | Very low  |
| DYN vs VEN             | Major concerns | Major concerns | No concerns   | No concerns | No concerns | Undetected | -2* within-study bias,<br>-2* imprecision                       | Very low  |
| TAU vs VEN             | Some concerns  | Major concerns | No concerns   | No concerns | No concerns | Undetected | -1* within-study bias,<br>-2* imprecision                       | Very low  |
| IPT vs VEN             | Major concerns | Major concerns | No concerns   | No concerns | No concerns | Undetected | -2* within-study bias,<br>-2* imprecision                       | Very low  |

| Psy-PBO vs VEN | Major concerns | Major concerns | No concerns | No concerns | No concerns | Undetected | -2* within-study bias,<br>-2* imprecision | Very low |
|----------------|----------------|----------------|-------------|-------------|-------------|------------|-------------------------------------------|----------|
|----------------|----------------|----------------|-------------|-------------|-------------|------------|-------------------------------------------|----------|

AMI=Amitriptyline. BT=Behavioural therapy. CBT=Cognitive-behavioural therapy. CIT=Citalopram. CLO=Clomipramine. CrI=credibility interval. DYN=Psychodynamic therapy. DES=Desipramine. DEV=Desvenlafaxine. DUL=Duloxetine. ESC=Escitalopram. FT=Family therapy. FLU=Fluoxetine. IPT=Interpersonal therapy. IMP=Imipramine. MIR=Mirtazapine. NEF=Nefazodone. NOR=Nortriptyline. PST=Problem-solving therapy. PAR=Paroxetine. Pill-PBO=Pill placebo. Psy-PBO=Psychological placebo. SUP= Supportive therapy. SER=Sertraline. SMD=standardised mean difference. TAU=Treatment as usual. VEN=Venlafaxine. VIL=Vilazodone. WL=Waitlist.