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1. Optical constants of the stack 

Figure S1 shows the dispersion for both Ag (Fig. S1a) and SiOx (Fig. S1b) retrieved from spectroscopic ellipsometry. 

 

Figure S1. Optical constants derived from spectroscopic ellipsometry data. (a) Dielectric constant of 

evaporated Ag (solid curves) and from Johnson and Christy (dashed curves). The real/imaginary part 

of the dielectric constants are shown in black/blue. (b) Refractive index of evaporated SiOx. 

 

2. Angle-dependent visibility for surface plasmon scattering from nanocube 

Since the angular scattering intensities for transition radiation and surface plasmon scattering are not the same, the 

interference fringe visibility is angle-dependent. The visibility of a sinusoidal signal is defined as the amplitude 

divided by the mean: 𝑉 =
(𝐼max −𝐼min)/2

(𝐼max+𝐼min)/2 
 . In Section S4, we find 𝐼tot(𝜃, 𝜙) = 𝐼ref,p + 𝐼sc,p + 𝐼sc,s +

𝜀0𝑐

2
𝐸ref,p𝐸sc,p

∗ +

𝜀0𝑐

2
𝐸ref,p

∗ 𝐸sc,p. We generalize the visibility to a system with a non-uniform envelope. The angle-dependent maximum 

intensity  𝐼max(𝜃, 𝜙) = 𝐼ref,p + 𝐼sc,p + 𝐼sc,s + 2√𝐼ref,p𝐼sc,p and the minimum intensity 𝐼min(𝜃, 𝜙) = 𝐼ref,p + 𝐼sc,p +

𝐼sc,s − 2√𝐼ref,p𝐼sc,p. From the retrieved scattered intensities of SPPs and TR (Fig. 5) we calculated the angle-

dependent fringe visibility V for the nanocube  

𝑉(𝜃, 𝜙) =
2√𝐼TR𝐼sc,p

𝐼TR+𝐼sc,p+𝐼sc,s
. (S1) 

over the entire azimuthal and zenithal angle range (Fig. S2). We find that for the angular range along the kx axis, 

where the CL intensity is highest (kx/k0=-0.7--0.6) and the data most accurate, V=0.15. 

 

Figure S2. Angle-dependent fringe visibility derived from Fourier analysis data in Fig. 5. 



S3 

 

In experiments the visibility of the interference fringes is affected by the 40 nm bandwidth of the color filter. The 

left/right asymmetry of the visibility can partially be ascribed to the finite temporal coherence of the fields, which 

we derive now.  

Since cathodoluminescence is spectrally broadband, the measured angular radiation pattern after passing through 

a color filter is given by : 

𝐼interference(𝜃, 𝜙) =
𝜀0𝑐

2

1

Δ𝜆
∫ 𝐸TR(𝜃, 𝜙, 𝜆) ⋅ 𝐸sc,p

∗ (𝜃, 𝜙, 𝜆)d𝜆
𝜆𝑐−

Δ𝜆

2

𝜆𝑐−
Δ𝜆

2

. (S2) 

Transition radiation and the scattered field are synchronized with the impact of the incident electron. The optical 

path difference between the scattered field and transition radiation is given by 𝑘0𝑛eff(𝜆)𝐿𝑒 + 𝑘0𝐿𝑒 sin 𝜃, where 

𝑘0𝑛eff(𝜆) is the propagation constant of the surface plasmon, which follows from the dispersion relation. Filling in 

this (dispersive) optical path difference into Eq. S2 leads to: 

𝐼interference(𝜃, 𝜙) =
𝜀0𝑐

2

1

Δ𝜆
∫ 𝐸TR(𝜃, 𝜙, 𝜆) ⋅ 𝐸sc,p

∗ (0)(𝜃, 𝜙, 𝜆)𝑒−𝑖𝑘0𝐿𝑒[𝑛eff(𝜆)+sin 𝜃]d𝜆
𝜆𝑐−

Δ𝜆

2

𝜆𝑐−
Δ𝜆

2

. (S3) 

