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SUMMARY
Generation of insulin-secreting b cells in vitro is a promising approach for diabetes cell therapy. Human em-
bryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) are differentiated to b cells
(SC-b cells) and mature to undergo glucose-stimulated insulin secretion, but molecular regulation of this
defining b cell phenotype is unknown. Here, we show that maturation of SC-b cells is regulated by the tran-
scription factor SIX2. Knockdown (KD) or knockout (KO) of SIX2 in SC-b cells drastically limits glucose-stim-
ulated insulin secretion in both static and dynamic assays, alongwith the upstream processes of cytoplasmic
calcium flux and mitochondrial respiration. Furthermore, SIX2 regulates the expression of genes associated
with these key b cell processes, and its expression is restricted to endocrine cells. Our results demonstrate
that expression of SIX2 influences the generation of human SC-b cells in vitro.
INTRODUCTION

Pancreatic b cells regulate blood glucose levels by secreting a

precise amount of insulin in response to changes in extracellular

glucose, and death or dysfunction of these cells results in dia-

betes. Transplantation of insulin-secreting cells shows promise

to be an effective treatment for diabetes (Bellin et al., 2012;

McCall and Shapiro, 2012; Millman and Pagliuca, 2017), and a

small number of patients who have received such implants

from cadaveric donors remain normoglycemic for years. Scar-

city and high variability of donor islets limit this approach, how-

ever (McCall and Shapiro, 2012).

To overcome this limitation, strategies for specifying b cells

from human embryonic stem cells (hESCs) in vitro have been

described recently (Pagliuca et al., 2014; Rezania et al., 2014).

These approaches use growth factors and small molecules to

mimic native b cell development by first specifying definitive

endoderm (D’Amour et al., 2005), followed by the generation of

NKX6-1+ pancreatic progenitors (D’Amour et al., 2006). These

progenitors are specified into endocrine via the expression of

NEUROG3 (NGN3) (Gu et al., 2002) and are subsequently

matured into SC-b cells and other islet endocrine cell types

(Veres et al., 2019). More recent studies have defined conditions

that greatly improve the functional maturation of SC-b cells,

achieving first- and second-phase insulin secretion (Hogrebe

et al., 2020; Velazco-Cruz et al., 2019). While a large number of

genes that temporally correlate with maturation have been iden-

tified (Nair et al., 2019; Veres et al., 2019), the molecular mecha-

nisms controlling this functional maturation are unclear,

hampering further improvements in function.
This is an open access article under the CC BY-N
To investigate the functional maturation of human b cells

in vitro, we studied the homeobox transcription factor SIX2 dur-

ing differentiation to SC-b cells. SIX2 is not expressed in rodent b

cells (Segerstolpe et al., 2016; Xin et al., 2016), which limits the

use of conventional approaches for its study, including

commonly used insulinoma cell lines and animal models. SIX2

has recently been identified as being expressed in human b cells

and linked to type 2 diabetes and aging (Arda et al., 2016; Ha-

chiya et al., 2017; Kim et al., 2011; Spracklen et al., 2018).

Here, we report that SIX2 is key for generating functional SC-b

cells in vitro. Using short hairpin RNA (shRNA) andCRISPR-Cas9

to knock down (KD) SIX2 expression or knock out (KO) the SIX2

gene, respectively, we show that both static and dynamic

glucose-stimulated insulin secretion are severely hampered

with reduced SIX2 expression. Upstream processes of cyto-

plasmic calcium flux and mitochondrial respiration are similarly

reduced. Using RNA sequencing, we observe a large number

of genes associated with maturation and b cell function to be

reduced with the KD of SIX2, including gene sets associated

temporally with SC-b cell maturation in vitro from other research

groups.

RESULTS

SIX2 Is Crucial for Acquisition of Glucose-Stimulated
Insulin Secretion
Since SIX2 is expressed in human b cells, but its regulatory role

during b cell differentiation and maturation is uncharacterized,

we measured its gene expression during our 6-stage differentia-

tion protocol (Figure 1A).We observed a notably large increase in
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Figure 1. SIX2 Controls Glucose-Stimulated

Insulin Secretion in Human SC-b Cells

(A) Schematic of hESC differentiation process.

(B) Real-time PCR measurements of SIX2 in un-

differentiated hESCs and at the end of each stage

of the differentiation. Data are presented as the

fold change relative to stage 6 cells. n = 3.

(C) Real-time PCR measurements of SIX2 as a

function of time in stage 6 plotted against insulin

secretion of sampled cells placed in 20 mM

glucose for 1 h. n = 4.

(D) Dynamic glucose-stimulated insulin secretion

of stage 6 cells transfected with control shRNA (sh-

ctrl; n = 3) or shRNA targeting SIX2 (sh-SIX2-1; n =

4). Cells are perfused with 2 mM glucose, except

when indicated, in a perifusion chamber.

(E) Static glucose-stimulated insulin secretion of

sh-ctrl or sh-SIX2-1 transduced stage 6 cells. n = 4.

(F) Dynamic glucose-stimulated insulin secretion

of wild-type (WT) (n = 4), KO-SIX2-1 (n = 3 technical

replicates), or KO-SIX2-2 (n = 3 technical repli-

cates) stage 6 cells.

(G) Static glucose-stimulated insulin secretion of

WT, KO-SIX2-1, or KO-SIX2-2 stage 6 cells. n = 4.

All data in (B)–(E) were generated with cells from

protocol 1 and all data in (F) and (G) were gener-

ated with cells from protocol 2.

*p < 0.05, **p < 0.01, ****p < 0.0001 by 2-way paired

(for low-high glucose comparison) or unpaired (for

high-high glucose comparison) t test. Error bars

represent s.e.m.

See also Figure S1.
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expression during the maturation of endocrine progenitors to

SC-b cells (Figure 1B). Closer inspection of stage 6 revealed

that the gene expression of SIX2 increased 32.5 ± 0.9 times dur-

ing the first 11 days, correlating with increases in insulin protein

secretion per cell for the same time period (Figure 1C).

To further study SIX2 using our SC-b cell platform, we gener-

ated 2 lentiviruses carrying shRNAs (sh-SIX2-1 and sh-SIX2-2) to

KD the expression of SIX2 (Figures S1A and S1B). For these KD

studies, we transduced cells on the first day of stage 6 to limit the

emergence of SIX2 expression with time. KD of SIX2 in differen-

tiating hESCs (HUES8) and human induced pluripotent stem
2 Cell Reports 31, 107687, May 26, 2020
cells (hiPSCs) (1013-4FA) lines resulted

in significant reductions in both dynamic

and static glucose-stimulated insulin

secretion assays (Figures 1D, 1E, and

S1C–S1F). While peaks in the dynamic in-

sulin secretion profile resembling first-

and second-phase insulin secretion

were still observed, the overall amount

of insulin secreted per DNA was 4.2 ±

1.2 times lower at high glucose with

SIX2 KD (Figure 1D). Similarly, for the

static assay, while the cells still re-

sponded, albeit more weakly, to glucose

by secreting elevated insulin, insulin

secretion per cell was 4.7 ± 0.8 times

lower at high glucose with SIX2 KD
(Figure 1E). We do note that the magnitude of the relative insulin

secretion at low glucose differed between static and dynamic

assays, perhaps due to fluid shear or paracrine effects.

