

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Prospective Evaluation of impRoving Fluoroquinolone Exposure using Centralized TDM in patients with Tuberculosis (PERFECT) – a study protocol of a prospective multicentre cohort study.

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-035350
Article Type:	Protocol
Date Submitted by the Author:	29-Oct-2019
Complete List of Authors:	van den Elsen, Simone; University of Groningen, University Medical Center Groningen, Clincal Pharmacy and Pharmacology Sturkenboom, Marieke; University of Groningen, University Medical Center Groningen, Clincal Pharmacy and Pharmacology Akkerman, Onno; University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases & Tuberculosis; University of Groningen, University Medical Center Groningen, Tuberculosis Center Beatrixoord Barkane, Linda; Riga East University Mospital TB and Lung Disease Clinic, MDR-TB department Bruchfeld, Judith; Karolinska Institutet, Division of Infectious Diseases, Department of Infectious Diseases Eather, Geoffrey; Princess Alexandra Hospital, Department of Respiratory Medicine & Metro South Clinical Tuberculosis Service Heysell, Scott; University of Virginia, Division of Infectious Diseases and International Health Hurevich, Henadz; The Republican Scientific and Practical Center for Pulmonology and Tuberculosis Kuksa, Liga; Riga East University Hospital TB and Lung Disease Clinic, MDR-TB department Kunst, Heinke; Barts Health NHS Trust, Blizard Institute, Queen Mary University of London, Department of Respiratory Medicine Kuhlin, Johanna; Karolinska Institutet, Department of Medicine, Unit of Infectious Diseases; Karolinska University Hospital, Department of Infectious Diseases; Sottiria" Hospital for Chest Diseases, Drug- Resistant Tuberculosis Unit Mpagama, Stellah; Kibong'oto Infectious Diseases Hospital Muñoz Torrico, Marcela; Instituto Nacional de Enfermedades Respiratorias, Clínica de Tuberculosis Skrahina, Alena; The Republican Scientific and Practical Center for Pulmonology and Tuberculosis Stotyiu, Giovanni; University of Sassari, Clinical Epidemiology and Medical Statistics Unit, Department of Medical, Surgical and Experimental Sciences,

1	
2	
_	
3	
4	
5	
6	
7	
7 8	
9	
10	
11	
12	
12	
13 14	
14	
15	
16	
16 17 18	
19	
20	
21	
22	
23	
24	
24 25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
20	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
47	
48 49	
50	
51	
52	
53	
54	
55	
56	
55	

	Tadolini, Marina; Alma Mater Studiorum University of Bologna, Unit of Infectious Diseases, Department of Medical and Surgical Sciences Tiberi, Simon; Barts Health NHS Trust, Blizard Institute, Queen Mary University of London, Department of Infection Volpato, Francesca; Alma Mater Studiorum University of Bologna, Unit of Infectious Diseases, Department of Medical and Surgical Sciences van der Werf, Tjip S.; University Medical Center Groningen, Department of Pulmonary Diseases & Tuberculosis; University of Groningen, University Medical Center Groningen, Department of Internal Medicine Wilson, Malcolm; Princess Alexandra Hospital, Department of Respiratory Medicine & Metro South Clinical Tuberculosis Service Zúñiga , Joaquin; Instituto Nacional de Enfermedades Respiratorias, Laboratory of Immunobiology and Genetics; Escuela de Medicina y Ciencias de Salud, Tecnologico de Monterrey Touw, Daan; University of Groningen, University Medical Center Groningen, Clincal Pharmacy and Pharmacology Migliori, Giovanni; Istituti Clinici Scientifici Maugeri IRCCS, Servizio di Epidemiologia Clinica delle Malattie Respiratorie Alffenaar, Jan-Willem; University of Groningen, University Medical Center Groningen, Clincal Pharmacy and Pharmacology; The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health
Keywords:	Tuberculosis < INFECTIOUS DISEASES, CLINICAL PHARMACOLOGY, Organisation of health services < HEALTH SERVICES ADMINISTRATION & MANAGEMENT, INFECTIOUS DISEASES

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

2		
3 4	1	Prospective Evaluation of impRoving Fluoroquinolone Exposure using Centralized TDM
5 6 7	2	in patients with Tuberculosis (PERFECT) – a study protocol of a prospective multicentre cohort study.
7 8 9	3	
10 11	4	Simone HJ van den Elsen ^a , Marieke GG Sturkenboom ^a , Onno W Akkerman ^{b,c} , Linda Barkane ^d , Judith
12 13	5	Bruchfeld ^{e,f} , Geoffrey Eather ^g , Scott K Heysell ^h , Henadz Hurevich ⁱ , Liga Kuksa ^d , Heinke Kunst ^j , Johanna
14 15 16	6	Kuhlin ^{e,f} , Katerina Manika ^k , Charalampos Moschos ^I , Stellah G Mpagama ^m , Marcela Muñoz-Torrico ⁿ ,
17 18	7	Alena Skrahina ^o , Giovanni Sotgiu ^p , Marina Tadolini ^q , Simon Tiberi ^r , Francesca Volpato ^q , Tjip S van der
19 20	8	Werf ^{c,s} , Malcolm R Wilson ^g , Joaquin Zuñiga ^t , Daan J Touw ^a #, Giovanni B Migliori ^u #, and Jan-Willem C
21 22 23	9	Alffenaar ^{a,v} #
23 24	10	
25 26 27	11	^a University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy
27 28 29	12	and Pharmacology, Groningen, The Netherlands.
30 31	13	^b University of Groningen, University Medical Center Groningen, Tuberculosis Center Beatrixoord,
32 33 34	14	Haren, The Netherlands
35 36	15	^c University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases
37 38	16	& Tuberculosis, Groningen, The Netherlands.
39 40	17	^d MDR-TB department, Riga East University Hospital TB and Lung Disease Clinic, Riga, Latvia.
41 42	18	^e Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm,
43 44 45	19	Sweden.
46 47	20	^f Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.
48 49	21	^g Department of Respiratory Medicine & Metro South Clinical Tuberculosis Service, Princess
50 51	22	Alexandra Hospital, Woolloongabba, Queensland, Australia.
52 53 54	23	^h Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA,
55 56	24	USA.
57 58 59 60	25	ⁱ The Republican Scientific and Practical Center for Pulmonology and Tuberculosis, Minsk, Belarus.

1 ว		
2 3 4	26	^j Blizard Institute, Queen Mary University of London, Department of Respiratory Medicine, Barts
5 6	27	Health NHS Trust, London, United Kingdom.
7 8	28	^k Pulmonary Department, Respiratory Infections Unit, Aristotle University of Thessaloniki, G.
9 10 11	29	Papanikolaou Hospital, Thessaloniki, Greece.
12 13	30	¹ Drug-Resistant Tuberculosis Unit, "Sotiria" Hospital for Chest Diseases, Athens, Greece
14 15	31	^m Kibong'oto Infectious Diseases Hospital, Kilimanjaro, Tanzania.
16 17	32	ⁿ Clínica de Tuberculosis, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico.
18 19	33	° The Republican Scientific and Practical Center for Pulmonology and Tuberculosis, Minsk, Belarus.
20 21 22	34	^p Clinical Epidemiology and Medical Statistics Unit, Department of Medical, Surgical and Experimental
23 24	35	Sciences, University of Sassari, Sassari, Italy
25 26	36	^q Unit of Infectious Diseases, Department of Medical and Surgical Sciences, Alma Mater Studiorum
27 28	37	University of Bologna, Bologna, Italy.
29 30 31	38	^r Blizard Institute, Queen Mary University of London, Department of Infection, Barts Health NHS
32 33	39	Trust, London, United Kingdom
34 35	40	^s University of Groningen, University Medical Center Groningen, Department of Internal Medicine,
36 37	41	Groningen, The Netherlands.
38 39 40	42	^t Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias,
40 41 42	43	Mexico City, Mexico. Tecnologico de Monterrey, Escuela de Medicina y Ciencias de Salud, Mexico
43 44	44	City, Mexico.
45 46	45	^u Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri IRCCS,
47 48 49	46	Tradate, Italy.
50 51	47	$^{ m v}$ Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney,
52 53	48	Australia
54 55	49	
56 57 58	50	# Authors contributed equally
58 59 60	51	

1 2		
2 3 4	52	Corresponding author: J.W.C. Alffenaar, University of Groningen, University Medical Center
5 6	53	Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, The Netherlands. Email:
7 8	54	j.w.c.alffenaar@umcg.nl
9 10 11	55	
12 13	56	Word count: 2604
$\begin{array}{c} 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\\ 60\\ \end{array}$		

57 Abstract

Introduction: Global multidrug-resistant tuberculosis (MDR-TB) treatment success rates remain suboptimal. Highly active World Health Organization (WHO) Group A drugs moxifloxacin and levofloxacin show intra- and inter-individual pharmacokinetic variability which can cause low drug exposure. Therefore, therapeutic drug monitoring (TDM) of fluoroquinolones is recommended to personalise the drug dosage, aiming to prevent development of drug resistance and optimize treatment. However, TDM is considered laborious and expensive, and the clinical benefit in MDR-TB has not been extensively studied. This observational multicentre study aims to determine the feasibility of centralized TDM and to investigate the impact of fluoroquinolone TDM on sputum conversion rates in patients with MDR-TB compared with historical controls. Methods and analysis: Patients aged 18 years or older with sputum smear and culture positive pulmonary MDR-TB will be eligible for inclusion. Patients receiving TDM using a limited sampling strategy (t=0 and t=5 hours) will be matched to historical controls without TDM in a 1:2 ratio. Sample analysis and dosing advice will be performed in a centralized laboratory. Centralized TDM will be considered feasible if >80% of the dosing advices is returned within seven days after sampling and 100% within fourteen days. The number of patients who are sputum smear and culture negative after two months of treatment will be determined in the prospective TDM group and will be compared to the control group without TDM to determine the impact of TDM. Ethics and dissemination: All participating centres obtained ethical clearance according to local procedures. Patients will be included after written informed consent. We aim to publish the study results in a peer-reviewed journal. Trial registration: This study is registered at clinicaltrials.gov (NCT03409315)

1		
2 3	83	Strengths and limitations of this study
4 5		
6	84	• To our knowledge, this is the first study that investigates the impact of fluoroquinolone TDM
7 8 9	85	on sputum smear and culture conversion rates in prospective patients with MDR-TB versus
10 11	86	historical controls without TDM.
12 13	87	• The feasibility for centralised TDM will be evaluated due to participation of multiple health
14 15 16	88	care centres located in differently resourced countries from multiple regions in the world.
17 18	89	• The use of limited sampling strategies will reduce the burden of TDM for patients and health
19 20	90	care providers while still providing a reliable estimation of drug exposure.
21 22 23	91	A limitation is that this study focuses on TDM for moxifloxacin and levofloxacin only, being
23 24 25	92	core drugs in MDR-TB treatment, without assessing other (core) anti-tuberculosis drugs.
26 27	93	Core drugs in MDK-TB treatment, without assessing other (core) anti-tuberculosis drugs.
28 29 30	94	
30 31 32		
33 34		
35 36		
37 38		
39 40		
41		
42 43		
44 45		
46		
47 48		
49		
50 51		
52		
53		
54 55		
56		
57		
58 59		
60		

95 Introducti	ion
---------------	-----

Tuberculosis (TB) is one of the major infectious diseases worldwide with an estimated number of 10.0 million new cases in 2017.[1] In addition, multidrug-resistant TB (MDR-TB) remains a persistent problem with an estimated 458,000 new patients in 2017.[1] MDR-TB is treated from 9-20 months with a multidrug regimen.[2] The grouping of second-line anti-TB drugs was revised in 2018 by the World Health Organisation (WHO).[3] The fluoroquinolones, specifically moxifloxacin and levofloxacin, are now considered drugs of first choice (Group A drugs), together with bedaquiline and linezolid, in the treatment of MDR-TB.[2,3] The administration of Group A medicines to patients with MDR-TB has been associated with increased treatment success and reduced mortality rates in comparison with other second-line anti-TB drugs.[4] However, the estimated prevalence of fluoroquinolone-resistance among MDR-TB cases is on the rise from 14.5% in 2011 to 22% in 2017.[5,6] Mismanagement of MDR-TB treatment, especially the shorter regimen, could amplify the risk of drug resistance even further.[7] Importantly, antibiotic resistance can be acquired due to noncompliance but also insufficient drug exposures (e.g. inter-individual pharmacokinetic variability in patients treated with fluoroquinolones).[8–11] Therapeutic drug monitoring (TDM) can help to prevent acquired resistance by individualising doses based on blood drug concentrations relative to the bacterial susceptibility, ideally measured as the minimal inhibitory concentration (MIC).[7,12] Several studies described the role played by low drug concentrations on treatment outcomes.[13– 15] In the light of this evidence, it can be hypothesized that TDM, which aims for adequate dosing and exposure, could improve treatment outcomes. Yet, the added value of TDM in MDR-TB treatment outcomes has not been directly studied.[16,17] One retrospective study reported the effect of TDM on the treatment results of patients with drug-susceptible TB, either with and without diabetes.[18] In the group without diabetes, TDM had a significant beneficial effect with 73% sputum culture conversion at two months amongst patients receiving TDM versus 60% in the control group. The positive effect of TDM was even larger in patients with diabetes and TB. To the best of our knowledge, such controlled studies have not yet been performed in people with MDR-TB.

Page 9 of 23

1

1 2		
2 3 4	121	The pharmacokinetic-pharmacodynamic parameter of fluoroquinolones is both time- and
5 6	122	concentration dependent and therefore uses the ratio of area under the concentration time curve to
7 8	123	minimal inhibitory concentration (AUC $_{0-24}$ /MIC) with a target value of >146 for levofloxacin and free
9 10 11	124	or unbound $fAUC_{0-24}$ /MIC >53 for moxifloxacin.[19,20] However, multiple concentration
12 13	125	measurements widely distributed over the dosing interval are required to compute the AUC_{0-24} .
14 15	126	Limited sampling strategies (LSS) could be adopted to reduce the burden of frequent sampling for
16 17	127	both patient and personnel while providing a reliable estimation of AUC_{0-24} using only two blood
18 19 20	128	samples.[21,22]
20 21 22	129	Unfortunately, TDM is not always easily accessible in high TB burden areas because of practical and
23 24	130	financial reasons. Therefore, centralized TDM could be a valuable service.[23] Large laboratories are
25 26	131	generally well organised, have highly trained personnel with adequate performance of analytical
27 28 29	132	methods leading to reliable sample analysis results.[24] In addition, centralizing the TDM procedures
30 31	133	will engender more consistent practice from health care practitioners familiar with TDM and the
32 33	134	provision of dosing advice for anti-tuberculosis drugs.
34 35	135	The aim of the present study is, firstly, to investigate the feasibility of centralized TDM of
36 37 38	136	moxifloxacin and levofloxacin in the treatment of MDR-TB recruited in TB reference centres located
39 40	137	in different continents. Secondly, the impact of TDM on treatment results will be assessed by
41 42	138	comparing two month sputum smear and culture conversion rates among patients who received
43 44	139	TDM compared with matched historical controls without TDM.
45 46	140	
47 48 49	141	Methods and analysis
50 51	142	
52 53	143	Study design
54 55	144	This observational, prospective, multicentre study aims to evaluate the feasibility of centralized TDM
56 57 58	145	of moxifloxacin and levofloxacin as well as the impact of TDM on two month sputum smear and
59 60	146	culture conversion rates of patients with MDR-TB. Study design and procedures are displayed in

3 4	147	Figure 1. The study was registered at clinicaltrials.gov (NCT03409315) and started on 10 February
5 6	148	2018.
7 8	149	
9 10 11	150	Study location
12 13	151	University Medical Center Groningen (UMCG) in Groningen, The Netherlands is the coordinating
14 15	152	centre and serves as central laboratory facility for this study. The hospitals that are involved in
16 17 18	153	patient recruitment are displayed in Table 1.
19 20	154	
21 22	155	Study population
23 24 25	156	Patients aged 18 years and older are eligible for inclusion if they are diagnosed with pulmonary MDR-
25 26 27	157	TB, have positive sputum smear and culture samples at time of inclusion, are treated with either oral
28 29	158	moxifloxacin or levofloxacin, and provide written informed consent. Pregnant or breast feeding
30 31	159	women will be excluded.
32 33	160	A total number of 120 patients (60 with moxifloxacin, 60 with levofloxacin) will be prospectively
34 35 36	161	included and compared with 240 matched historical controls (120 with moxifloxacin, 120 with
37 38	162	levofloxacin).
39 40	163	Historical control patients will be matched on age, sex, <i>M. tuberculosis</i> resistance pattern of the
41 42	164	isolate (only regimen core drugs), comorbidities (HIV, diabetes, immunosuppression), presence or
43 44 45	165	absence of cavitary TB on chest radiography, and dosing of the fluoroquinolone (mg/kg body weight,
43 46 47	166	±10%) to prospectively enrolled patients in a 2:1 ratio.
48 49	167	
50 51	168	Interventions
52 53	169	The objective of the feasibility of centralized TDM will be assessed by evaluating the process, by
54 55 56	170	which a locally collected sample will be analysed in a central laboratory and subsequent dosing
50 57 58	171	advice will be returned to the local physician. In brief, after at least seven days of treatment (steady
59 60	172	state) two blood samples will be collected for TDM of moxifloxacin or levofloxacin according to a

Page 11 of 23

1

1 2		
3 4	173	previously developed LSS.[21,22] The first sample will be collected just before drug intake (t=0) and
5 6	174	the other at 5 hours after drug intake (t=5). Samples will be transported to the central laboratory for
7 8	175	drug analysis and will be accompanied by a form including key patient characteristics for
9 10	176	personalised dosing advice (i.e. sex, age, weight, height, serum creatinine, corrected QT (QTc)
11 12 13	177	interval, MIC, TB presentation, start of treatment, other anti-TB drugs, and comorbidities). AUC $_{0-24}$
14 15	178	will be calculated using a population pharmacokinetic model [21,22] and Bayesian dose optimisation
16 17	179	in MWPharm++ (version 1.7.3; Mediware, Groningen, The Netherlands).
18 19	180	Dosing is optimised based on AUC_{0-24}/MIC or AUC_{0-24} (in case MIC is unknown), taking into
20 21 22	181	consideration comorbidities (HIV, diabetes, and immunosuppression) and clinical condition of the
23 24	182	patient. The target AUC ₀₋₂₄ /MIC and AUC ₀₋₂₄ are shown in Table 1. If a dose change is necessary, TDM
25 26	183	is to be repeated after at least seven days after the initiation of the new dose (steady state). Dose
27 28	184	increases of moxifloxacin will not be advised in case of a prolonged QTc interval (>450 ms for males,
29 30 31	185	>470 ms for females), because of safety reasons. As levofloxacin is less cardiotoxic than moxifloxacin,
32 33	186	levofloxacin dose increases are permitted in case of prolonged QTc interval with frequent
34 35	187	electrocardiogram monitoring. Patients with prolonged QTc interval will not be excluded from the
36 37	188	study, since TDM can still be helpful to verify drug exposure. A closely monitored follow-up including
38 39 40	189	MIC determination can be advised in case of AUC_{0-24} of 25 to 40 mg*h/L in combination with QTc
40 41 42	190	interval prolongation. In case of very low moxifloxacin exposure (AUC $_{0-24}$ <20 mg*h/L) in combination
43 44	191	with a prolonged QTc interval, the physician will be advised to reconsider the anti-TB regimen as
45 46	192	moxifloxacin may be less active than expected.
47 48 49	193	
50 51	194	Laboratory methods
52 53	195	Drug analysis:
54 55	196	Measurement of moxifloxacin and levofloxacin plasma/serum concentrations will take place at the
56 57 58	197	laboratory of the department of Clinical Pharmacy and Pharmacology in the UMCG, The Netherlands,
59 60	198	and using validated liquid chromatography-mass spectrometry (LC-MS/MS) methods. The method for

2 3 4	199	levofloxacin has an accuracy of 0.1-12.7%, within-run precision of 1.4-2.4%, and between-run
5 6	200	precision of 3.6-4.1%. The calibration curve is linear over a range of 0.10 to 5.00 mg/L.[25] Accuracy
7 8 9	201	of the moxifloxacin method is 2.7-7.1%, within-run precision 1.4-1.6%, and between-run precision
9 10 11	202	1.0-1.6%. The calibration curve is linear over a range of 0.05 to 5.00 mg/L.[26] Only the total
12 13	203	moxifloxacin concentration (bound and unbound) will be measured, therefore we assume a constant
14 15	204	protein binding of 50%.[27]
16 17	205	Plasma and serum samples containing levofloxacin are stable for at least ten days at 50 °C and can
18 19 20	206	therefore be transported to the central facility in ambient temperature, without the need of
21 22	207	transport on dry ice.[28] The thermal stability of moxifloxacin was also tested according to the
23 24	208	method of Ghimire <i>et al</i> and showed that moxifloxacin serum and plasma samples are stable for at
25 26	209	least ten days at 50 °C as well (data on file).
27 28 29	210	
29 30 31	211	Microbiology:
32 33	212	The assessment of sputum smear and culture status after two months of MDR-TB treatment will be
34 35	213	performed according to the local procedures, but at least once a month until documented culture
36 37	214	conversion. MIC determination is preferred but not mandatory for TDM and will be performed
38 39 40	215	according to local procedures as well. To account for the differences in culture media used in drug
40 41 42	216	susceptibility testing, correction factors based on the critical concentrations in the WHO-document
43 44	217	"Technical Report on critical concentrations for drug susceptibility testing of medicines used in the
45 46	218	treatment of drug-resistant tuberculosis" will be applied.[29] The target AUC ₀₋₂₄ /MIC values for each
47 48 40	219	medium are shown in Table 2. Furthermore, second line molecular drug susceptibility tests will be
49 50 51	220	considered in case MIC data are not available.
52 53	221	
54 55	222	Data analysis plan
56 57	223	The primary outcome to assess the feasibility of centralized TDM will be the turn-around time, which
58 59 60	224	is defined by the time between blood sampling and the peripheral centres receiving the TDM results
00		

2 3 4	225	including the dosing advice. The procedure is considered feasible if >80% of the collected samples
4 5 6	226	will be reported back to the physician within seven days and 100% within two weeks. Additionally,
7 8	227	the feasibility will be evaluated using secondary outcomes of sample quality after shipping and
9 10	228	completeness of required information on the sample form.
11 12 13	229	Furthermore, we will evaluate the role of TDM on MDR-TB treatment by comparing the percentages
14 15	230	of patients with sputum smear and culture conversion at two months in the enrolled groups. In
16 17	231	addition, we will evaluate the number of patients with low fluoroquinolone exposure requiring dose
18 19	232	changes after TDM to estimate the potential gains.
20 21 22	233	
23 24	234	Sample size calculation
25 26	235	As the primary endpoint was of descriptive nature and no data were available to perform a well-
27 28	236	informed sample size calculation, it was decided to power the study on the clinical impact of TDM.
29 30 31 32 33 34 35 36 37 38 39 40	237	The primary assumption was based on the detection of a proportional difference in sputum smear
	238	and culture positivity at two months of treatment in patients with MDR-TB undergoing TDM (35%)
	239	[30] and control patients (60%)[31]. Given an alpha error of 0.05 and statistical power of 80%, we
	240	calculated a sample size of 60 per single group is needed (i.e. 60 prospective and 120 historical
	241	control patients for moxifloxacin and equally for levofloxacin).
40 41 42	242	
43 44 45 46 47 48 49 50 51 52 53 53 54 55	243	Ethics and dissemination
	244	This study will be performed according to the Declaration of Helsinki and Good Clinical Practice.[32]
	245	In each centre ethical clearance has been granted according to local regulations and patient
	246	recruitment has begun at most sites. Written informed consent will be obtained from all patients
	247	undergoing TDM. The need of new informed consent for historical controls was waived, because of
	248	the use of retrospective anonymous data collected for programmatic purposes or previously
56 57 58 59 60	249	reported data from studies for which patients had provided informed consent.

1 2		
3 4	250	This study includes historical patients who did not receive TDM as controls instead of prospectively
5 6	251	randomising patients to either receive or not receive TDM for ethical reasons. The evidence that
7 8	252	TDM actually improves MDR-TB treatment outcomes has not been confirmed in randomised
9 10 11	253	controlled trials, but multiple studies have described treatment failure and risk of antibiotic
12 13	254	resistance due to sub therapeutic drug exposure of anti-TB drugs.[8,13,15,19,20] In combination with
14 15	255	a large between-patient pharmacokinetic variability [9,10], we hypothesize that TDM is able to
16 17	256	improve treatment outcomes by ensuring adequate exposure in individual patients. Moreover, TDM
18 19 20	257	for MDR-TB is recommended in guidelines when it is available.[2,33,34] We therefore considered it
20 21 22	258	unethical to withhold TDM.
23 24	259	Study results will be published in a peer-reviewed journal and will be presented at an international
25 26	260	conference.
27 28 29	261	
29 30 31	262	Discussion
32 33	263	We present an observational prospective multicentre study which aims to: a) evaluate the feasibility
34 35	264	of centralized TDM in differently resourced settings of varying TB endemicity and geographic region
36 37	265	and b) evaluate the role of TDM of moxifloxacin or levofloxacin on sputum smear and culture
38 39 40	266	conversion rates in patients with MDR-TB after two months of treatment.
41 42	267	Presently, TDM is offered as an adjunctive to patients with TB in only a few hospitals worldwide and
43 44	268	is considered to be part of the excellent clinical care.[16,23,35–37] However, general interest in TDM
45 46	269	and MDR-TB treatment optimization has been increasing. A consensus statement on the diagnosis
47 48 49	270	and treatment of MDR-TB in Europe states that TDM for second-line drugs should be used if
50 51	271	available.[34] Moreover, the use of second-line anti-TB drugs was listed in the American Thoracic
52 53	272	Society (ATS) guidelines as indication for TDM and TDM is also recommended in the European Union
54 55	273	Standards for Tuberculosis Prevention and Care.[33,38] Yet, TDM is considered by some to be
56 57 58	274	laborious, expensive and thus unpractical in countries with high TB incidence. Similar injurious
58 59 60	275	arguments of economistic rationing of services were applied to second-line drugs for the treatment

Page 15 of 23

1

BMJ Open

1 2	
2 3 4	276
5 6	277
7 8	278
9 10	279
11 12	280
13 14 15	281
15 16 17	282
18 19	283
20 21	284
22 23	285
24 25	286
26 27	287
28 29 20	
30 31 32	288
33 34	289
35 36	290
37 38	291
39 40	292
41 42	293
43 44	294
45 46	295
47 48	296
49 50 51	297
51 52 53	298
55 55	299
56 57	300
58 59	301
60	

276	of MDR-TB in highly endemic settings and such rationing conversely led to amplification of the MDR-
277	TB epidemic.[39] This study will focus on the feasibility of centralized TDM, which could stimulate
278	performing TDM more often as it requires only one qualified laboratory with validated analytical
279	methods and devices in a central location. Other options to facilitate TDM are the implementation of
280	LSS, urine samples, dried-blood spots and saliva-screening methods.[35,40–42] Although
281	incorporating TDM in TB treatment has shown to give high treatment success rates in low endemic
282	countries, like the Netherlands [30], this has not yet been evaluated in well-designed randomized
283	controlled trials.[43] This study will provide a first-ever conclusion on the value of TDM of
284	moxifloxacin and levofloxacin on sputum smear and culture conversion of patients with MDR-TB.
285	It can be considered a limitation that only TDM of fluoroquinolones is performed in this study.
286	However, moxifloxacin and levofloxacin are currently among the core drugs in the MDR-treatment
287	regimen together with linezolid and bedaquiline.[3] Based on TDM criteria [44], we have selected
288	moxifloxacin and levofloxacin, because they show large inter-individual pharmacokinetic variability,
289	which emphasizes the need for personalized dosing.[9,10] Moreover, fluoroquinolone resistance is
290	on the rise and can develop during low drug exposure.[8] TDM of fluoroquinolones aims to find the
291	individual patients who have low drug exposure and would benefit from dose adjustment. Therefore,
292	it is expected that TDM of fluoroquinolones will have the largest impact on MDR-TB treatment
293	outcomes. We did not include TDM for linezolid and bedaquiline in this study, because of unclear
294	evidence for TDM of bedaquiline due to the novelty of the drug [45] and TDM of linezolid has
295	focussed more on preventing toxicity.[46–48]
296	Another limitation is that we are only evaluating interim outcomes such as sputum conversion rates
297	at two months and will not assess outcomes at the end of treatment. However, this study is primarily
298	designed to determine the feasibility of centralized TDM. In addition, this is the first study to
299	evaluate the impact of fluoroquinolone TDM. We believe that reporting the results on sputum

300 conversion rates is relevant as bacterial load and risk of acquired resistance are highest in the first

59 301 months of therapy. Fast sputum culture conversion reduces the risk of transmission of *M*. 60

2 3 4	302	tuber	culosis strains which continues to sustain the MDR-TB epidemic.[49] With the results of this	
5 6	303	study	we aim to design a future study to extensively evaluate TDM of all drugs in the regimen	
7 8 9	304	incluc	ling the final treatment outcomes. However, such study would require substantial funding.	
10 11	305	We h	ope that this study will show that centralized TDM is feasible and that TDM can improve the	
12 13	306	qualit	cy of treatment in terms of faster sputum conversion rates compared to historical experience. If	
14 15	307	that r	night be the case, the major hesitations about TDM in TB treatment can be attenuated	
16 17	308	favou	ring the improvement of TB management using a personalized approach.[38]	
18 19 20	309			
21 22	310	Refer	ences	
23 24	311	1	World Health Organization. Global tuberculosis report 2018. 2018.	
25 26	312	2	World Health Organization. WHO consolidated guidelines on drug-resistant tuberculosis	
27 28 29	313		treatment. 2019.	
30 31	314	3	World Health Organization. Rapid Communication: Key changes to treatment of multidrug-	
32 33	315		and rifampicin-resistant tuberculosis (MDR/RR-TB). 2018.	
34 35 36	316	4	Ahmad N, Ahuja SD, Akkerman OW, et al. Treatment correlates of successful outcomes in	
30 37 38	317		pulmonary multidrug-resistant tuberculosis: an individual patient data meta-analysis. Lancet	
39 40	318		2018; 392 :821–34. doi:10.1016/S0140-6736(18)31644-1	
41 42	319	5	Alffenaar J-WC, Migliori GB, Gumbo T. Multidrug-resistant tuberculosis: pharmacokinetic and	
43 44	320		pharmacodynamic science. Lancet. Infect. Dis. 2017; 17 :898. doi:10.1016/S1473-	
45 46 47	321		3099(17)30449-8	
48 49	322	6	World Health Organization. Global tuberculosis report 2012. 2012.	
50 51	323	7	Davies Forsman L, Bruchfeld J, Alffenaar J-WC. Therapeutic drug monitoring to prevent	
52 53	324		acquired drug resistance of fluoroquinolones in the treatment of tuberculosis. Eur Respir J	
54 55 56	325		2017; 49 . doi:10.1183/13993003.00173-2017	
57 58	326	8	Srivastava S, Pasipanodya JG, Meek C, et al. Multidrug-resistant tuberculosis not due to	
59327noncompliance but to between-patient pharmacokinetic variability. J Infect Dis60				

1 2			
2 3 4	328		2011; 204 :1951–9. doi:10.1093/infdis/jir658
5 6	329	9	Van't Boveneind-Vrubleuskaya N, Seuruk T, van Hateren K, et al. Pharmacokinetics of
7 8	330		Levofloxacin in Multidrug- and Extensively Drug-Resistant Tuberculosis Patients. Antimicrob
9 10	331		Agents Chemother 2017;61:e00343-17. doi:10.1128/AAC.00343-17
11 12 13	332	10	Pranger AD, van Altena R, Aarnoutse RE, et al. Evaluation of moxifloxacin for the treatment of
14 15	333		tuberculosis: 3 years of experience. <i>Eur Respir J</i> 2011; 38 :888–94.
16 17	334		doi:10.1183/09031936.00176610
18 19	335	11	Ghimire S, Van't Boveneind-Vrubleuskaya N, Akkerman OW, et al.
20 21 22	336		Pharmacokinetic/pharmacodynamic-based optimization of levofloxacin administration in the
22 23 24	337		treatment of MDR-TB. J Antimicrob Chemother 2016; 71 :2691–703. doi:10.1093/jac/dkw164
25 26	338	12	Alffenaar J-WC, Gumbo T, Aarnoutse RE. Acquired drug resistance: we can do more than we
27 28	339		think! Clin. Infect. Dis. 2015; 60 :969–70. doi:10.1093/cid/ciu1146
29 30 31	340	13	Pasipanodya JG, McIlleron H, Burger A, et al. Serum drug concentrations predictive of
31 32 33	341		pulmonary tuberculosis outcomes. J Infect Dis 2013; 208 :1464–73. doi:10.1093/infdis/jit352
34 35	342	14	Modongo C, Pasipanodya JG, Magazi BT, et al. Artificial Intelligence and Amikacin Exposures
36 37	343		Predictive of Outcomes in Multidrug-Resistant Tuberculosis Patients. Antimicrob Agents
38 39	344		Chemother 2016; 60 :5928–32. doi:10.1128/AAC.00962-16
40 41 42	345	15	Sekaggya-Wiltshire C, von Braun A, Lamorde M, et al. Delayed Sputum Conversion in TB-HIV
43 44	346		Co-Infected Patients with Low Isoniazid and Rifampicin Concentrations. Clin Infect Dis
45 46	347		2018; 67 :708–16. doi:10.1093/cid/ciy179
47 48	348	16	Alffenaar J-WC, Tiberi S, Verbeeck RK, et al. Therapeutic Drug Monitoring in Tuberculosis:
49 50 51	349		Practical Application for Physicians. Clin Infect Dis 2017;64:104–5. doi:10.1093/cid/ciw677
52 53	350	17	Peloquin C. The Role of Therapeutic Drug Monitoring in Mycobacterial Infections. Microbiol
54 55	351		Spectr 2017; 5 :TNMI7-0029–2016. doi:10.1128/microbiolspec.TNMI7-0029-2016
56 57	352	18	Alkabab Y, Keller S, Dodge D, et al. Early interventions for diabetes related tuberculosis
58 59 60	353		associate with hastened sputum microbiological clearance in Virginia, USA. BMC Infect Dis
00			

33542017;17:125:1-8. doi:10.1186/s12879-017-2226-y35519Deshpande D, Pasipanodya JG, Mpagama SG, et al. Levofloxacin356Pharmacokinetics/Pharmacodynamics, Dosing, Susceptibility Breakpoints, and Artificial357Intelligence in the Treatment of Multidrug-resistant Tuberculosis. Clin Infect Dis3582018;67:S293-302. doi:10.1093/cid/ciy61135920Gumbo T, Louie A, Deziel MR, et al. Selection of a moxifloxacin dose that suppresses drug361resistance in Mycobacterium tuberculosis, by use of an in vitro pharmacodynamic infection362resistance in Mycobacterium tuberculosis, by use of an in vitro pharmacodynamic infection363Pharmacokinetic Model and Limited Sampling Strategies for Personalized Dosing of364Levofloxacin in Tuberculosis Patients. Antimicrob Agents Chemother 2018;62.365doi:10.1128/AAC.01092-1836622367linear regression and the Bayesian approach for therapeutic drug monitoring of moxifloxacin37023361Ghimire S, Bolhuis MS, Sturkenboom MGG, Akkerman OW, et al. Limited sampling strategies using371in tuberculosis patients. Antimicrob Agents Chemother Published Online First: April 2019.3722016;47:1867-9. doi:10.1183/13993003.00040-201637324Schimke I. Quality and timeliness in medical laboratory testing. Anal Bioanal Chem3742009;393:1499-504. doi:10.1007/s00216-008-2349-537525Ghimire S, van Hateren K, Vrubleuskaya N, et al. Determination of levofloxacin in human376serum using liquid chromatography tandem mass spectrometry. J Ap	1 2			
535519Deshpande D, Pasipanodya JG, Mpagama SG, et al. Levofloxacin356Pharmacokinetics/Pharmacodynamics, Dosing, Susceptibility Breakpoints, and Artificial357Intelligence in the Treatment of Multidrug-resistant Tuberculosis. Clin Infect Dis3582018;67:5293–302. doi:10.1093/cid/ciy61135920Gumbo T, Louie A, Deziel MR, et al. Selection of a moxifloxacin dose that suppresses drug360resistance in Mycobacterium tuberculosis, by use of an in vitro pharmacodynamic infection361model and mathematical modeling. J Infect Dis 2004;190:1642–51. doi:10.1086/42484936221van den Elsen SHJ, Sturkenboom MGG, Van't Boveneind-Vrubleuskaya N, et al. Population363Pharmacokinetic Model and Limited Sampling Strategies for Personalized Dosing of364Levofloxacin in Tuberculosis Patients. Antimicrob Agents Chemother 2018;62.365doi:10.1128/AAC.01092-183662237023361in tuberculosis patients. Antimicrob Agents Chemother Published Online First: April 2019.37023371into the World Health Organization hierarchy of tuberculosis diagnostics. Eur Respir J3712016;47:1867–9. doi:10.1183/13993003.00040-2016373243742009;393:1499–504. doi:10.1007/s00216-008-2349-537525376Schimke S, van Hateren K, Vrubleuskaya N, et al. Determination of levofloxacin in human376serum using liquid chromatography tandem mass spectrometry. J Appl Bioanal 2018;4:16–25.	3	354		2017; 17:125 :1–8. doi:10.1186/s12879-017-2226-y
8356Pharmacokinetics/Pharmacodynamics, Dosing, Susceptibility Breakpoints, and Artificial9357Intelligence in the Treatment of Multidrug-resistant Tuberculosis. Clin Infect Dis113582018;67:5293–302. doi:10.1093/cid/ciy61135920Gumbo T, Louie A, Deziel MR, et al. Selection of a moxifloxacin dose that suppresses drug16360resistance in Mycobacterium tuberculosis, by use of an in vitro pharmacodynamic infection17361model and mathematical modeling. J Infect Dis 2004;190:1642–51. doi:10.1086/4248491836221van den Elsen SHJ, Sturkenboom MGG, Van't Boveneind-Vrubleuskaya N, et al. Population18363Pharmacokinetic Model and Limited Sampling Strategies for Personalized Dosing of26364Levofloxacin in Tuberculosis Patients. Antimicrob Agents Chemother 2018;62.27doi:10.1128/AAC.01092-1836622van den Elsen SHJ, Sturkenboom MGG, Akkerman OW, et al. Limited sampling strategies using37366in tuberculosis patients. Antimicrob Agents Chemother Published Online First: April 2019.369doi:10.1128/AAC.00384-1937023Ghimire S, Bolhuis MS, Sturkenboom MGG, et al. Incorporating therapeutic drug monitoring371into the World Health Organization hierarchy of tuberculosis diagnostics. Eur Respir J3722016;47:1867–9. doi:10.1183/13993003.00040-201637324Schimke I. Quality and timeliness in medical laboratory testing. Anal Bioanal Chem3742009;393:1499–504. doi:10.1007/s00216-008-2349-537525Ghimire S, van Hateren K, Vruble	5 6	355	19	Deshpande D, Pasipanodya JG, Mpagama SG, et al. Levofloxacin
10357Intelligence in the Treatment of Multidrug-resistant Tuberculosis. Clin Infect Dis113582018;67:S293-302. doi:10.1093/cid/ciy6111335920Gumbo T, Louie A, Deziel MR, et al. Selection of a moxifloxacin dose that suppresses drug16360resistance in Mycobacterium tuberculosis, by use of an in vitro pharmacodynamic infection17361model and mathematical modeling. J Infect Dis 2004;190:1642-51. doi:10.1086/4248492036221van den Elsen SHJ, Sturkenboom MGG, Van't Boveneind-Vrubleuskaya N, et al. Population23363Pharmacokinetic Model and Limited Sampling Strategies for Personalized Dosing of24364Levofloxacin in Tuberculosis Patients. Antimicrob Agents Chemother 2018;62.27doi:10.1128/AAC.01092-18283662229van den Elsen SHJ, Sturkenboom MGG, Akkerman OW, et al. Limited sampling strategies using31linear regression and the Bayesian approach for therapeutic drug monitoring of moxifloxacin363in tuberculosis patients. Antimicrob Agents Chemother Published Online First: April 2019.364in tuberculosis patients. Antimicrob Agents Chemother Published Online First: April 2019.37023Ghimire S, Bolhuis MS, Sturkenboom MGG, et al. Incorporating therapeutic drug monitoring371into the World Health Organization hierarchy of tuberculosis diagnostics. Eur Respir J3722016;47:1867-9. doi:10.1103/13993003.00040-201637324Schimke I. Quality and timeliness in medical laboratory testing. Anal Bioanal Chem3742009;393:1499-504. doi:10.100	8	356		Pharmacokinetics/Pharmacodynamics, Dosing, Susceptibility Breakpoints, and Artificial
123582018;67:S293-302. doi:10.1093/cid/ciy6111335920Gumbo T, Louie A, Deziel MR, et al. Selection of a moxifloxacin dose that suppresses drug1435920Gumbo T, Louie A, Deziel MR, et al. Selection of a moxifloxacin dose that suppresses drug15360resistance in Mycobacterium tuberculosis, by use of an in vitro pharmacodynamic infection16361model and mathematical modeling. J Infect Dis 2004;190:1642-51. doi:10.1086/4248492036221van den Elsen SHJ, Sturkenboom MGG, Van't Boveneind-Vrubleuskaya N, et al. Population23363Pharmacokinetic Model and Limited Sampling Strategies for Personalized Dosing of24364Levofloxacin in Tuberculosis Patients. Antimicrob Agents Chemother 2018;62.26365doi:10.1128/AAC.01092-18283662229van den Elsen SHJ, Sturkenboom MGG, Akkerman OW, et al. Limited sampling strategies using31inear regression and the Bayesian approach for therapeutic drug monitoring of moxifloxacin368in tuberculosis patients. Antimicrob Agents Chemother Published Online First: April 2019.369doi:10.1128/AAC.00384-1937023Ghimire S, Bolhuis MS, Sturkenboom MGG, et al. Incorporating therapeutic drug monitoring371into the World Health Organization hierarchy of tuberculosis diagnostics. Eur Respir J3722016;47:1867-9. doi:10.1183/13993003.00040-201637324Schimke I. Quality and timeliness in medical laboratory testing. Anal Bioanal Chem3742009;393:1499-504. doi:10.1007/s00216-008-2349-5 <td< td=""><td>10</td><td>357</td><td></td><td>Intelligence in the Treatment of Multidrug-resistant Tuberculosis. Clin Infect Dis</td></td<>	10	357		Intelligence in the Treatment of Multidrug-resistant Tuberculosis. Clin Infect Dis
1435920Gumbo T, Louie A, Deziel MR, et al. Selection of a moxifloxacin dose that suppresses drug360resistance in Mycobacterium tuberculosis, by use of an in vitro pharmacodynamic infection361model and mathematical modeling. J Infect Dis 2004;190:1642–51. doi:10.1086/42484936221van den Elsen SHJ, Sturkenboom MGG, Van't Boveneind-Vrubleuskaya N, et al. Population363Pharmacokinetic Model and Limited Sampling Strategies for Personalized Dosing of364Levofloxacin in Tuberculosis Patients. Antimicrob Agents Chemother 2018;62.365doi:10.1128/AAC.01092-1836622367linear regression and the Bayesian approach for therapeutic drug monitoring of moxifloxacin368in tuberculosis patients. Antimicrob Agents Chemother Published Online First: April 2019.369doi:10.1128/AAC.00384-1937023Ghimire S, Bolhuis MS, Sturkenboom MGG, et al. Incorporating therapeutic drug monitoring371into the World Health Organization hierarchy of tuberculosis diagnostics. Eur Respir J3722016;47:1867–9. doi:10.1183/13993003.00040-201637324Schimke I. Quality and timeliness in medical laboratory testing. Anal Bioanal Chem3742009;393:1499–504. doi:10.1007/s00216-008-2349-537525Ghimire S, van Hateren K, Vrubleuskaya N, et al. Determination of levofloxacin in human376serum using liquid chromatography tandem mass spectrometry. J Appl Bioanal 2018;4:16–25.	12	358		2018; 67 :S293–302. doi:10.1093/cid/ciy611
17360resistance in Mycobacterium tuberculosis, by use of an in vitro pharmacodynamic infection18361model and mathematical modeling. J Infect Dis 2004;190:1642–51. doi:10.1086/4248492036221van den Elsen SHJ, Sturkenboom MGG, Van't Boveneind-Vrubleuskaya N, et al. Population22363Pharmacokinetic Model and Limited Sampling Strategies for Personalized Dosing of23364Levofloxacin in Tuberculosis Patients. Antimicrob Agents Chemother 2018;62.26doi:10.1128/AAC.01092-18283662229van den Elsen SHJ, Sturkenboom MGG, Akkerman OW, et al. Limited sampling strategies using31linear regression and the Bayesian approach for therapeutic drug monitoring of moxifloxacin369doi:10.1128/AAC.00384-1937023Ghimire S, Bolhuis MS, Sturkenboom MGG, et al. Incorporating therapeutic drug monitoring371into the World Health Organization hierarchy of tuberculosis diagnostics. Eur Respir J3722016;47:1867–9. doi:10.1183/13993003.00040-201637324Schimke I. Quality and timeliness in medical laboratory testing. Anal Bioanal Chem3742009;393:1499–504. doi:10.1007/s00216-008-2349-537525Ghimire S, van Hateren K, Vrubleuskaya N, et al. Determination of levofloxacin in human376serum using liquid chromatography tandem mass spectrometry. J Appl Bioanal 2018;4:16–25.	14	359	20	Gumbo T, Louie A, Deziel MR, et al. Selection of a moxifloxacin dose that suppresses drug
19361model and mathematical modeling. J Infect Dis 2004;190:1642–51. doi:10.1086/4248492036221van den Elsen SHJ, Sturkenboom MGG, Van't Boveneind-Vrubleuskaya N, et al. Population22363Pharmacokinetic Model and Limited Sampling Strategies for Personalized Dosing of24364Levofloxacin in Tuberculosis Patients. Antimicrob Agents Chemother 2018;62.26364Levofloxacin in Tuberculosis Patients. Antimicrob Agents Chemother 2018;62.27365doi:10.1128/AAC.01092-183836622361linear regression and the Bayesian approach for therapeutic drug monitoring of moxifloxacin38in tuberculosis patients. Antimicrob Agents Chemother Published Online First: April 2019.369doi:10.1128/AAC.00384-1937023Ghimire S, Bolhuis MS, Sturkenboom MGG, et al. Incorporating therapeutic drug monitoring371into the World Health Organization hierarchy of tuberculosis diagnostics. Eur Respir J37324Schimke I. Quality and timeliness in medical laboratory testing. Anal Bioanal Chem3742009;393:1499–504. doi:10.1007/s00216-008-2349-537525Ghimire S, van Hateren K, Vrubleuskaya N, et al. Determination of levofloxacin in human376serum using liquid chromatography tandem mass spectrometry. J Appl Bioanal 2018;4:16–25.	17	360		resistance in Mycobacterium tuberculosis, by use of an in vitro pharmacodynamic infection
2136221van den Elsen SHJ, Sturkenboom MGG, Van't Boveneind-Vrubleuskaya N, et al. Population23363Pharmacokinetic Model and Limited Sampling Strategies for Personalized Dosing of24364Levofloxacin in Tuberculosis Patients. Antimicrob Agents Chemother 2018;62.26365doi:10.1128/AAC.01092-1829366223036622367linear regression and the Bayesian approach for therapeutic drug monitoring of moxifloxacin34368in tuberculosis patients. Antimicrob Agents Chemother Published Online First: April 2019.369doi:10.1128/AAC.00384-193937023311Ghimire S, Bolhuis MS, Sturkenboom MGG, et al. Incorporating therapeutic drug monitoring41371into the World Health Organization hierarchy of tuberculosis diagnostics. Eur Respir J433722016;47:1867–9. doi:10.1183/13993003.00040-20164437324Schimke I. Quality and timeliness in medical laboratory testing. Anal Bioanal Chem472009;393:1499–504. doi:10.1007/s00216-008-2349-55037525Ghimire S, van Hateren K, Vrubleuskaya N, et al. Determination of levofloxacin in human51376serum using liquid chromatography tandem mass spectrometry. J Appl Bioanal 2018;4:16–25.	19	361		model and mathematical modeling. <i>J Infect Dis</i> 2004; 190 :1642–51. doi:10.1086/424849
23 24 26363Pharmacokinetic Model and Limited Sampling Strategies for Personalized Dosing of25 26 26364Levofloxacin in Tuberculosis Patients. Antimicrob Agents Chemother 2018;62.27 28 30 	21	362	21	van den Elsen SHJ, Sturkenboom MGG, Van't Boveneind-Vrubleuskaya N, et al. Population
26364Levofioxacin in Tuberculosis Patients. Antimicrob Agents Chemother 2018;62.27365doi:10.1128/AAC.01092-183036622367linear regression and the Bayesian approach for therapeutic drug monitoring of moxifloxacin31367linear regression and the Bayesian approach for therapeutic drug monitoring of moxifloxacin34368in tuberculosis patients. Antimicrob Agents Chemother Published Online First: April 2019.369doi:10.1128/AAC.00384-1937023Ghimire S, Bolhuis MS, Sturkenboom MGG, et al. Incorporating therapeutic drug monitoring41371into the World Health Organization hierarchy of tuberculosis diagnostics. Eur Respir J37324Schimke I. Quality and timeliness in medical laboratory testing. Anal Bioanal Chem473742009; 393 :1499–504. doi:10.1007/s00216-008-2349-537525Ghimire S, van Hateren K, Vrubleuskaya N, et al. Determination of levofloxacin in human376serum using liquid chromatography tandem mass spectrometry. J Appl Bioanal 2018; 4 :16–25.	23	363		Pharmacokinetic Model and Limited Sampling Strategies for Personalized Dosing of
28365doi:10.1128/AAC.01092-183036622van den Elsen SHJ, Sturkenboom MGG, Akkerman OW, et al. Limited sampling strategies using31367linear regression and the Bayesian approach for therapeutic drug monitoring of moxifloxacin33368in tuberculosis patients. Antimicrob Agents Chemother Published Online First: April 2019.369doi:10.1128/AAC.00384-1937023Ghimire S, Bolhuis MS, Sturkenboom MGG, et al. Incorporating therapeutic drug monitoring41371into the World Health Organization hierarchy of tuberculosis diagnostics. Eur Respir J423722016;47:1867–9. doi:10.1183/13993003.00040-2016433722016;47:1867–9. doi:10.1007/s00216-008-2349-5443742009;393:1499–504. doi:10.1007/s00216-008-2349-55037525Ghimire S, van Hateren K, Vrubleuskaya N, et al. Determination of levofloxacin in human52376serum using liquid chromatography tandem mass spectrometry. J Appl Bioanal 2018;4:16–25.	26	364		Levofloxacin in Tuberculosis Patients. Antimicrob Agents Chemother 2018;62.
3036622van den Elsen SHJ, Sturkenboom MGG, Akkerman OW, et al. Limited sampling strategies using31367linear regression and the Bayesian approach for therapeutic drug monitoring of moxifloxacin34368in tuberculosis patients. Antimicrob Agents Chemother Published Online First: April 2019.369doi:10.1128/AAC.00384-1937023Ghimire S, Bolhuis MS, Sturkenboom MGG, et al. Incorporating therapeutic drug monitoring41371into the World Health Organization hierarchy of tuberculosis diagnostics. Eur Respir J433722016;47:1867–9. doi:10.1183/13993003.00040-2016443742009;393:1499–504. doi:10.1007/s00216-008-2349-55037525Ghimire S, van Hateren K, Vrubleuskaya N, et al. Determination of levofloxacin in human52376serum using liquid chromatography tandem mass spectrometry. J Appl Bioanal 2018;4:16–25.	28	365		doi:10.1128/AAC.01092-18
32 33367linear regression and the Bayesian approach for therapeutic drug monitoring of moxifloxacin34 35368in tuberculosis patients. Antimicrob Agents Chemother Published Online First: April 2019.369 370doi:10.1128/AAC.00384-19389 39037023371 41Ghimire S, Bolhuis MS, Sturkenboom MGG, et al. Incorporating therapeutic drug monitoring41 42371 43372 442016;47:1867–9. doi:10.1183/13993003.00040-201643 44 477374 2009;393:1499–504. doi:10.1007/s00216-008-2349-5375 46 37525376 47Ghimire S, van Hateren K, Vrubleuskaya N, et al. Determination of levofloxacin in human serum using liquid chromatography tandem mass spectrometry. J Appl Bioanal 2018;4:16–25.	30	366	22	van den Elsen SHJ, Sturkenboom MGG, Akkerman OW, et al. Limited sampling strategies using
34 35368in tuberculosis patients. Antimicrob Agents Chemother Published Online First: April 2019.36 37369doi:10.1128/AAC.00384-1938 3937023Ghimire S, Bolhuis MS, Sturkenboom MGG, et al. Incorporating therapeutic drug monitoring41 42371into the World Health Organization hierarchy of tuberculosis diagnostics. Eur Respir J43 44 453722016;47:1867–9. doi:10.1183/13993003.00040-201644 45 4637324Schimke I. Quality and timeliness in medical laboratory testing. Anal Bioanal Chem47 48 493742009;393:1499–504. doi:10.1007/s00216-008-2349-549 50 5037525Ghimire S, van Hateren K, Vrubleuskaya N, et al. Determination of levofloxacin in human 52 5353 54376serum using liquid chromatography tandem mass spectrometry. J Appl Bioanal 2018;4:16–25.	32 33 34	367		linear regression and the Bayesian approach for therapeutic drug monitoring of moxifloxacin
369doi:10.1128/AAC.00384-193837023Ghimire S, Bolhuis MS, Sturkenboom MGG, et al. Incorporating therapeutic drug monitoring4041371into the World Health Organization hierarchy of tuberculosis diagnostics. Eur Respir J42433722016;47:1867–9. doi:10.1183/13993003.00040-20164537324Schimke I. Quality and timeliness in medical laboratory testing. Anal Bioanal Chem47483742009;393:1499–504. doi:10.1007/s00216-008-2349-5495037525Ghimire S, van Hateren K, Vrubleuskaya N, et al. Determination of levofloxacin in human515354		368		in tuberculosis patients. Antimicrob Agents Chemother Published Online First: April 2019.
 39 370 23 Ghimire S, Bolhuis MS, Sturkenboom MGG, et al. Incorporating therapeutic drug monitoring 40 41 371 into the World Health Organization hierarchy of tuberculosis diagnostics. Eur Respir J 43 372 2016;47:1867–9. doi:10.1183/13993003.00040-2016 45 373 24 Schimke I. Quality and timeliness in medical laboratory testing. Anal Bioanal Chem 47 48 374 2009;393:1499–504. doi:10.1007/s00216-008-2349-5 49 50 375 25 Ghimire S, van Hateren K, Vrubleuskaya N, et al. Determination of levofloxacin in human 52 376 serum using liquid chromatography tandem mass spectrometry. J Appl Bioanal 2018;4:16–25. 	37	369		doi:10.1128/AAC.00384-19
 41 371 into the World Health Organization hierarchy of tuberculosis diagnostics. <i>Eur Respir J</i> 43 372 2016;47:1867–9. doi:10.1183/13993003.00040-2016 45 373 24 Schimke I. Quality and timeliness in medical laboratory testing. <i>Anal Bioanal Chem</i> 47 374 2009;393:1499–504. doi:10.1007/s00216-008-2349-5 48 374 2009;393:1499–504. doi:10.1007/s00216-008-2349-5 50 375 25 Ghimire S, van Hateren K, Vrubleuskaya N, <i>et al.</i> Determination of levofloxacin in human 52 376 serum using liquid chromatography tandem mass spectrometry. <i>J Appl Bioanal</i> 2018;4:16–25. 	39	370	23	Ghimire S, Bolhuis MS, Sturkenboom MGG, et al. Incorporating therapeutic drug monitoring
 372 2016;47:1867–9. doi:10.1183/13993003.00040-2016 373 24 Schimke I. Quality and timeliness in medical laboratory testing. <i>Anal Bioanal Chem</i> 374 2009;393:1499–504. doi:10.1007/s00216-008-2349-5 375 25 Ghimire S, van Hateren K, Vrubleuskaya N, <i>et al.</i> Determination of levofloxacin in human 376 serum using liquid chromatography tandem mass spectrometry. <i>J Appl Bioanal</i> 2018;4:16–25. 	41	371		into the World Health Organization hierarchy of tuberculosis diagnostics. Eur Respir J
 Schimke I. Quality and timeliness in medical laboratory testing. Anal Bioanal Chem Schimke I. Quality and timeliness in medical laboratory testing. Anal Bioanal Chem 2009;393:1499–504. doi:10.1007/s00216-008-2349-5 Ghimire S, van Hateren K, Vrubleuskaya N, et al. Determination of levofloxacin in human Schimke S, van Hateren K, Vrubleuskaya N, et al. Determination of levofloxacin in human serum using liquid chromatography tandem mass spectrometry. J Appl Bioanal 2018;4:16–25. 	43	372		2016; 47 :1867–9. doi:10.1183/13993003.00040-2016
 48 374 2009;393:1499–504. doi:10.1007/s00216-008-2349-5 50 375 25 Ghimire S, van Hateren K, Vrubleuskaya N, <i>et al.</i> Determination of levofloxacin in human 51 52 376 serum using liquid chromatography tandem mass spectrometry. <i>J Appl Bioanal</i> 2018;4:16–25. 	46	373	24	Schimke I. Quality and timeliness in medical laboratory testing. Anal Bioanal Chem
 S75 25 Ghimire S, van Hateren K, Vrubleuskaya N, <i>et al.</i> Determination of levofloxacin in human S7 3 S76 serum using liquid chromatography tandem mass spectrometry. <i>J Appl Bioanal</i> 2018;4:16–25. 	48	374		2009; 393 :1499–504. doi:10.1007/s00216-008-2349-5
 52 376 serum using liquid chromatography tandem mass spectrometry. J Appl Bioanal 2018;4:16–25. 54 	50	375	25	Ghimire S, van Hateren K, Vrubleuskaya N, et al. Determination of levofloxacin in human
54	52	376		serum using liquid chromatography tandem mass spectrometry. J Appl Bioanal 2018;4:16–25.
₅₅ 377 doi:10.17145/jab.18.004		377		doi:10.17145/jab.18.004
56 57 378 26 Pranger AD, Alffenaar J-WC, Wessels AMA, <i>et al.</i> Determination of moxifloxacin in human	57	378	26	Pranger AD, Alffenaar J-WC, Wessels AMA, et al. Determination of moxifloxacin in human
 58 59 379 plasma, plasma ultrafiltrate, and cerebrospinal fluid by a rapid and simple liquid 60 	59	379		plasma, plasma ultrafiltrate, and cerebrospinal fluid by a rapid and simple liquid

Page 19 of 23

1

2			
3 4	380		chromatography- tandem mass spectrometry method. J Anal Toxicol 2010; 34 :135–41.
5 6	381	27	Wright DH, Brown GH, Peterson ML, et al. Application of fluoroquinolone pharmacodynamics.
7 8	382		J Antimicrob Chemother 2000; 46 :669–83.
9 10 11	383	28	Ghimire S, Jongedijk EM, van den Elsen SHJ, et al. Cross validation of liquid chromatography
11 12 13	384		tandem mass spectrometry method for quantification of levofloxacin in saliva. Submitted
14 15	385	29	World Health Organization. Technical Report on critical concentrations for drug susceptibility
16 17	386		testing of medicines used in the treatment of drug-resistant tuberculosis. 2018.
18 19	387	30	van Altena R, de Vries G, Haar CH, et al. Highly successful treatment outcome of multidrug-
20 21 22	388		resistant tuberculosis in the Netherlands, 2000-2009. Int J Tuberc Lung Dis 2015;19:406–12.
22 23 24	389		doi:10.5588/ijtld.14.0838
25 26	390	31	Sotgiu G, Centis R, D'Ambrosio L, et al. Efficacy, safety and tolerability of linezolid containing
27 28	391		regimens in treating MDR-TB and XDR-TB: systematic review and meta-analysis. Eur Respir J
29 30	392		2012; 40 :1430–42. doi:10.1183/09031936.00022912
31 32 33	393	32	World Medical Association Declaration of Helsinki: ethical principles for medical research
34 35	394		involving human subjects. <i>JAMA</i> 2013; 310 :2191–4. doi:10.1001/jama.2013.281053
36 37	395	33	Nahid P, Dorman SE, Alipanah N, et al. Official American Thoracic Society/Centers for Disease
38 39	396		Control and Prevention/Infectious Diseases Society of America Clinical Practice Guidelines:
40 41 42	397		Treatment of Drug-Susceptible Tuberculosis. <i>Clin Infect Dis</i> 2016; 63 :147–95.
42 43 44	398		doi:10.1093/cid/ciw376
45 46	399	34	Lange C, Abubakar I, Alffenaar J-WC, et al. Management of patients with multidrug-
47 48	400		resistant/extensively drug-resistant tuberculosis in Europe: a TBNET consensus statement.
49 50	401		Eur. Respir. J. 2014; 44 :23–63. doi:10.1183/09031936.00188313
51 52 53	402	35	Alffenaar J-WC, Heysell SK, Mpagama SG. Therapeutic Drug Monitoring: The Need for
54 55	403		Practical Guidance. Clin Infect Dis 2019;68:1065–6. doi:10.1093/cid/ciy787
56 57	404	36	Lange C, Dheda K, Chesov D, <i>et al.</i> Management of drug-resistant tuberculosis. <i>Lancet</i>
58 59	405		(London, England) 2019; 394 :953–66. doi:10.1016/S0140-6736(19)31882-3
60			

2 3 4	406	37	Alffenaar J-WC, Gumbo T, Dooley KE, et al. Integrating pharmacokinetics and	
5 407 6			pharmacodynamics in operational research to End TB. Clin Infect Dis Published Online First:	
7 8	408		September 2019. doi:10.1093/cid/ciz942	
9 10 11	409 38 410		Migliori GB, Sotgiu G, Rosales-Klintz S, et al. ERS/ECDC Statement: European Union standards	
12 13			for tuberculosis care, 2017 update. <i>Eur Respir J</i> 2018; 51 :1702678.	
14 15	411		doi:10.1183/13993003.02678-2017	
16 17	412	39	Nicholson T, Admay C, Shakow A, et al. Double Standards in Global Health: Medicine, Human	
18 19	413		Rights Law and Multidrug-Resistant TB Treatment Policy. <i>Health Hum Rights</i> 2016; 18 :85–102.	
20 21 22	414	40	Ghimire S, Maharjan B, Jongedijk EM, et al. Evaluation of Saliva as a Potential Alternative	
23 24	415		Sampling Matrix for Therapeutic Drug Monitoring of Levofloxacin in Patients with Multidrug-	
25 26	416		Resistant Tuberculosis. Antimicrob Agents Chemother 2019;63:e02379-18.	
27 28	417		doi:10.1128/AAC.02379-18	
31		41	Zuur MA, Bolhuis MS, Anthony R, et al. Current status and opportunities for therapeutic drug	
			monitoring in the treatment of tuberculosis. <i>Expert Opin Drug Metab Toxicol</i> 2016; 12 :509–21.	
			doi:10.1517/17425255.2016.1162785	
36 37	421	42	Zentner I, Modongo C, Zetola NM, et al. Urine colorimetry for therapeutic drug monitoring of	
38 39	422		pyrazinamide during tuberculosis treatment. Int J Infect Dis 2018;68:18–23.	
40 41 42	423		doi:10.1016/j.ijid.2017.12.017	
43 44	424	43	van der Burgt EPM, Sturkenboom MGG, Bolhuis MS, et al. End TB with precision treatment!	
45 46	425		<i>Eur Respir J</i> 2016; 47 :680 LP – 682. doi:10.1183/13993003.01285-2015	
47 48	426	44	Figueras A. WHO report 'Review of the evidence to include TDM in the Essential in vitro	
49 50 51	427		Diagnostics List and prioritization of medicines to be monitored'. 2019.	
52 53	428	45	Borisov SE, Dheda K, Enwerem M, et al. Effectiveness and safety of bedaquiline-containing	
54 55	429		regimens in the treatment of MDR- and XDR-TB: a multicentre study. Eur Respir J	
56 57	430		2017; 49 :1700387. doi:10.1183/13993003.00387-2017	
58 59 60	431	46	Bolhuis MS, Tiberi S, Sotgiu G, et al. Is there still room for therapeutic drug monitoring of	
00				

Page 21 of 23

1		
2 3	432	linezolid in patients with tuberculosis? <i>Eur Respir J</i> 2016; 47 :1288 LP – 1290.
4 5 6	433	doi:10.1183/13993003.02185-2015
7 8	434	47 Alffenaar J-WC, van Altena R, Harmelink IM, <i>et al.</i> Comparison of the pharmacokinetics of two
9 10	435	dosage regimens of linezolid in multidrug-resistant and extensively drug-resistant tuberculosis
11 12 13	436	patients. Clin Pharmacokinet 2010;49:559–65. doi:10.2165/11532080-00000000-00000
13 14 15	437	48 Bolhuis MS, Akkerman OW, Sturkenboom MGG, et al. Linezolid-based Regimens for
16 17	438	Multidrug-resistant Tuberculosis (TB): A Systematic Review to Establish or Revise the Current
18 19	439	Recommended Dose for TB Treatment. <i>Clin Infect Dis</i> 2018; 67 :S327–35.
20 21	440	doi:10.1093/cid/ciy625
22 23 24	441	49 Migliori GB, Nardell E, Yedilbayev A, <i>et al.</i> Reducing tuberculosis transmission: a consensus
25 26	442	document from the World Health Organization Regional Office for Europe. Eur Respir J
27 28	443	2019; 53 :1900391. doi:10.1183/13993003.00391-2019
29 30	444	
31 32 33	445	Acknowledgements:
34 35	446	The project is part of the scientific activities of the Global Tuberculosis Network (GTN; Committees
36 37	447	on pharmacology- chair Jan-Willem C Alffenaar; Treatment- chair Marcela Muñoz-Torrico and Global
38 39	448	TB Consilium- chairs M. Tadolini and S. Tiberi) and of the WHO Collaborating Centre for Tuberculosis
40 41 42	449	and Lung Diseases, Tradate, ITA-80, 2017-2020- GBM/RC/LDA.
43 44	450	and Lung Diseases, Tradate, ITA-80, 2017-2020- GBM/RC/LDA.
45 46	451	Author contributions:
47 48	452	SE, MS, DT, GB, JWA designed the major outlines of the study. OA, LB, JB, GE, SH, HH, LK, HK, JK, KM,
49 50 51	453	CM, SM, MM, AS, GS, MT, ST, FV, TW, MW, JZ contributed to the study design. OA, LB, JB, GE, SH, HH,
52 53	454	LK, HK, JK, KM, CM, SM, MM, AS, MT, ST, FV, TW, MW, JZ will include patients in the study. GS
54 55	455	performed the sample size calculation. SE wrote the first draft of the manuscript together with MS,
56 57	456	DT, JWA. All authors read and approved the final version of the manuscript.
58 59 60	457	
00		

1		
2 3 4	458	Funding statement: This research received no specific grant from any funding agency in the public,
5 6	459	commercial or not-for-profit sectors.
7 8 9	460	
9 10 11	461	Competing interests: none declared
$\begin{array}{c} 1 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 22 \\ 33 \\ 34 \\ 35 \\ 36 \\ 37 \\ 38 \\ 9 \\ 40 \\ 41 \\ 42 \\ 43 \\ 445 \\ 46 \\ 47 \\ 48 \\ 9 \\ 50 \\ 51 \\ 52 \\ 53 \\ 54 \\ 55 \\ 56 \\ 57 \\ 58 \\ 9 \\ 60 \end{array}$	462	

2 3 4	463	Figure 1. Workflow of study procedures in local hospitals and central laboratory fac	cility.
т 5 б	464		
	465		
0 1	466	Table 1. List of participating hospitals and their location	
2 3		Hospital	Location
1 5 5		University Medical Center Groningen (central lab facility)	Groningen, The Netherlands
, ;		Tuberculosis Clinic "Beatrixoord", UMCG	Haren, The Netherlands
)		Princess Alexandra Hospital	Brisbane, Australia
<u>)</u> }		Karolinska University Hospital	Stockholm, Sweden
F 5		Instituto Nacional de Enfermedades Respiratorias	Mexico City, Mexico
; ; ;		Athens Chest Hospital "Sotiria"	Athens, Greece
)		Kibong'oto Infectious Diseases Hospital	Kilimanjaro, Tanzania
2		Republican Scientific and Practical Centre for Pulmonology and	Minsk, Belarus
3 1 5		Tuberculosis	
5 7		Barts Health NHS trust	London, United Kingdom
3		St. Orsola-Malpighi Hospital, University of Bologna	Bologna, Italy
) <u>)</u>	467	Riga East University Hospital TB and Lung Disease Clinic	Riga, Latvia
; ;	467 468		
;			
)			
2 3 1			
4 5			

Table 2. Target AUC₀₋₂₄/MIC and AUC₀₋₂₄ for TDM of moxifloxacin and levofloxacin in patients with multidrug-resistant
 tuberculosis (MDR-TB). Standard disease is defined as non-cavitary and regular disease on radiograph. Severe disease is
 defined as cavitary or extensive disease on radiograph.

Fluoroquinolone	Pulmonary MDR-TB	Target AUC ₀₋₂₄ /MIC ^a			Target AUC ₀₋₂ (mg*h/L)
		MGIT	7H10/11	IJ	
	Standard disease	>100	>50	>25	>40
Moxifloxacin	Severe disease or comorbidities	>100	>50	>25	>60 ^b
	Standard disease	>150	>150 ^c	>75	>150
Levofloxacin	Severe disease or comorbidities	>150	>150 ^c	>75	>200 ^b

^a Minimum inhibitory concentration (MIC) varies depending on growth media; Mycobacteria Growth

473 Indicator Tubes (MGIT), Middlebrook 7H10/7H11, and Lowenstein Jensen (LJ) agar.

^b Target AUC₀₋₂₄/MIC at site of cavity; therefore higher AUC₀₋₂₄ is required.

475 ^c Levofloxacin critical concentration of 7H11 was extrapolated to 7H10.

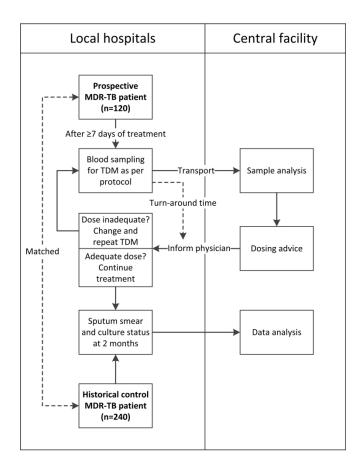


Figure 1. Workflow of study procedures in local hospitals and central laboratory facility.

70x130mm (600 x 600 DPI)

BMJ Open

Prospective Evaluation of impRoving Fluoroquinolone Exposure using Centralized Therapeutic Drug Monitoring (TDM) in patients with Tuberculosis (PERFECT) – a study protocol of a prospective multicentre cohort study.

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-035350.R1
Article Type:	Protocol
Date Submitted by the Author:	06-Mar-2020
Complete List of Authors:	van den Elsen, Simone; University of Groningen, University Medical Center Groningen, Clincal Pharmacy and Pharmacology Sturkenboom, Marieke; University of Groningen, University Medical Center Groningen, Clincal Pharmacy and Pharmacology Akkerman, Onno; University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases & Tuberculosis; University of Groningen, University Medical Center Groningen, Tuberculosis Center Beatrixoord Barkane, Linda; Riga East University Hospital TB and Lung Disease Clinic, MDR-TB department Bruchfeld, Judith; Karolinska Institutet, Division of Infectious Diseases, Department of Medicine, Solna; Karolinska University Hospital, Department of Infectious Diseases Eather, Geoffrey; Princess Alexandra Hospital, Department of Respiratory Medicine & Metro South Clinical Tuberculosis Service Heysell, Scott; University of Virginia, Division of Infectious Diseases and International Health Hurevich, Henadz; The Republican Scientific and Practical Center for Pulmonology and Tuberculosis Kuksa, Liga; Riga East University Hospital TB and Lung Disease Clinic, MDR-TB department Kunst, Heinke; Barts Health NHS Trust, Blizard Institute, Queen Mary University of London, Department of Respiratory Medicine Kuhlin, Johanna; Karolinska Institutet, Department of Medicine, Unit of Infectious Diseases Manika, Katerina; Aristotle University of Thessaloniki, G. Papanikolaou Hospital, Pulmonary Department, Respiratory Infections Unit Moschos, Charalampos; "Sotiria" Hospital for Chest Diseases, Drug- Resistant Tuberculosis Unit Magama, Stellah; Kibong'oto Infectious Diseases Hospital Muñoz Torrico, Marcela; Instituto Nacional de Enfermedades Respiratorias, Clínica de Tuberculosis Skrahina, Alena; The Republican Scientific and Practical Center for Pulmonology and Tuberculosis Sotgiu, Giovanni; University of Sassari, Clinical Epidemiology and Medical Statistics Unit, Department of Medical, Surgical and Experimental

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1
2 3
4
5 6
7 8
9
10 11
12
13 14
15
16 17
10
19 20
21
22 23
24 25
26
27 28
29
30 31
32
33 34
34 35
36 37
38
39 40
41 42
42 43
44 45
46
47 48
49
50 51
52
53 54
55

	Sciences, Tadolini, Marina; Alma Mater Studiorum University of Bologna, Unit of Infectious Diseases, Department of Medical and Surgical Sciences Tiberi, Simon; Barts Health NHS Trust, Blizard Institute, Queen Mary University of London, Department of Infection Volpato, Francesca; Alma Mater Studiorum University of Bologna, Unit Infectious Diseases, Department of Medical and Surgical Sciences van der Werf, Tjip S.; University Medical Center Groningen, Departme of Pulmonary Diseases & Tuberculosis; University of Groningen, University Medical Center Groningen, Department of Internal Medicine Wilson, Malcolm; Princess Alexandra Hospital, Department of Respirat Medicine & Metro South Clinical Tuberculosis Service Zúñiga , Joaquin; Instituto Nacional de Enfermedades Respiratorias, Laboratory of Immunobiology and Genetics; Escuela de Medicina y Ciencias de Salud, Tecnologico de Monterrey Touw, Daan; University of Groningen, University Medical Center Groningen, Clincal Pharmacy and Pharmacology Migliori, Giovanni; Istituti Clinici Scientifici Maugeri IRCCS, Servizio di Epidemiologia Clinica delle Malattie Respiratorie Alffenaar, Jan-Willem; University of Groningen, University Medical Cert Groningen, Clincal Pharmacy and Pharmacology; The University of Sydney, Sydney Pharmacy School, Faculty of Medicine and Health
Primary Subject Heading :	Infectious diseases
Secondary Subject Heading:	Pharmacology and therapeutics, Health services research
Keywords:	Tuberculosis < INFECTIOUS DISEASES, CLINICAL PHARMACOLOGY, Organisation of health services < HEALTH SERVICES ADMINISTRATIO & MANAGEMENT, INFECTIOUS DISEASES

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

review only

1 2		
3 4	1	Prospective Evaluation of impRoving Fluoroquinolone Exposure using Centralized Therapeutic Drug
5 6	2	Monitoring (TDM) in patients with Tuberculosis (PERFECT) – a study protocol of a prospective
7 8	3	multicentre cohort study.
9 10 11	4	
12 13	5	Simone HJ van den Elsen ^a , Marieke GG Sturkenboom ^a , Onno W Akkerman ^{b,c} , Linda Barkane ^d , Judith
14 15	6	Bruchfeld ^{e,f} , Geoffrey Eather ^g , Scott K Heysell ^h , Henadz Hurevich ⁱ , Liga Kuksa ^d , Heinke Kunst ^j , Johanna
16 17	7	Kuhlin ^{e,f} , Katerina Manika ^k , Charalampos Moschos ^I , Stellah G Mpagama ^m , Marcela Muñoz-Torrico ⁿ ,
18 19 20	8	Alena Skrahinaº, Giovanni Sotgiuº, Marina Tadoliniª, Simon Tiberi ^r , Francesca Volpatoª, Tjip S van der
20 21 22	9	Werf ^{c,s} , Malcolm R Wilson ^g , Joaquin Zuñiga ^t , Daan J Touw ^a #, Giovanni B Migliori ^u #, and Jan-Willem C
23 24	10	Alffenaar ^{a,v} #
25 26	11	
27 28 29	12	^a University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy
30 31	13	and Pharmacology, Groningen, The Netherlands.
32 33	14	^b University of Groningen, University Medical Center Groningen, Tuberculosis Center Beatrixoord,
34 35	15	Haren, The Netherlands
36 37 38	16	^c University of Groningen, University Medical Center Groningen, Department of Pulmonary Diseases
38 39 40	17	& Tuberculosis, Groningen, The Netherlands.
41 42	18	^d MDR-TB department, Riga East University Hospital TB and Lung Disease Clinic, Riga, Latvia.
43 44	19	^e Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm,
45 46 47	20	Sweden.
47 48 49	21	^f Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.
50 51	22	^g Department of Respiratory Medicine & Metro South Clinical Tuberculosis Service, Princess
52 53	23	Alexandra Hospital, Woolloongabba, Queensland, Australia.
54 55 56	24	^h Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA,
50 57 58	25	USA.
59 60	26	ⁱ The Republican Scientific and Practical Center for Pulmonology and Tuberculosis, Minsk, Belarus.

1		
2 3 4	27	^j Blizard Institute, Queen Mary University of London, Department of Respiratory Medicine, Barts
5 6	28	Health NHS Trust, London, United Kingdom.
7 8	29	^k Pulmonary Department, Respiratory Infections Unit, Aristotle University of Thessaloniki, G.
9 10 11	30	Papanikolaou Hospital, Thessaloniki, Greece.
12 13	31	¹ Drug-Resistant Tuberculosis Unit, "Sotiria" Hospital for Chest Diseases, Athens, Greece
14 15	32	^m Kibong'oto Infectious Diseases Hospital, Kilimanjaro, Tanzania.
16 17	33	ⁿ Clínica de Tuberculosis, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico.
18 19	34	° The Republican Scientific and Practical Center for Pulmonology and Tuberculosis, