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1 Transparent Methods

1.1 Preliminaries

Strings and de Bruijn graphs

Let s be a string, indexed starting from 1. By si we denote the k-mer starting at position i of s.
Given s and a positive integer k, we define a multigraph G(s, k) as the de Bruijn graph of s. The
vertex set consists of all substrings of s of length k, called k-mers. For each (k + 1)-mer substring
x in s, we add a directed edge from u to v, where u is the prefix of x of length k and v the suffix
of x of length k. Each occurrence of a (k + 1)-mer yields a unique multiedge, and every multiedge
corresponds to a unique location in s. See Figure S1a for an example. Note that unlike some other
definitions of a de Bruijn graph, a (k + 1)-mer that occurs multiple times in s will have multiple
corresponding edges. The de Bruijn graph for a set of sequences S is G(S, k) =

⋃
s∈S G(s, k). That

is, the vertex set of G(S, k) is the union of all the vertex sets (where vertices with the same label
are considered identical) and the multiedge set of G(S, k) is the union of all the edge sets (but
where each multiedge is preserved, even if it shares a label with another multiedge).

The set of a multiedges in a graph G is denoted by E(G). We write (u, v) to denote a multiedge
from vertex u to v. A walk w is a sequence of multiedges ((v1, v2), (v2, v3), . . . , (v|w|, v|w|+1)) where
each multiedge (vi, vi+1) belongs to E(G). The length of the walk w, denoted by |w|, is the number
of multiedges it contains. A walk is genomic if it was generated by a substring in the input, that
is, if the multiedges correspond to consecutive (k + 1)-mers in the input.
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Chains

Consider two chromosome sequences s and t and their de Bruijn graph G = G({s}∪ {t}, k). There
are several ways to mathematically define a homologous pair of substrings from s and t. The
definition that lends itself to de Bruijn graph-based algorithms is that of a chain (Zhang et al.,
1994; Myers, 1995). In our context, a chain is, informally, a sequence of common k-mers that forms a
sub-sequence (i.e. substrings allowing gaps) in both strings interleaved by potential point mutations
or indels of bounded length. Formally, a chain c of weight n is two non-decreasing sequences of
indices (i1, . . . , in) and (j1, . . . , jn) such that six = tjx and ix − ix−1 ≤ b and jx − jx−1 ≤ b and
if ix = ix−1 then jx 6= jx−1, for all x. Each chain is associated with two genomic walks in G;
specifically, the genomic walk corresponding to the substring of s starting from position i1 and
ending in position in, and, similarly, the genomic walk corresponding to the substring of t from
position t1 to tn. See Figure S1a for an example of a chain.

Let c = ((i1, . . . , in), (j1, . . . , jn)) and c′ = ((i′1, . . . , i
′
m), (j′1, . . . , j

′
m)) be two chains. The con-

catenation of c and c′ is the pair of sequences

c · c′ = ((i1, . . . , in, i
′
1, . . . i

′
m), (j1, . . . , jn, j

′
1, . . . , j

′
m))

Note that c · c′ is a chain iff i′1 ≥ in, j′1 ≥ jn and i′1− in, j′1− jn ≤ b and either i′1 6= in or j′1 6= jn. In
practice, we will be interested in the concatenation operation only if the result is a chain. We say
that a chain c is right-maximal if there is no other chain c′ such that c · c′ is a chain, left-maximal if
there is no other chain c′ such that c′ ·c is a chain, and maximal if it is both left- and right-maximal.

1.2 Problem formulation and recurrence solution

To formulate the pairwise whole-genome homology mapping problem, let us take as input two
chromosome sequences s and t, and a positive integer parameter b. As we discussed, we define
a pairwise homology as a chain. One could then formulate the problem as that of outputting all
maximal chains. However, such an output would contain a lot of redundancy, because two chains
can span similar regions in s and t but contain different shared k-mers. To remove some of the
redundancy, and with an eye towards an efficient algorithm, we use the notion of (i,j)-maximum
chains. A chain is (i,j)-maximum if it ends in positions i and j in s and t, respectively, and has the
highest weight among all such chains. Our problem formulation is then:

Problem Definition. Given two sequences s and t and a positive integer b, output, for every
1 ≤ i ≤ |s| and 1 ≤ j ≤ |t|, a maximal (i, j)-maximum chain, if it exists.

This problem formulation lends itself naturally to dynamic programming, because (i, j)-maximum
chains have an optimal substructure property. Formally,

Property 1. Let c be an (i, j)-maximum chain of length greater than one. Let us decompose it as
c = d · ((i′), (j′)) · ((i), (j)), where d may be empty. Let c′ be any (i′, j′)-maximum chain. Then
c′ · ((i), (j)) is an (i, j)-maximum chain.