Since the KD studies supported a connection between SIX2

and the acquisition of SC-b cell function, we used CRISPR-

Cas9 to KO SIX2 by deleting the SIX2 coding sequence to create

2 homozygous KO hESC lines (KO-SIX2-1 and KO-SIX-2) to

ensure the complete absence of SIX2 (Figures S1G–S1K).

Similar to the KD studies, KO of SIX2 also resulted in significant

reductions in both dynamic and static glucose-stimulated insulin

secretion assays (Figures 1F and 1G). In contrast to the KD



Figure 2. Subtypes of Differentiated Stage 6

Cells Express SIX2

(A) Immunostaining of SIX2 with the b cell markers

NKX6-1 and C-peptide at the end of stages 5 (left)

and 6 (right).

(B) Flow cytometric quantification of co-expres-

sion of C-peptide with SIX2. n = 4.

(C) Immunostaining of SIX2 with a panel of

pancreatic markers at the end of stage 6 with the

exception of NGN3/SIX2, which was stained

3 days into stage 5.

(D) Flow cytometric quantification of stage 6 cells

staining for C-peptide, NKX6.1, and chromogranin

A using sh-ctrl and sh-SIX2-1 transduced cells. n =

6. ***p < 0.001 by 2-way unpaired t test.

(E) Schematic summary of marker progression in

stages 5 and 6.

Scale bar, 25 mm. Error bars represent s.e.m.

See also Figure S2.
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studies, SIX2KO resulted in no first- and second-phase dynamic

insulin responses to high glucose and no response to glucose in

the static assay. In addition, the overall amount of insulin

secreted per DNAwas 4.2 ± 0.7 times lower in the dynamic assay

and per cell was 6.2 ± 1.5 times lower in the static assay at high
glucose for SIX2 KO (Figures 1F and 1G).

Arda et al. (2016) showed that SIX3, a

different transcription factor within the

SIX family, is enriched in adult human is-

lets relative to juvenile islets and that its

expression is associated with increased

b cell function. We measured the expres-

sion profile of SIX3 during our SC-b cell

differentiation (Figure S2A). While

increased expression during early defini-

tive endoderm induction was measured,

SIX3 expression was low or undetected

at the end of the protocol, and KD or KO

of SIX2 did not alter SIX3 expression (Fig-

ure S2B). These data establish SIX2 as a

potent regulator of human b cell acquisi-

tion of functional maturation in vitro,

demonstrating that SIX2 is necessary for

first- and second-phase insulin secretion

in response to glucose. SIX2 is not

required for insulin production and

secreting, but the lack of SIX2 reduced in-

sulin secretion when cells are exposed to

high glucose.

Characterization of SIX2
Expression During SC-b Cell
Differentiation
Next, we characterized the expression

profile of SIX2 protein throughout the dif-

ferentiation process. Using immunofluo-

rescence, we did not detect SIX2 expres-

sion in C-peptide+ cells at the beginning
of stage 6, but after 11 days in stage 6, someC-peptide+ cells ex-

pressed nuclear SIX2 (Figure 2A). Virtually all SIX2+ cells co-ex-

pressed NKX6-1 (Figure 2A). With flow cytometry, we demon-

strated that 25.1% ± 0.5% of the C-peptide+ cells co-

expressed SIX2 in stage 6 (Figure 2B). However, some SIX2+
Cell Reports 31, 107687, May 26, 2020 3



Report
ll

OPEN ACCESS
cells were observed outside the C-peptide+ population and are

of unknown identity. We also observed that SIX2 was restricted

to NKX2-2+ and synaptophysin+ (SYN) cells in stage 6 (Fig-

ure 2C), indicating that the expression of SIX2 is restricted to

this endocrine cell population. In spite of this, SIX2 was not

observed in NGN3+ cells during stage 5 (Figure 2C), even with

many of these cells co-expressing NKX6-1 (Figure S2C). Virtually

all SIX2+ cells also co-expressed other pancreatic markers, such

as ISL1, PAX6, and PDX1 (Figure 2C). Furthermore, the a cell

hormone-expressing glucagon+ (GCG) cells did not express

SIX2, and SOX9+ progenitors were absent in the stage 6 popula-

tion (Figure 2C). KD of SIX2 reduced the fraction of cells express-

ing C-peptide+ and co-expressing C-peptide with NKX6.1 (Fig-

ures 2D and S2D), demonstrating an effect on cell fate, while

KO of SIX2 did not affect pancreatic progenitors (Figure S2E).

These data demonstrate that SIX2 protein expression is only de-

tected in the endocrine population and influences final cell fate.

Transcriptional Profiling of SIX2 KD cells
To further explore the role of SIX2 on SC-b cells, we used RNA

sequencing to measure the transcriptome of stage 6 cells trans-

duced with shRNA to KD SIX2 expression. A large number

(10,421) of genes were significantly (adjusted p < 0.05) affected

by the KD of SIX2, including individual genes associated with b

cell function and off-target non-b cell genes (Figures 3 and S3;

Table S1). Of the significantly different genes, 633 were enriched

in the control cells and 509 were enriched in the SIX2 KD cells by

at least a factor of 2 (Figure 3B).

Several gene sets important for b cells, such as those corre-

lated with b cell fate, b cell maturation, exocytosis, potentiation

of insulin secretion, andmaturation, were controlled by SIX2 (Fig-

ures 3C–3E,S3A, andS3B; TablesS2andS3). Thespecificestab-

lished gene sets that are well known included the gene sets b cell

enriched (CARTPT, IAPP, GLP1R,GCK, ABCC8, PAX6, INS), cal-

cium signaling (HPCAL4, CAMKK2A, CACNA1S), potassium

channels (ATP1A3, KCNN3, KCNMA1), cyclic AMP (cAMP)

signaling (ADCY8, CREB5, ADCY3), and protein kinase C (PKC)

signaling (PRKC3, PRKCH, PRKCA). In addition, undesirable

off-target markers, including liver (ALB, AFP), anterior endoderm

(SOX2), and posterior endoderm (CDX2), and gene sets, such as

glycolysis, were enriched in the SIX2 KD cells. We validated RNA

sequencing results with a subset of relevant genes using real-

time PCR in the 1013-4FA hiPSC background (Figure S3C). We

compared our RNA sequencing data to recent gene sets identi-

fied in Veres et al. (2019) and Nair et al. (2019) as positively corre-

lating with time in the final stage of differentiation of SC-b cells

in vitro. We found that our SIX2 KD data were statistically associ-

atedwith the Veres et al. andNair et al. gene sets (Figures 3C, 3D,

S3B, and S4; Table S3). Specifically, the KD of SIX2 repressed

many of the genes that increased expression in Veres et al.