We assume transition radiation, the scattered fields, and the surface plasmons to be dispersionless over the 40 nm 

bandwidth of the used color filter. We also perform a change of variables 𝜆 = 𝜆𝑐 + 𝜆′, where 𝜆𝑐  is the central 

wavelength of the color filter. The deviation from the central wavelength 𝜆′ is small given the narrow bandwidth, 

hence one can approximate 𝑘0 =
2𝜋

𝜆
≈

2𝜋

𝜆𝑐
(1 −

𝜆′

𝜆𝑐
). Equation S3 then becomes: 

  𝐼interference(𝜃, 𝜙) =
𝜀0𝑐

2
𝐸TR(𝜃, 𝜙) ⋅ 𝐸sc,p

∗ (0)(𝜃, 𝜙)
1

Δ𝜆
∫ 𝑒

−𝑖
2𝜋

𝜆𝑐
(1−

𝜆′

𝜆𝑐
)𝐿𝑒[𝑛eff(𝜆𝑐)+sin 𝜃]

d𝜆′
−

Δ𝜆

2

−
Δ𝜆

2

. (S4) 

This integration leaves us with 

  |𝐼interference(𝜃, 𝜙)| =
𝜀0𝑐

2
|𝐸TR(𝜃, 𝜙)| ⋅ |𝐸sc,p

∗ (0)(𝜃, 𝜙)||sinc {
Δ𝜆

2𝜆𝑐
𝑘0𝐿𝑒[𝑛eff(𝜆𝑐) + sin 𝜃]} |, (S5) 

where 𝑘0 =
2𝜋

𝜆𝑐
. Filling in Eq. S5 into Eq. S1, one finds: 

𝑉 =
2√𝐼TR𝐼sc,p|sinc{

Δ𝜆

2𝜆𝑐
𝑘0𝐿𝑒[𝑛eff(𝜆𝑐)+sin 𝜃]}|

𝐼TR+𝐼sc,p
, (S6) 

Since the sinc-function has an upperbound of 1, we indeed observe that the visibility is in general reduced for any 

finite bandwidth of the colorfilter. 

3. Definition of Fourier transform 

The convention of the Fourier transform is in this work is: 

𝑓(𝑥, 𝑦) = ∬ 𝑓(𝑘x, 𝑘y)𝑒𝑖(𝑘x𝑥+𝑘y𝑦) d𝑘xd𝑘y

(2𝜋)2 , (S7a) 

𝑓(𝑘x, 𝑘y) = ∬ 𝑓(𝑥, 𝑦)𝑒−𝑖(𝑘x𝑥+𝑘y𝑦)d𝑥d𝑦. (S7b) 
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4. Numerical algorithm to retrieve both amplitude and phase of the scattered field 

The numerical algorithm applied to retrieve both amplitude and phase of the scattered field is similar to the 

theoretical framework in Ref. 2. The far-field electric field consists of the p-polarized electric field of transition 

radiation (Eref,p) and the scattered electric field from the nanoscatterer that in general can have both an s- and p-

polarized component (Esc,s and Esc,p). The far-field radiation pattern 𝐼tot(𝜃, 𝜙) ∝ |𝐸tot,p(𝜃, 𝜙)𝒑̂(𝜃, 𝜙) +

𝐸tot,s(𝜃, 𝜙)𝒔̂(𝜃, 𝜙)|
2
. Because of the orthogonality of p- and s-polarized electric fields, one finds for the far-field 

radiation pattern 𝐼tot(𝜃, 𝜙) ∝ [|𝐸tot,p(𝜃, 𝜙)|
2

+ |𝐸tot,s(𝜃, 𝜙)|
2

]. For notational brevity we remove the angular 

dependences of the electric fields. The total electric field is composed of the reference field 𝐸ref and the scattered 

field 𝐸sc: 𝐼tot ∝ [|𝐸ref,p|
2

+ |𝐸sc,p|
2

+ 𝐸ref,p
∗ ⋅ 𝐸sc,p + 𝐸ref,p ⋅ 𝐸sc,p

∗ + |𝐸ref,s|
2

+ |𝐸sc,s|
2

+ 𝐸ref,s
∗ ⋅ 𝐸sc,s + 𝐸ref,s ⋅

𝐸sc,s
∗ 2]. The reference field in this work is transition radiation, which is fully p-polarized for symmetry reasons, so 