Proof. Let w be the weight of d · ((i′), (j′)). The weight of c is w + 1. Since d · ((i′), (j′)) ends in
((i′), (j′)), any ((i′), (j′))-maximum chain must have weight at least w. Hence the weight of c′ is
at least w, and the weight of c′ · ((i), (j)) is at least w + 1. Since this is the weight of c and c was
(i, j)-maximum, c′ · ((i), (j)) is (i, j)-maximum as well.

To determine the i′ and j′ of this Property, we will define the predecessor function. Consider a
pair of positions i and j such that si = tj . We define its possible left-extensions as the set of pairs
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Figure S1: (a) De Bruijn graph built from strings s =“GCACGTC” and t =“GCACTTC”, with
k = 2. The two strings are reflected by the blue and red walks, respectively. The whole graph is
chain ((1, 2, 3, 6), (1, 2, 3, 6)). (b) The compacted version of the graph from panel (a); substrings
generating the corresponding edges are shown adjacent to them. Note that the pair of edges between
vertices “GC” and “AC” correspond to a case of parallel edges generated by identical substrings,
while the edges between “AC” and “TC” form a bubble caused by a point mutation. (c) State of
the list Q as well as vectors e and p, after considering each position i of the string s at which the
algorithm adds a chain. The pointer in p[j] leads to an element C(i, j) of Q; e[j] = 1 if p[j] is not
a null pointer; e[j] = 0 otherwise. Q1 shows the contents of Q after processing vertex “GC” (there
is only one chain consisting of the initial k-mer); Q2 contains the extended chain; and Q6 has the
whole graph minus the first chain that was removed due to being too far from the current position.
Related to Table 1.
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(i′, j′) such that ((i′), (j′)) · ((i), (j)) is a valid chain. We define the predecessor function π(i, j)
to be the left-extension (i′, j′) such that the concatenation of an ((i′), (j′))-maximum chain with
((i), (j)) results in the chain of the highest weight. Formally,

π(i, j) = arg max{weight of (i′, j′)-maximum chain | (i′, j′) is a left-extension of (i, j)}

Ties are broken by choosing the chain with a smaller value of j′, and then with a smaller i′ if the
tie still exists. If there are no left extensions, we set π(i, j) = ∅. The predecessor function gives
rises to our dynamic programming matrix C, where each entry C(i, j) stores an (i, j)-maximum
chain, as follows:

C(i, j) :=


∅ if si 6= tj ,

((i), (j)) else if π(i, j) = ∅,
C(π(i, j)) · ((i), (j)) else

(1)

The predecessor function can be computed by checking the value of C for all possible left-
extensions. A solution to our problem is then to compute C and output every C(i, j) that is also
maximal.

Observe that an (i, j)-maximum chain is by definition left-maximal, so it suffices to check if
C(i, j) is right-maximal. This can be done easily, as follows. Observe that C(i, j) is not right-
maximal if and only if there are some offsets 1 ≤ α ≤ b and 1 ≤ β ≤ b such that si+α = tj+β.
In practice, b is quite small, when appropriate data structures are maintained (details omitted),
we can check if a chain is right-maximal quickly. In what follow, we will therefore focus on just
computing C.

1.3 High-level algorithm

Equation (1) immediately lends itself to a naive dynamic programming algorithm that uses a table
where each cell corresponds to a row i and a column j. Such an algorithm can compute all C(i, j)
but will use Ω(|s||t|) memory, which is prohibitive. Instead, we present an algorithm that exploits
the sparseness and structure of C as well as the fact that the maximum gap is limited by parameter
b.

Let C(i′, j′) = C(π(i, j)) denote the predecessor chain of C(i, j). First, we observe that if we
compute the values of C(i, j) in increasing order of i, we are guaranteed that the predecessor chain
has already been computed, i.e. i′ < i. Second, by definition of a valid chain, the predecessor chain
must lie within the b previous columns, i.e. i′ ≥ i− b. Hence, it is not necessary to retain the whole
table in memory, but rather, just the previous b columns. Third, the matrix is mostly sparse, since
it only contains values when si = tj . Therefore, storing it as a matrix is impractical. Instead, we
will store the elements of the previous b columns in a queue Q that supports the lookup operation,
Lookup(Q, (i, j)) = C(i, j), if C(i, j) is in Q. We will describe the implementation of the lookup
function in Section 1.4.

The pseudocode of our method is in Algorithm 1. The outer for loop iterates over all the values
of i. The inner for loop iterates over all values of j where C(i, j) 6= ∅. Lines 4 through 8 implement
the logic of Equation (1). When column i is finished, lines 10 through 14 update Q by removing
all chains from the now outdated column i − b and, for those that are right-maximal, outputting
them. Figure S1c shows an example of the contents of Q after several iterations.

Let us use C(i, ∗) as shorthand for C(i, j) for all j. The correctness of the algorithm follows from
the previous discussion and the following theorem. For clarity, the pseudocode and the theorem
omit some corner cases (e.g. when i′ = i or when we hit the end of the strings).
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Algorithm 1 Find-chains

Input: strings s and t, graph G({s} ∪ {t}, k), integers b and m
Output: the set of all chains in C that are right-maximal.

1: Q← an empty doubly-linked list . The set of current chains C(i, j)
2: for i← 1 to |s| do
3: for all j such that tj = si do . Consider all position of k-mer si in t
4: if π(i, j) 6= ∅ then
5: r ← Lookup(Q, π(i, j)) . Equation (1)
6: PushBack(Q, r · ((i), (j)))
7: else
8: PushBack(Q, ((i), (j)))

9: let c← Front(Q) and denote the end of c as (i′, j′)
10: while i′ < i− b do . Cleaning-up and outputting Q
11: if c is right-maximal then
12: output c

13: PopFront(Q)
14: let c← Front(Q) and denote the end of c as (i′, j′)

Theorem 1 (Correctness of Algorithm 1). At the end of the i-th iteration,

1. Q is the set of C(i′, ∗) for all i− b ≤ i′ ≤ i, in front-to-back order of non-decreasing i′.

2. The algorithm’s output has been the chains C(i′, ∗) which are right-maximal and for which
i′ < i− b.

Proof. For the base case (i = 0), the statement holds since Q is empty. For the general case,
the induction hypothesis tells us that at the start of the i-th iteration, Q contains C(i′, ∗) for all
i− b− 1 ≤ i′ ≤ i− 1, in order. To show (1), we will show that during the iteration, C(i− b− 1, ∗)
are popped from the front and C(i, ∗) are pushed to the back. C(i− b− 1, ∗) are popped from the
front of Q during the while loop, using the fact that Q is in order. C(i, ∗) are computed in the
inner while loop using the logic of Equation (1), so all we need to show is that if π(i, j) 6= ∅, then
C(π(i, j)) ∈ Q. Let (i′, j′) = π(i, j). Because the gap between indices in a chain cannot exceed b,
we have i′ ≥ i − b. By part (1) of the induction hypothesis, C(i′, ∗) is in Q, and hence C(i, j) is
pushed to the back of Q during the inner for loop.

Next we show (2). By induction, before the i-th iteration the output was C(i′, ∗) for all i′ <
i − b − 1. We need to then show that during the i-th iteration, the output is C(i − b − 1, ∗). By
part (1) of the induction hypothesis, the front of Q contains C(i− b− 1, ∗). These elements will be
popped during the while loop and output if they are right-maximal.

1.4 Important details

There are additional aspects that the pseudocode does not address. We described the algorithm
considering only the single strand of DNA. To handle both strands, we run a slightly modified
version of our algorithm on the graph Gcomp(s, k) = G(s, k)∪G(s̄, k), where s̄ is reverse complement
of s (Minkin et al., 2017). We also preprocess the graph by removing all k-mers occurring more
than a times, where a is a parameter. High-frequency k-mers can clog up our data structures and
slow down the algorithm. We allow the user to set a, thereby controlling the trade-off between
speed and potential decrease in accuracy. Finally, to save space, we do not store the actual chains
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in Q, but only their starting and ending coordinates, since this is what the final mapping will return
anyway.

To support the computation of π and the lookup operation for Q (in Line 5), we need a
specialized index. To quickly iterate over all left extensions of ((i), (j)) we keep a bit vector e such
that e[j′] = 1 if and only if Q contains a chain C(i′, j′), for some i′. We also keep a vector p where
p[j′] contains a pointer to an element C(i′, j′) if one exists. If there are several such elements, we
choose the one with the biggest i′.

Using a special machine instruction returning the number of trailing 0-bits, we can find all j′ in
the range of j− b ≤ j′ ≤ j such that e[j′] = 1 using using max(m, b/64) operations, where m is the
number of ones in the range. In the GCC compiler the instruction is designated as builtin ctzll.
Once we identify such values of j′, we the use pointers in p[j′] to access the actual chains and select
the one that yields the best predecessor for C(i, j).1. Due to the nature of the de Bruijn graph, we
expect the vector e to be sparse which results in efficient lookups. Figure S1c contains an example
of state of vectors e and p during several iterations of running Algorithm 1

1.5 Adaptation of the algorithms to the compacted graph

For simplicity of exposition, we described our algorithm in terms of the regular de Bruijn graph.
Our implementation, however, operates on the compacted de Bruijn graph which we build using
TwoPaCo (Minkin et al., 2017). The vertex set of the compacted graph is a subset of vertices of
the regular graph, called junctions. Intuitively, a vertex is a junction if it is either a branching
vertex or is the start or end of an input string (for an exact definition, please see Minkin et al.
(2017)). The reason we can consider only junctions is that one can show that there is a one-to-one
correspondence between the maximal chains in the ordinary graph and the ones in the compacted
one. Particularly, any maximal chain starts and ends with a junction. Since the number of junctions
is usually much smaller than the total number of k-mers, using only junctions greatly speeds up
the algorithm and saves space, while not affecting the output of the algorithm.

A pair of vertices can be connected in the compacted graph by a pair of edge-disjoint genomic
walks in two ways. These walks are either a pair of parallel edges representing a stretch of identical
k-mers, or two walks forming a so called “bubble” which correspond to a sequence of point mutation
or a short indels. Figure S1b shows an example of the compacted graph containing a pair of parallel
edges and a bubble. To adapt our algorithm to the compacted graph, we modify the definition of
chain such that it now consists of junction k-mers that are connected either by a pair of parallel
edges or a bubble of size at most b.

Formally, two pairs of indices (i1, j1) and (i2, j2) are compatible if si1 = tj1 , si2 = tj2 and either
or both of the following holds: (1) i2−i1 ≤ b and j2−j1 ≤ b; (2) i2−i1 = j2−j1 and si+p = tj+p for
i1 ≤ p ≤ i2. The first condition models a bubble of size at most b, while the second one represents
a stretch of identical k-mers corresponding to a pair of parallel edges in the compacted graph. Note
that we have to handle the case of parallel edges separately because they might correspond to more
than b k-mers and we should allow to “skip” over such pair of edges regardless of its length. A
chain then is a pair of non-decreasing sequences of indices (i1, . . . , in) and (j1, . . . , jn) such that
six = tjx , each six (tjx) is a junction, (ix, jx) and (ix+1, jx+1) are compatible for 1 ≤ x < n and if
ix = ix−1 then jx 6= jx−1, for all x.

We adjust the code of as follows. In the loop in Lines 2 to 14 of Algorithm 1 we iterate over
junctions of `(s) instead of ordinary k-mers. We also modify our lookup procedure to take the new

1Our actual implementation does not store the vector p explicitly; instead we use a mapping from the k-mer set
to the data structure Q.
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definition of chain into account, as well the clean-up procedure in Lines 10 to 14. Particularly we
handle two separate cases for extension of a chain: by a pair of parallel edges, or by a “bubble.”

1.6 Computational complexity

Here we will analyze the complexity of Algorithm 1. Let the maximum degree of a vertex considered
by our algorithm be a. This could just be the maximum degree in the graph or it could be the
parameter a set by the user. The number of iterations of the inner loop in Lines 4 to 8 is bounded
by a|s|. Computing π and doing the lookup operation in Line 5 takes O(b) operations in the worst
case, as described in Section 1.4. The processing of Q in Lines 10 to 14 takes a total of O(a|s|) time
over the course of the algorithm, since this is the number of elements pushed into Q. As the result,
the total time complexity is O(ab|s|). The space complexity is dominated by the data structures
to store the mappings for the shared k-mers. The amount of memory is strongly dependent on the
structure of the input, and we therefore did not perform a worst case analysis.

1.7 Modes of operation

Algorithm 1 can also be used to find chains within a single genome, corresponding to duplications.
To do this, the user should give as input a pair of identical sequences. To handle this case, we
modify our algorithm to forbid chains that overlap with themselves. To implement this, we perform
additional checks before concatenating chains in Line 5 (details omitted).

Algorithm 1 can also be used to compute an all-against-all mapping for a set of chromosomes
S = {s1, . . . , s|S|}. Rather than performing Θ(|S|2) runs of the algorithm, we can modify the
algorithm to run only Θ(|S|) times, at a potential cost of more memory, as follows. We first
compute the de Bruijn graph from all of S, i.e. G(S, k). Then we run Algorithm 1 |S| times; in
the ith run, si plays the role of s and the chromosomes {si, . . . , s|S|} play the role of t. In our
pseudocode, t is a single string; but, we can easily modify it to allow t to be a set of strings by
considering positions in all sequences of {si, . . . , s|S|} in Line 2. It may also be that the underlying
graph G(S, k) could have vertices from some chromosome sj that is not part of the comparison
(i.e. j < i); however, since the algorithm only looks at k-mers that appear in s or t, those extra
k-mers would not effect the execution of the algorithm. This approach to all-against-all mapping
will give the same results as the naive O(|S|2) runs approach. However, it does have an associated
memory cost, since we must maintain in memory a de Bruijn graph of |S| sequences, rather than
just the graph of 2 sequences. This strategy also lends itself to parallelization, by executing these |S|
runs in parallel using multithreading. Finally, note that the same strategy applies to all-against-all
mapping of multiple multi-chromosomal genomes, since our algorithm does not distinguish between
chromosomes on the same vs. different genomes.
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