(2019) and Nair et al. (2019), suggesting that many of these iden-

tified genes are controlled by SIX2. These data support the

conclusion that SIX2 controls the expression ofmanyb cell genes

related to normal physiological function and differentiation.

Physiological Profiling of SIX2 KD SC-b Cells
We followed up on key b cell processes implicated by the SIX2

KD RNA sequencing data. First, we found that KD of SIX2
4 Cell Reports 31, 107687, May 26, 2020
reduced insulin content and INS gene expression, but it did not

affect insulin processing (Figures 4A–4C and S4A). Second, we

assessed mitochondrial respiration and glycolysis because

switching from glycolysis to mitochondrial respiration is neces-

sary for the maturation and normal physiological function of b

cells (Nair et al., 2019). The Seahorse XFe24 extracellular flux

assay was used to measure the oxygen consumption rate

(OCR) and the extracellular acidification rate (ECAR), respec-

tively. KD of SIX2 resulted in a decreased OCR and ratio of

OCR to ECAR (Figures 4D, 4E, and S4C). Cytoplasmic calcium

flux was also evaluated, as the influx of calcium is necessary

before insulin secretion and is triggered by glucose-induced de-

polarization in b cells (Rutter and Hodson, 2013). KD of SIX2

slightly decreased glucose-stimulated and greatly decreased

KCl-stimulated increases in cytoplasmic calcium as determined

with Fluo-4 AM stained cells (Figure 4F). These data are consis-

tent with decreased glucose-stimulated insulin secretion (Fig-

ures 1D–1G and S1C–S1F) and the RNA sequencing analysis

(Figure 3), indicating that SIX2 plays a key role in the metabolism

and upstream signaling relating to the functional maturation of

SC-b cells.

Finally, we explored other known insulin secretagogues,

observing that while SIX2 KD cells were able to respond to all

treatments, the amount of insulin secretion was much lower

than the control (Figure 4G). Stimulation with KCl and 3-isobu-

tyl-1-methylxanthine (IBMX) demonstrated that SIX2 KD cells

were capable of elevating insulin secretion, but glucose-depen-

dent secretion was severely impaired without SIX2. Furthermore,

considering the large amount of insulin secretion with treatments

targeting downstream processes, particularly depolarization

(KCl) and cAMP accumulation (IBMX), upstream mechanisms

appear more affected by SIX2 KD, namely glucose sensing

and metabolism. In addition to defects in glucose-stimulated in-

sulin secretion, SC-b cells with KD of SIX2 have defects in insulin

content, mitochondrial respiration, calcium signaling, and

response to a wide array of secretagogues.

DISCUSSION

Here, we demonstrate that SIX2 influences the generation hu-

man SC-b cells in vitro. Increases in SIX2 expression correlates

with increases in insulin secretion as SC-b cells mature during

stage 6 of the differentiation protocols. KD or KO of SIX2 dramat-

ically reduces glucose-stimulated insulin secretion, including

first- and second-phase dynamic insulin release and the total

amount of insulin released from the cells. Expression of SIX2 pro-

tein appears to be restricted to endocrine cells. RNA sequencing

of cells with the KD of SIX2 reveals that a large number of gene

sets associated with b cells and off-targets are negatively

affected, including recently defined gene sets of maturing SC-

b cells. We confirmed the physiological effects of many of these

gene sets by measuring reductions in insulin content, insulin

gene expression, mitochondrial respiration, calcium flux, and in-

sulin secretion in response to compounds that block the KATP

channel (tolbutamide), accumulate cAMP (IBMX), activate

GLP1R (Exendin-4), and depolarize the membrane (KCl).

A major goal in regenerative medicine is to generate fully

mature replacement cells differentiated from stem cells.



Figure 3. SIX2 Regulates Important b Cell Genes and Gene Sets

(A) Heatmap of 1,000 most differentially expressed genes between stage 6 cells transduced with sh-ctrl and sh-SIX2-1 by p value. n = 6.

(B) Volcano plot showing all differentially expressed genes. Genes with at least a 2-fold change (FC) are in black. Genes of particular interest are highlighted.

(C) Selected enriched gene sets for important b cell processes from the Molecular Signatures Database. Also included 2 custom gene sets comprising 76 genes

identified in Veres et al. (2019) and the top 424 genes identified in Nair et al. (2019) positively correlating with time and maturation in vitro. NES, normalized

enrichment score.

(D) Enrichment plots from the shown gene sets.

(E) FCs from genes within enriched b cell-related gene sets.

See also Figure S3 and Tables S1–S3.
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However, while many differences often exist in the function and

gene expression of stem cell-differentiated cells, often referred

to as thematuration phenotype specific to the differentiated cells

in question, identifying specific parameters on which to focus is

often difficult due to a lack of understanding of human develop-

mental biology. In the case of SC-b cells, many genes and path-

ways have been focused on and studied in the context of
improving these cells, including YAP (Rosado-Olivieri et al.,

2019), the ROCKII pathway (Ghazizadeh et al., 2017), the

transforming growth factor b (TGF-b) pathway (Velazco-Cruz

et al., 2019), and the cytoskeleton (Hogrebe et al., 2020).

Further studies have connected diabetic pathogenetic variants

with impairments in polyhormonal endocrine or SC-b cells,

including INS (Balboa et al., 2018; Ma et al., 2018), HNF1-a
Cell Reports 31, 107687, May 26, 2020 5



Figure 4. SIX2 Affects Insulin Content, Mitochondrial Respiration, Cytoplasmic Calcium Flux, and Response to Secretagogues in SC-b cells

(A) Insulin content for stage 6 cells. n = 12. ****p < 0.0001 by 2-way unpaired t test.

(B) Proinsulin:insulin content ratio for stage 6 cells. n = 12. ns (non-significant) by 2-way unpaired t test.

(C) Real-time PCR measurements of INS gene expression for stage 6 cells. n = 4. *p < 0.05 by 2-way unpaired t test.

(D) OCR measurements under basal conditions and after sequential injections of oligomycin (OM), carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone

(FCCP), and antimycin A with rotenone (AA/R). n = 10 for sh-ctrl and n = 9 for sh-SIX2-1.

(E) Calculated OCR:ECAR ratio under basal conditions. n = 10 for sh-ctrl and n = 9 for sh-SIX2-1. ****p < 0.0001 by 2-way unpaired t test.