𝐸ref,s = 0. Since the proportionality factor for the norm of the Poynting vector Itot is 
𝜀0𝑐

2
, one finds for the far-field 

radiation pattern:  

𝐼tot = 𝐼ref,p + 𝐼sc,p + 𝐼sc,s +
𝜀0𝑐

2
𝐸ref,p𝐸sc,p

∗ +
𝜀0𝑐

2
𝐸ref,p

∗ 𝐸sc,p.  (S8) 

The radiation pattern is composed of the radiation of the reference field (Iref,p), the total radiation from the scatterer 

(Isc,p+Isc,s) and two terms that represent interference between the reference field and the scattered field (𝐸ref,p𝐸sc,p
∗  

and 𝐸ref,p
∗ 𝐸sc,p). We replace the angles  and  by the normalized wave vector components: kx/k0=sin()cos() and 

ky/k0=sin()sin()  (k0=2/c, with c is the central wavelength of the band-pass filter). The in-plane position vector 

of the nanoscatterer rsc=〈𝑥, 𝑦〉 is defined in a reference frame with the excitation point of the electron beam at the 

origin. Within the far-field approximation, the scattered electric field is given by 

𝐸sc,p/s = 𝐸sc,p/s
(0)

𝑒−𝑖〈𝑘x,𝑘y〉⋅𝒓sc, (S9) 

with the superscript 0 indicating that the corresponding field has as origin rsc. Taking the 2D Fourier transform of the 

far-field intensity pattern results in 

𝐼tot(𝒓) = 𝐼ref,p(𝒓) + 𝐼sc,p(𝒓) + 𝐼sc,s(𝒓) +
𝜀0𝑐

2
𝐸̃ref,p(𝒓 + 𝒓sc) ∗ 𝐸̃sc,p

(0)∗(𝒓 + 𝒓sc) +
𝜀0𝑐

2
𝐸̃ref,p

∗ (𝒓 − 𝒓sc) ∗ 𝐸̃sc,p
(0)

(𝒓 − 𝒓sc).

 (S10) 

Both the scattered field and transition radiation originate from a subwavelength region, hence the spatial extent of 

all electric fields 𝐸̃ is roughly  (diffraction limit). The convolution of two functions that have both a spatial extent 

ofresults in a function with a typical length scale √2. This means that the interference terms, previously 

described, are spatially separated from the individual intensities terms [𝐼ref,p(𝒓) + 𝐼sc,p(𝒓) + 𝐼sc,s(𝒓)] when the 

nanoscatterer is placed at least √2 away from the electron beam, as is the case in this work. We apply a mask to 

𝐼tot(𝒓), such that only the term of interest 𝐸̃ref,p(𝒓 + 𝒓sc) ∗ 𝐸̃sc,p
(0)∗(𝒓 + 𝒓sc) is non-zero. Note that the mask could 

also be applied to the term 𝐸̃ref,p
∗ (𝒓 − 𝒓sc) ∗ 𝐸̃sc,p

(0)
(𝒓 − 𝒓sc) instead. This mask is chosen to be rect (

|𝒓−𝒓sc|

𝐿
), where 

L=2 m, and multiplied by Eq. S5. Subsequently, we shift the data by +rsc, so that the masked interference terms is 

placed in the origin, resulting in 
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𝐼tot,masked&shifted(𝒓) =
𝜀0𝑐

2
𝐸̃ref,p(𝒓) ∗ 𝐸̃sc,p

(0)∗(𝒓)rect (
|𝒓|

𝐿
).  (S11) 

