Supporting Information

Tiled Monolayer Films of 2D Molybdenum Disulphide Nanoflakes Assembled at Liquid/Liquid Interfaces

Joseph Neilson, Michael P. Avery, Brian Derby*

Department of Materials, University of Manchester, Oxford Rd., Manchester M13 9PL, UK.

*Corresponding Author brian.derby@manchester.ac.uk

Stability of Particles at Interfaces

The effects of gravity can be neglected if the ration between gravitational forces and capillary forces is sufficiently low. These can be compared using the dimensionless bond number

$$Bo = \Delta \rho g d^2 / \gamma_{12} \tag{S1}$$

Where $\Delta \rho$ is the difference in density between the phases present, g = 9.8 ms⁻² is the acceleration of gravity, *d* is the characteristic length of the system taken as the diameter of the flakes or particles at the interface and γ_{12} is the interfacial tension between the immiscible liquids. Here $\Delta \rho \approx 4000$ kg.m⁻³, $\gamma_{12} = 55$ mNm⁻¹ and *d* is taken as 10⁻⁶ m, giving $Bo = 8 \times 10^{-7}$, showing that capillary forces clearly dominate.

Figure S1: a) thickness (n = 50) and b) lateral area (n > 600) histograms for the MoS_2 dispersion separated by cascade centrifugation at 8-12 kRPM. Thickness histogram added again for completeness.

Figure S2: High magnification (50000 x) SEM image of liquid/liquid interface assembled thin film.

Figure S3: Three example FETs assembled in the same manner as reported in the main body (FET3 is the demonstrator device in the main body). Mobilities extracted from the I_{ds}/V_g curves are 0.28, 0.443, and 0.726 for FET1, FET2, and FET3 respectively.

Figure S4: 3 Phase contact angle measurement of water droplet on MoS₂ surface in hexane environment.

Figure S5: XRD patterns for liquid/liquid interface assembled thin films of MoS₂ flakes as prepared, and size selected to narrow size distribution (average flake thickness 2 nm, 1-2 monolayers MoS₂). The 002 peak is not visible in the size selected film indicating the presence of less than 5 MoS₂ monolayers and therefore the ultrathin nature of the film and the lack of flake overlap.^{1,2}

Device type	Mobility	on/off	Processing temp (°C)	reference
Single crystal	0.2	10	N/A	55
CVD Grown MoS ₂ FETs	6	10 ⁵	850	62
	10	10 ⁸	1000	63
	0.02	10 ³	650	64
	0.68	<104	700	65
	24	10 ⁶	750	66
Solution processed MoS ₂ FETs	0.0004	22	200	10
	0.1	600	N/A	67
	0.3	2	50	68
	10	10 ⁶	400	57
	<0.1	<10	450	69
	0.73	10 ⁵	200	This work

Table S1: Values used in the main text graph (Figure 6). References correspond to the mainbody references section.

References

Ramakrishna Matte, H. S. S.; Gomathi, A.; Manna, A. K.; Late, D. J.; Datta, R.; Pati, S. K.; Rao, C. N. R. MoS₂ and WS₂ Analogues of Graphene. Angew. Chemie Int. Ed. **2010**, 49, 4059–4062.

(2) Rao, C. N. R.; Nag, A. Inorganic Analogues of Graphene. Eur. J. Inorg. Chem. 2010, 27, 4244–4250.