(F) Cytosolic calcium signaling in response to high glucose (20 mM) and high KCl (30 mM) treatment relative to low glucose (2 mM, Fo) for Fluo-4 AM. Violin plots

show distribution of cellular responses for sh-ctrl (n = 232) and sh-SIX2-1 (n = 276) transduced cells with median and quartiles marked with dashed lines. ****p <

0.0001 by 2-way unpaired t test.

(G) Static glucose-stimulated insulin secretion with cells with 2 mM glucose, 20mM glucose, or 20mM glucose with the indicated compound. n = 3. ns, ** or yyp <

0.01, *** or yyyp < 0.001, **** or yyyyp < 0.0001 by 2-way unpaired t test. * indicates comparison within same compound treatment. y indicates comparison with low

glucose with same shRNA treatment.

Error bars represent s.e.m.

See also Figure S4.
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(Cardenas-Diaz et al., 2019), WFS1 (Maxwell et al., 2020; Shang

et al., 2014), ZNT8 (Dwivedi et al., 2019), NEUROD1 (Romer

et al., 2019), and GCK (Hua et al., 2013).

In contrast, here, we focus on the role of SIX2 in the differen-

tiation to and maturation of SC-b cells and establish a critical

connection between this transcription factor and the generation

and functional maturation of SC-b cells, particularly regarding

glucose-stimulated insulin secretion. Arda et al. (2016) studied

both SIX2 and SIX3 in the human insulinoma EndoC-bH1 cell

line and found overexpressing SIX3 but not SIX2 to increase in-

sulin secretion and content in addition to increased expression of

these genes in adult versus juvenile islets, supporting differing

roles for these transcription factors. Our study differs from that

of Arda et al. (2016) in several respects. We studied SIX2 in the

context of differentiating and maturing SC-b cells, the process

of which has increasing SIX2 expression as cells mature with

time, a considerably different developmental context than that

modeled by EndoC-bH1 cells. Furthermore, our study investi-

gates many other aspects of b cell phenotype not explored by

Arda et al., including demonstrating that both first- and sec-

ond-phase dynamic insulin secretion are eliminated with KO of

SIX2, made possible by our recent discoveries of generating
6 Cell Reports 31, 107687, May 26, 2020
SC-b cells using these functional characterizations (Velazco-

Cruz et al., 2019), indexing transcriptional changes with KD of

SIX2, and showing how mechanisms of b cell glucose sensing,

respiration, and calcium flux are disrupted with KD of SIX2.

Furthermore, while our data demonstrate the importance of

SIX2 in SC-b cells, this transcription factor is in the presence of

many other transcription factors that are important for the b

cell phenotype, including PDX1, NKX6-1, NKX2-2, and

NEUROD1 (Hogrebe et al., 2020). Understanding the molecular

interactions and regulatory network of SIX2 with these transcrip-

tion factors would be valuable in future studies.

Differences in transcriptional regulation in rodent and human b

cells are well known (Benner et al., 2014). Since SIX2 expression

is restricted to human b cells (Segerstolpe et al., 2016; Xin et al.,

2016), focused studies on human cell model systems, such as

that provided by our in vitro differentiation platform, are essential

in the investigation of cell maturation and disease. Proper under-

standing of the molecular mechanisms that control human b cell

maturation is necessary for developing further improvements in

SC-b cell technologies for diabetes cell-replacement therapies.

As only a fraction of C-peptide+ cells currently express SIX2 in

our study, increased co-expression could result in differentiated



Report
ll

OPEN ACCESS
populations with increased function and utility for cell therapy.

Further study into the role of SIX2 could reveal new insights

into increasing the functional maturation of SC-b cells and the

regulation of expression of other b cell genes, such as MAFA

(Nair et al., 2019; Velazco-Cruz et al., 2019), or b cell failure in

type 2 diabetes.
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Antibodies

Rat anti C-peptide DSHB Cat#GN-ID4; RRID:AB_2255626

Mouse anti NKX6-1 DSHB Cat#F55A12; RRID:AB_532379

Mouse anti Glucagon ABCAM Cat#ab82270; RRID:AB_1658481

Goat anti PDX1 R&D Systems Cat#AF2419; RRID:AB_355257

Mouse anti PAX6 BDBiosciences Cat#561462; RRID:AB_10715442

Rabbit anti CHGA ABCAM Cat#ab15160

Mouse anti ISL1 DSHB Cat#40.2D6; RRID:AB_528315

Rabbit anti SIX2 Proteintech Cat#11562-1-AP; RRID:AB_2189084

Sheep anti NGN3 R&D Systems Cat#AF3444; RRID:AB_2149527

Mouse anti NKX2-2 DSHB Cat#74.5A5; RRID:AB_531794

Mouse anti Synaptophysin LifeSpan BioSciences Cat#LS-C174787; RRID:AB_2811021

Mouse anti SOX9 Invitrogen Cat#14-9765-80; RRID:AB_2573005

anti-rat-alexa fluor 488 Invitrogen Cat#A-21208; RRID:AB_141709

anti-mouse-alexa fluor 647 Invitrogen Cat#a31571; RRID:AB_162542

anti-rabbit-alexa fluor 647 Invitrogen Cat#a31573; RRID:AB_2536183

anti-goat-alexa fluor 647 Invitrogen Cat#a21447; RRID:AB_141844

anti-rabbit-alexa fluor 488 Invitrogen Cat#a21206; RRID:AB_2535792

anti-mouse-alexa fluor 594 Invitrogen Cat#a21203; RRID:AB_141633

anti-rabbit-alexa fluor 594 Invitrogen Cat#a21207; RRID:AB_141637

anti-goat-alexa fluor 594 Invitrogen Cat#a11058; RRID:AB_2534105

anti-rat-PE Jackson Immuneresearch Cat#712-116-153; RRID:AB_2340657

anit-sheep-alexa fluor 594 Invitrogen Cat#a11016; RRID:AB_10562537

Chemicals, Peptides, and Recombinant Proteins

Lenti-X concentrator Takara Cat#631232

mTeSR1 StemCell Technologies Cat#05850

Accutase StemCell Technologies Cat#07920

Y27632 Abcam Cat#ab120129

Matrigel Corning Cat#356230

TrypLE Life Technologies Cat#12-604-039

Dnase QIAGEN Cat#79254

HEPES GIBCO Cat#15630-080

Extendin-4 MilliporeSigma Cat#E7144

IBMX MilliporeSigma Cat#I5879

Tolbutamide MilliporeSigma Cat#T0891

KCl ThermoFisher Cat#BP366500

Tris MilliporeSigma Cat#T6066

EDTA Ambion Cat#327371000

Paraformaldehyde Electron Microscopy Science Cat#15714

Donkey Serum Jackson Immunoresearch Cat#017-000-121

Triton X-100 Acros Organics Cat#327371000

RPMI-1640 Sigma Cat#R6504

Oligomycin Calbiochem Cat#1404-19-9

FCCP Sigma Cat#270-86-5
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Rotenone Calbiochem Cat#83-79-4

Antimycin A Sigma Cat#1397-94-0

Fluo-4 AM Invitrogen Cat#F14201

DMEM MilliporeSigma Cat#D6429

HI Fetal Bovine Serum MilliporeSigma Cat#F4135

Opti-MEM Life Technologies Cat#31985-070

Polyethylenimine ‘Max’ MW 40,000 Da Polysciences Cat#24765-2

Critical Commercial Assays

Human Insulin Elisa ALPCO Cat#80-INSHU-E10.1; RRID:AB_2801438

Proinsulin ELISA Mercodia Cat#10-1118-01; RRID:AB_2754550

Quant-iT Picogreen dsDNA assay kit MilliporeSigma Cat#T6066

Lenti-X qRT-PCR Titration Kit Takara Cat#631235

RNeasy Mini Kit QIAGEN Cat#74016

High Capacity cDNA Reverse Transcriptase Kit Applied Biosystems Cat#4368814

PowerUp SYBR Green Master Mix Applied Biosystems Cat#A25741

Deposited Data

Raw and Analyzed RNA Seq Data This Paper GEO: GSE147737

Experimental Models: Cell Lines

Human: HUES8 hESC HSCI hES Cell line: HUES-8

Human: iPSC 1013 HSCI hiPS Cell line: 1013-4FA

Lenti-X 293T Takara Cat#632180

Oligonucleotides

See Table S4. N/A N/A

Recombinant DNA

sh-ctrl RNAi Core, Washington

University in St. Louis

pLKO.1 shGFP, GCGCGATCACATGGTCCTGCT

sh-SIX2-1 RNAi Core, Washington

University in St. Louis

pLKO.1 TRC sh-SIX2, CAACGAGAACTCCAATTCTAA

sh-SIX2-2 RNAi Core, Washington

University in St. Louis

pLKO.1 TRC sh-SIX2, GAGCACCTTCACAAGAATGAA

psPAX2 Gift from Didier Trono Addgene Plasmid Cat#12260; RRID:Addgene_12260;

http://n2t.net/addgene:12260

pMD2.G Gift from Didier Trono Addgene Plasmid Cat#12259; RRID:Addgene_12259;

http://n2t.net/addgene:12259

Software and Algorithms

Fiji ImageJ ImageJ public freeware https://imagej.net/Fiji/Downloads

PRISM8 GraphPad https://www.graphpad.com/scientific-software/

prism/

FLOWJO FLOWJO https://www.flowjo.com/solutions/flowjo/downloads

GSEA GSEA https://www.gsea-msigdb.org/gsea/index.jsp

Other

30-mL spinner flasks Reprocell Cat#ABBWVS03A

Vi-Cell XR Beckman Coulter Cat#Vi-Cell XR

Tanswells Corning Cat#431752

Seahorse Xfe24 Flux analyzer Agilent Cat#Xfe24

#1.5 glass bottom 96 well plate Cellvis Cat#963-1.5H-N

8-channel peristaltic pump ISMATEC Cat#ISM931C

Inlet/outlet two-stop tubing ISMATEC Cat#070602-04i-ND

Cell chamber BioRep Cat#Peri-Chamber

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Dispensing nozzle BioRep Cat#Peri-Nozzle

Connection tubbing BioRep Cat#Peri-TUB-040

Bio-Gel P-4 Bio-Rad Cat#150-4124
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Jeffrey R.

Milman (jmillman@wustl.edu).

Materials Availability
shRNA plasmids used in this study are from the TRC shRNA library and available from the RNAi Core at Washington University in St.

Louis.

HUES8 cell line is available through the Harvard Stem Cell Institute (HCSI).

SIX2 KO cell lines are made available upon request to Lead Contact.

Data and Code Availability
The RNA sequencing data generated in this study is made available at the Gene Expression Omnibus (GEO). The accession number

for the raw and processed data reported in this paper is GEO: GSE147737.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Culture of undifferentiated hESCs and differentiation to Stage 6 cells
Cell culture was performed as we previously described (Hogrebe et al., 2020; Millman et al., 2016; Velazco-Cruz et al., 2019). This

work was performed with the approval of the Washington University School of Medicine Embryonic Stem Cell Research Oversight

Committee (ESCRO). The HUES8 hESC and 1013-4FA hiPSC lines was generously provided by Dr. Douglas Melton (Harvard Univer-

sity) and has been published on previously (Hogrebe et al., 2020; Velazco-Cruz et al., 2019). All data is with the HUES8 cell line unless

otherwise noted to be 1013-4FA. For differentiation protocol 1 (Velazco-Cruz et al., 2019), which was used unless otherwise noted,

undifferentiated HUES8 were cultured in mTeSR1 (StemCell Technologies; 05850) in 30-mL spinner flasks (REPROCELL;

ABBWVS03A) on a rotator stir plate (Chemglass) at 60 RPM in a humidified 37�C 5% CO2 tissue culture incubator. Stem cells

were passaged every 3 days by single cell dispersion using Accutase (StemCell Technologies; 07920), viable cells counted with

Vi-Cell XR (Beckman Coulter), and seeded at 6 3 105 cells/mL in mTeSR1+ 10 mM Y27632 (Abcam; ab120129). The media was

then changed as outlined in Table S4 to induce differentiation. For differentiation protocol 2 (Hogrebe et al., 2020), which was

used for the KO studies and 1013-4FA differentiations, undifferentiated pluripotent stem cells were cultured in mTeSR1 on plates

coated with Matrigel (Corning; 356230) in a humidified 37�C 5% CO2 tissue culture incubator. Stem cells were passaged every

4 days single cell dispersion using TrypLE (Life Technologies; 12-604-039), viable cells counted with Vi-Cell XR, and seeded at

5.2 3 105 cells/cm2 in mTeSR1+ 10 mM Y27632. The media was then changed as outlined in Table S4 to induce differentiation.

On stage 6 day 1 of protocol 1 and stage 6 day 7 of protocol 2 cells were single cell dispersed using TrypLE (Life Technologies;

12-604-039; 15-minute incubation for protocol 1, 6-minute incubation for protocol 2). Following single cell dispersion cells were

re-aggregated by seeding 5 million cells in 5 mL of stage 6 media into a well of a 6-well plate placed on an orbi-shaker (Benchmark)

rotating at 100 RPM; clusters were allowed to re-aggregate and media was changed 48 hours post seeding.

METHOD DETAILS

Real-time PCR
Measurements were performed aswe previously described (Velazco-Cruz et al., 2019). RNeasyMini Kit (QIAGEN; 74016) with DNase

treatment (QIAGEN; 79254) was used for RNA extraction. High Capacity cDNA Reverse Transcriptase Kit (Applied Biosystems;

4368814) was used to make cDNA. PowerUp SYBR Green Master Mix (Applied Biosystems; A25741) on a StepOnePlus (Applied

Biosystems) was used to perform the real-time PCR reactions. Melting curves were ran for each primer to determine specificity of

amplification. DDCt methodology with TBP normalization was used for analysis. For samples undetected using real-time PCR CT

values where set to 40 in analysis. Primer sequences used were (gene, forward primer, reverse primer): INS, CAATGC

CACGCTTCTGC, TTCTACACACCCAAGACCCG; TBP, GCCATAAGGCATCATTGGAC, AACAACAGCCTGCCACCTTA; SIX2,

AAGGCACACTACATCGAGGC, CACGCTGCGACTCTTTTCC; SIX3, CTGCCCACCCTCAACTTCTC, GCAGGATCGACTC

GTGTTTGT; IAPP, ACATGTGGCAGTGTTGCATT, TCATTGTGCTCTCTGTTGCAT; UCN3, TGTAGAACTTGTGGGGGAGG,
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GGAGGGAAGTCCACTCTCG; ABCC8, GCCCACGAAAGTTATGAGGA, AAGGAGATGACCAGCCTCAG; GCK, ATGCTGGACGACA

GAGCC, CCTTCTTCAGGTCCTCCTCC; GLP1R1, GGTGCAGAAATGGCGAGAATA, CCGGTTGCAGAACAAGTCTGT; HOPX, GA

GACCCAGGGTAGTGATTTGA, AAAAGTAATCGAAAGCCAAGCAC; NEFL, ATGAGTTCCTTCAGCTACGAGC, CTGGGCATCAAC

GATCCAGA; CAMK2A, GCTCTTCGAGGAATTGGGCAA, CCTCTGAGATGCTGTCATGTAGT; ALB,

CCTTTGGCACAATGAAGTGGGTAACC, CAGCAGTCAGCCATTTCACCATAGG; CDX2, CCTCTGAGATGCTGTCATGTAGT,

GGTGATGTAGCGACTGTAGTGAA; AFP, TGTACTGCAGAGATAAGTTTAGCTGAC, CCTTGTAAGTGGCTTCTTGAACA

KD of SIX2
Gene KD was performed similar to as we previously described (Velazco-Cruz et al., 2019). pLKO.1 TRC plasmids containing shRNA

sequences targeting GFP (sh-ctrl) and human SIX2 (sh-SIX2-1 and sh-SIX2-2) were received from the RNAi Core at the Washington

University. sh-ctrl, GCGCGATCACATGGTCCTGCT; sh-SIX2-1, CAACGAGAACTCCAATTCTAA; sh-SIX2-2, GAGCACCTTCACAA

GAATGAA. Viral particles were generated using Lenti-X 293T cells (Takara; 632180) cultured in DMEM (MilliporeSigma; D6429)

with 10% heat inactivated fetal bovine serum (MilliporeSigma; F4135). Confluent Lenti-X 293T cells were transfected with 6 mg of

shRNA plasmid, 4.5 mg of psPAX2 (Addgene; 12260), and 1.5 mg pMD2.G (Addgene; 12259) packaging plasmids in 600 mL of

Opti-MEM (Life Technologies;31985-070) and 48 mL of Polyethylenimine ‘Max’ MW 40,000 Da (Polysciences; 24765-2). 16 hours

post transfection media was switched. Viral containing supernatant was collected at 96 hours post transfection and concentrated

using Lenti-X concentrator (Takara; 631232). Collected lentivirus was tittered using Lenti-X qRT-PCR Titration Kit (Takara;

631235). Lentiviral transduction occurred on the first day of Stage 6 by seeding 5 million dispersed single cells were into a well of

a 6-well plate with lentivirus particles MOI of 5, media was switched 16 hours post transduction. psPAX2 and pMD2.G were a gift

from Didier Trono.

Generation of SIX2 KO cell lines
CRISPR/Cas9 genome engineering of the HUES8 cell line was performed by theWashington University Genome Engineering & iPSC

Center. The high sequence similarity with other SIX genes limited the availability of high-quality gRNA sites, making conventional

frameshift introduction infeasible. Instead, a deletion strategy was employed for almost all the SIX2 coding sequence. Unique

genomic regions near the start and end of the SIX2 coding sequence were identified and guide RNAs were designed; 50 gRNA,
TCGGAGCTTCGTGGGACCCGCGG and 30gRNA, CCACGAGGTTGGCTGACATGGGG. Two homozygous SIX2 KOHUES8 cell lines

were generated (KO-SIX2-1 and KO-SIX2-2). Validation of SIX2 KO was done by PCR using primers (GGGAGAACGAGTGA

GAAGCG, TGCGGGTCTTTCAGTACCTG) designed to amplify a 3368 bp sequence containing the coding region, deletion of which

will produce a �300 bp amplicon (‘‘Deletion primers’’). Validation was also done using primers (CAGTTCTGGGAGAGAAGAGAC,

GGGCTGGATTCTGTTCCCATA) targeting within the SIX2 coding sequence designed to amplify 300 bp in wt and failing to amplify

with successful deletion (‘‘Inside primers’’). Next generation sequencing was performed to further confirm KO.

Static glucose-stimulated insulin secretion
Measurements were performed as we previously described (Velazco-Cruz et al., 2019). The assay was performed in KRB buffer

(128 mMNaCl, 5 mM KCl, 2.7 mMCaCl2 1.2 mMMgSO4, 1 mMNa2HPO4, 1.2 mM KH2PO4, 5 mMNaHCO3, 10 mMHEPES (GIBCO;

15630-080), and 0.1% BSA). Stage 6 clusters (�20-30) were washed with KRB buffer and placed into transwells (Corning; 431752)

with 2mMglucose KRB. After 1 hr of equilibration, the solution was replacedwith 2mMglucose KRB for a 1 hr low glucose challenge,

after which the solution was replace with 20 mM glucose alone or with

10 nM Extendin-4 (MilliporeSigma; E7144), 100 mM IBMX (MilliporeSigma; I5879), 300 mMTolbutamide (MilliporeSigma; T0891), or

30 mM KCL (Thermo

Fisher; BP366500) KRB for a 1 hr high glucose challenge. Incubations were performed in a humidified incubator at 37�C 5% CO2.

Insulin was quantified with a human insulin ELISA (ALPCO; 80-INSHU-E10.1). Cell quantification was performed by dispersing with

trypLE and counting with the Vi-Cell XR.

Dynamic glucose-stimulated insulin secretion
Measurements were performed as previously described (Velazco-Cruz et al., 2019). Using an 8-channel peristaltic pump (ISMATEC;

ISM931C) together with 0.015’’ inlet/outlet two-stop tubing (ISMATEC; 070602-04i-ND) connected to 275-ml cell chamber (BioRep;

Peri-Chamber) and dispensing nozzle (BioRep; PERI-NOZZLE) using 0.04’’ connection tubbing (BioRep; Peri-TUB-040). Solutions,

tubing, and cells weremaintained at 37�Cusing awater bath. Stage 6 clusters (�20-30) were washedwith KRBbuffer and placed into

perifusion cell chamber between two layers of hydrated Bio-Gel P-4 polyacrylamide beads (Bio-Rad; 150-4124). After 90min of equil-

ibration with 2 mM glucose KRB, cells were subjected to the following at 100 mL/min: 12 min of 2 mM glucose KRB, 24 min of 20 mM

glucose KRB, and finally 12min of 2 mMglucose KRB. Effluent was collected every 2min. Insulin was quantified with a human insulin

ELISA (ALPCO; 80-INSHU-E10.1). DNA quantification was performed by lysing the cells and measuring with the Quant-iT Picogreen

dsDNA assay kit (Invitrogen; P7589). The lysis solution used consisted of 10 mM Tris (MilliporeSigma; T6066), 1 mM EDTA (Ambion;

AM9261), and 0.2% Triton X-100 (Acros Organics; 327371000).
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Immunostaining
Measurements were performed as we previously described (Velazco-Cruz et al., 2019). Stage 6 clusters were single-cell dispersed

with trypLE, plated overnight, and fixed with 4% paraformaldehyde (Electron Microscopy Science; 15714) for 30 min at RT. Samples

were treated for 30 min with blocking/permeabilizing/staining solution (5% donkey serum (Jackson Immunoresearch; 017-000-121)

and 0.1% Triton X-100 (Acros Organics; 327371000) in PBS). Samples were then incubated overnight at 4�C with primary antibody

diluted in staining solution, incubated 2 hr at 4�C with secondary antibodies diluted in staining solution, and stained with DAPI for

5 min. Nikon A1Rsi confocal microscope or Leica DMI4000 fluorescence microscope were used to take images. The antibodies

used are listed in Table S4.

Flow cytometry
Measurements were performed as we previously described (Velazco-Cruz et al., 2019). Clusters were single-cell dispersed with

TrypLE, fixed with 4% paraformaldehyde for 30 min at 4�C, incubated 30 min at 4�C in blocking/permeabilizing/staining solution,

incubated with primary antibodies in staining buffer overnight at 4�C, incubated with secondary antibodies in staining buffer for

2 hr at 4�C, resuspended in staining buffer, and analyzed on an LSRII (BD Biosciences) or X-20 (BD Biosciences). Dot plots and per-

centages were generated using FlowJo. The antibodies used are listed in Table S4.

RNA sequencing
RNA from sh-ctrl and sh-SIX2-1 transduced cells (n = 6 per condition) was extracted on Stage 6 Day 12 using RNeasy Mini Kit with

DNase treatment. Washington University Genome Technology Access Center performed library preparation, sequencing, and deter-

mination of differential expression. Libraries were indexed, pooled, and single-end 50 base pair reads were sequenced on one lane of

an Illumina HiSeq 3000 generating 25-30 million reads per sample. Reads were then aligned to the Ensembl release 76 top-level as-

sembly with STAR. Gene counts were derived from the number of uniquely aligned unambiguous reads by Subread:featureCount. All

gene counts were imported into EdgeR5 and TMM normalization size factors were calculated. Ribosomal genes and genes not ex-

pressed in the smallest group size minus one, samples greater than one count-per-million were excluded from further analysis. The

TMM size factors and the matrix of counts were imported into Limma6. Weighted likelihoods based on the observed mean-variance

relationship of every gene and sample were calculated for all samples with the voomWithQualityWeights7. Differential expression

analysis was performed with a Benjamini-Hochberg false-discovery rate adjusted p values cut-off of less than or equal to 0.05. Hi-

erarchical clustering and heatmaps were generated using Morpheus (https://software.broadinstitute.org/morpheus). To perform

gene set enrichment analyses normalized all gene counts were imported into GSEA software and the Molecular Signature Database

(MSigDB) Hallmark, KEGG, and Gene Ontology gene libraries were used to identify enriched gene sets (Subramanian et al., 2005).

In Vitro Beta Cell Maturation gene set was generated by combining Veres et al. (Veres et al., 2019) Stage 6 enriched genes logbase2

fold or greater (76 genes), and Nair et al. (Nair et al., 2019) b-clusters enriched genes (424 genes) with SIX2 removed.

Hormone content measurements
Measurements were performed as we previously described (Velazco-Cruz et al., 2019). Stage 6 cell clusters were collected, washed

with PBS, placed in acid-ethanol solution (1.5%HCl and 70%ethanol), stored at�20�C for 24 hours, vortexed, returned to�20�C for

24 additional hours, vortexed, and centrifuged at 2100 G for 15 min. The supernatant was collected and neutralized with an equal

volume of 1 M TRIS (pH 7.5). Human insulin and pro-insulin content were quantified using Human Insulin ELISA and Proinsulin ELISA

(Mercodia; 10-1118-01) respectively. Samples were normalized to cell counts made using the Vi-Cell XR.

OCR and ECAR measurements
Measurements were performed similar to as we previously reported (Millman et al., 2019). Stage 6 cell clusters were dispersed into a

single-cell suspension and plated 200,000 per well. After overnight incubation in S6 media, the media was replaced with RPMI-1640

(Sigma; R6504) with 7.4 pH and 20 mM glucose. The Seahorse XFe24 flux analyzer (Agilent) was used to measure OCR and ECAR.

After basal measurements, 3 mM oligomycin (Calbiochem; 1404-19-9), 0.25 mM carbonyl cyande-4-(trifluoromethoxy) phenylhydra-

zone (FCCP) (Sigma; 270-86-5), and 1 mM rotenone (Calbiochem; 83-79-4) and 2 mM antimycin A (Sigma; 1397-94-0) where injected

sequentially and replicate measurements performed.