Performing the 2D inverse Fourier transform then results in an approximation of 

𝐼tot,masked&shifted (
𝑘𝑥

𝑘0
,

𝑘𝑦

𝑘0
) =

𝜀0𝑐

2
𝐸ref,p (

𝑘𝑥

𝑘0
,

𝑘𝑦

𝑘0
) ⋅ 𝐸sc,p

(0)∗ (
𝑘𝑥

𝑘0
,

𝑘𝑦

𝑘0
). (S12) 

Finally, by using 𝐸ref,p (
𝑘𝑥

𝑘0
,

𝑘𝑦

𝑘0
) = √

2

𝜀0𝑐
𝐼ref,p (

𝑘𝑥

𝑘0
,

𝑘𝑦

𝑘0
), the complex p-polarized scattered field can be obtained by: 

𝐸sc,p
(0)

(
𝑘𝑥

𝑘0
,

𝑘𝑦

𝑘0
) = (

𝐼tot,masked&shifted(
𝑘𝑥
𝑘0

,
𝑘𝑦

𝑘0
)

√
𝜀0𝑐

2
𝐼ref,p(

𝑘𝑥
𝑘0

,
𝑘𝑦

𝑘0
)

)

∗

. (S13) 

With this, we arrive at the final equation that is used to retrieve the complex-valued p-polarized scattered field as a 

function of the normalized wave vector components. 

5. Far-field phase profile for transition radiation 

Here, we show that the wave front for transition radiation in the SiOx/Ag/Si stack is close to spherical and therefore 

uniform in our representation in (kx/k0, ky/k0) space. We calculate the far-field phase profile numerically by 

approximating the source by a z-polarized electric dipole 10 nm above the stack. Figure S3a shows from which angle 

k‖/k0=sin(), the deviation of the phase is more than /10  as compared to the phase for k‖/k0=0.001. From Fig. S3a 

we find that the phase profile of our reference field can be considered uniform when k‖/k0<0.9.   

Next, we show in Fig. S3b the phase of transition radiation at k‖/k0=0.7 for =375-820 nm. The wavelength-

dependent phase originates from the material dispersion of the stack. The phase difference within the wavelength 

range =580-620 nm is approximately /50, which is negligible for the experimental results shown in Figs. 2, 5, and 

S2.  

 

Figure S3. Far-field phase profile for transition radiation. (a) Lower threshold value of k‖/k0 for which 

the transition radiation phase deviates more than /10 from the phase at k‖/k0=0.001. (b) Far-field 

phase of transition radiation for =375-820 nm at k‖/k0=0.7. 

6. Multipole expansion 

In homogeneous space, the electric fields on a sphere can be decomposed in the orthonormal basis of vector 

spherical harmonics. Each basis function can be identified with one multipole radiating at the origin of the sphere. 
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In this manuscript, we retrieve the (complex) p-polarized electric field in part of the upper hemisphere, defined by 

the parabolic mirror collecting CL. The retrieved p-polarized electric field in the upper hemisphere is decomposed in 

the non-orthogonal basis spanned by the p-polarized electric fields produced by multipoles placed at 10 nm above 

the stack. We limit ourselves to electric and magnetic dipoles. The p-polarized emission collected by the parabolic 

mirror forms 56%, 52% and 100% of the total emission that is collected for x-, y-, and z-polarized electric dipoles, 

respectively. For x-, y-, and z-polarized magnetic dipoles, this is 56%, 61%, and 0%, respectively. As we only retrieve 

the p-polarized electric field, and a z-polarized magnetic dipole uniquely emits s-polarized electric fields, we are 

insensitive to the z-polarized magnetic dipole. Hence, any emission originating from a z-polarized magnetic dipole 

cannot be retrieved with this experimental technique. We therefore omit this dipole in the analysis. All fields, 

including the retrieved electric fields, are normalized as follows: 