Cytoplasmic calcium measurements
Calcium measurements were done similar as previously reported (Kenty and Melton, 2015; Pagliuca et al., 2014). Stage 6 day 12

clusters were single cell dispersed by incubation in TrypLE for 10 minutes and plated down onto a Matrigel coated #1.5 glass bottom

96 well plate (Cellvis; 963-1.5H-N) and allowed to attach overnight. Following overnight attachment clusters were washed twice with

2 mM glucose KRB and incubated in 2 mM glucose KRB with 20 mM Fluo-4 AM (Invitrogen; F14201) for 45 min at 37�C. Cells were

washed twice with 2mMglucose KRB, placed in 2mMglucose KRB and incubated for 10min at 37�C, then placed in a 37�C 5%CO2

humidified Tokai-hit stage-top on a Nikon Eclipse Ti inverted spinning disk confocal equipped with a Yokagawa CSU-X1 variable

speed Nipkow spinning disk scan head equipped with a motorized xy stage including nano-positioning piezo z-insert. Images

were acquired with the cells at 2 mM glucose KRB, 20 mM glucose KRB, and 20 mM glucose 30 mM KCl KRB. Analysis of calcium

flux image stack was performed using ImageJ with the StackReg package for correction.
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QUANTIFICATION AND STATISTICAL ANALYSIS

GraphPad Prismwas used to calculate statistical significance for all non-RNA sequencing data. One- or two-sided paired or unpaired

t tests were used.

Differential expression analysis of RNA sequencing data was performed with a Benjamini-Hochberg false-discovery rate adjusted

p values cut-off of less than or equal to 0.05.

Error bars represent s.e.m. unless otherwise noted. Sample size (n) is specified in each figure caption and indicates biological rep-

licates unless otherwise noted. Statistical parameters are stated in figure captions.
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Figure S1. Validation of SIX2 KD and KO assessments. Related to Figure 1. (A) Real-time PCR measurements 

of SIX2 gene expression for Stage 6 cells transduced with sh-ctrl, sh-SIX2-1, or sh-SIX2-2 for differentiated HUES8 

(left) or 1013-4FA, made with protocol 2, (right) cells. n=3. (B) C-peptide and SIX2 immunostaining of stage 6 cells 

made with protocol 2 transduced with sh-ctrl or sh-SIX2-1 in the 1013-4FA background. (C) Dynamic glucose-

stimulated insulin secretion of Stage 6 HUES8 cells transfected with control shRNA (sh-ctrl; n=4) or shRNA targeting 

SIX2 (sh-SIX2-2; n=4). Cells are perfused with 2 mM glucose except when indicated in a perifusion chamber. (D) 

Static glucose-stimulated insulin secretion of sh-ctrl or sh-SIX2-2 transduced Stage 6 HUES8 cells. n=5. (E) Dynamic 

glucose-stimulated insulin secretion of Stage 6 1013-4FA cells made with protocol 2 transfected with control shRNA 

(sh-ctrl; n=4) or shRNA targeting SIX2 (sh-SIX2-1; n=4). Cells are perfused with 2 mM glucose except when 

indicated in a perifusion chamber. (F) Static glucose-stimulated insulin secretion of sh-ctrl or sh-SIX2-1 transduced 

Stage 6 1013-4FA cells made with protocol 2. n=5. (G) CRISPR knock out strategy for the generation of the SIX2 

KO HUES8 cell lines KO-SIX2-1 and KO-SIX2-2. HUES8 homozygous SIX2 KO clones were generated by deleting 

the SIX2 coding sequence using two gRNAs target flanking regions of the SIX2 coding sequence. Also shown are the 

primers used to validate deletion, “deletion primers” and “inside primers”. (H) PCR of SIX2 KO clones confirming 

SIX2 coding sequence deletion. “Deletion primers” will produce 3368 bp amplicon for wt but only ~300 bp amplicon 

with successful deletion. “Inside primers” will produce ~300 bp amplicon for wt but fail to amplify with successful 

deletion. (I) Next generation sequencing confirming deletion of SIX2 coding sequence in KO cell lines. The entire 

sequence between the 5’ and 3’ gRNA was absent (marked with red dash in reference). 1,085 total reads for KO-

SIX2-1 clone and 840 total reads for KO-SIX2-2 clone were sequenced and 0% wt gRNA target sequence were 

detected and frame shifting indels totaled 100% for both clones. A few bp of SIX2 coding are leftover. (J) Real-time 

PCR measurements of SIX2 gene expression for Stage 6 cells made with protocol 2 from wt or KO SIX2 HUES8 

backgrounds. n=5. (K) C-peptide and SIX2 immunostaining of Stage 6 cells made with protocol 2 from wt or KO 

SIX2 HUES8 backgrounds. Error bars represent s.e.m. 

  



 
 

 

Figure S2. Additional evaluation of SIX3 and SIX2. Related to Figure 2. (A) Real-time PCR measurements of 

SIX3 in undifferentiated hESCs and at the end of each stage of the differentiation. Data is presented as the fold change 

relative to Stage 6 cells. All n=6, except PP2 n=3. (B) Real-time PCR measurements of SIX3 gene expression for 

Stage 6 cells transduced with sh-ctrl or sh-SIX2-1 (n=4; left) or SIX2 wt and KO cells (n=5; right). ns=p>0.05. (C) 

Immunostaining of NGN3 and NKX6-1 3 days into Stage 5. Scale bar=25 μm. (D) Flow cytometry plots of Stage 6 

cells made with protocol 2 from the 1013-4FA background transduced with shRNA against GFP (control) and SIX2. 

(E) Flow cytometry plots of Stage 5 day 1 cells made with protocol 2 from the HUES8 background wt or KO for 

SIX2. n=4. ns by unpaired two-way t test. Error bars represent s.e.m. 

  



 
 

 

Figure S3. Additional RNA sequencing analysis. Related to Figure 3. (A) Enriched gene sets for important β cell 

processes from the Molecular Signatures Database. (B) Additional enrichment plots. These are made with genes from 



 
 

the individual custom gene sets comprising 76 genes identified in Veres et al (Veres et al., 2019) and the top 424 genes 

identified in Nair et al (Nair et al., 2019) positively correlating with time and maturation in vitro (Tables S2-S3). (C) 

Real-time PCR measurements of Stage 6 cells made with protocol 2 transduced with sh-ctrl or sh-SIX2-1 in the 1013-

4FA background. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 by two-way unpaired t test. Error bars represent 

s.e.m. 

 

 

 

  



 
 

 

Figure S4. Additional data on SIX2 KD and KO effects on SC-β cells. Related to Figure 4. (A) Insulin content 

for Stage 6 cells transduced with sh-ctrl or sh-SIX2-1 in the 1013-4FA background. n=5. (B) Insulin content for Stage 

6 cells wt or KO for SIX2. n=5. (C) OCR measurements for Stage 6 cells transduced with sh-ctrl or sh-SIX2-1 in the 

1013-4FA background under basal conditions and after sequential injections of Oligomycin (OM), Carbonyl cyanide-

4-(trifluoromethoxy)phenylhydrazone (FCCP), and Antimycin A with rotenone (AA/R). n=9 for sh-ctrl and n=10 for 

sh-SIX2-1. *p<0.05,***p<0.001 by two-way unpaired t test. Error bars represent s.e.m.  
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