∬ |𝐸MP,p(kx, 𝑘y)|
2

d𝑘xd𝑘y = 1
NA

, (S14) 

where the NA is determined by the parabolic mirror. The amplitude and phase of the complex expansion coefficients 

are obtained as follows: 

𝑐MP = ∬ 𝐸sc,p(kx, 𝑘y)𝐸MP,p
∗ (kx, 𝑘y)d𝑘xd𝑘yNA

. (S15) 

The coefficients for the nanohole and the nanocubes are listed in Table S1 and S2, respectively. A graphical 

representation of the results presented in Table S1 and S2 is presented in Fig. 3 of the main text. We found that the 

contribution of the different scattering components is somewhat sensitive to the precise shape of the hole: 

comparing measurements on different holes with slightly varying dimensions we find variations in amplitude of 

typically 10-20%, and with some exceptional larger deviations.  

 

Table S1. Coefficients of multipole expansion for SPP scattering from nanohole. 

 px py pz mx my 

Amplitude 0.80 0.13 0.46 0.14 0.78 

Phase () 0.00 1.22 1.82 0.74 0.50 

The electron beam was placed Le=2.29 m to the right. 

 

Table S2. Coefficients of multipole expansion for SPP scattering from Ag nanocube. 

 px py pz mx my 

Amplitude 0.40 0.30 0.72 0.32 0.41 

Phase () 0.00 0.55 1.42 0.05 0.51 

The electron beam was placed Le=2.29 m to the right. 

Next, we check the orthogonality of the electric fields emitted by different dipoles(MPi, and MPj), by calculating 
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𝑐MPij = ∬ 𝐸MPi,p(kx, 𝑘y)𝐸MPj,p
∗ (kx, 𝑘y)d𝑘xd𝑘yNA

. (S16) 

The amplitude of cMPij is presented in Table S3. We observe that the electric fields emitted by different dipoles are 

not orthogonal. The non-zero value obtained for pz and py can be explained by the limited collection angles along 

the y axis due to the parabolic mirror. As a consequence, we have observed in Fig. 3b of the main text that a strong 

z-polarized electric dipole comes together with a y-polarized electric dipole, even though this dipole cannot be 

excited due to symmetry arguments of the sample and excitation process. Even though the basis is not orthogonal 

and Eq. S15 is therefore strictly not valid, interesting trends can be learned from this analysis (see main text). For 

completeness, we provide an orthogonal basis for the in-plane dipoles that follows from a Gram-Schmidt process: 

px+imy, py+imx, (px-imy)-0.1i(px+imy), (py-imx)+0.1i(py+imx). 

Table S3. Orthogonality of far-fields from all combinations of dipoles. 

 px py pz mx my 

px 1.00 0.00 0.00 0.00 1.00 

py 0.00 1.00 0.14 1.00 0.00 

pz 0.00 0.14 1.00 0.16 0.00 

mx 0.00 1.00 0.16 1.00 0.00 

my 1.00 0.00 0.00 0.00 1.00 

Absolute value of overlap integral of far-field electric fields for all combinations of dipoles according to 

Eq. S15. 

 

7. Surface plasmon polariton scattering from nanocubes 

Figures S4a-c show the total (a) and reference (b) intensity from which data in Fig. 5 was derived, and the 2D fast 

Fourier transform of the difference (c). Figures S4d-f show the total intensity (d) for a NC where the electron beam 

was placed Le=3.85 m to the right of the NC, (e) the 2D fast Fourier transform of Itot - Iref and (f) shows the retrieved 

far-field scattering pattern.  
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Figure S4. Interference fringes for surface plasmon polariton scattering by nanocube. Experimental 

results for electron beam placed (a-c): Le=2.29 m, (d-f): Le=3.85 m to the right of a 75-nm Ag 

nanocube. (a) Angle-resolved cathodoluminescence radiation pattern filtered with a band pass color 

filter (=60020 nm) . (b) Reference measurement on same stack in absence of nanoscatterer. (c) 2D 

fast Fourier transform of the difference in intensity from Figs. S4a-b. 
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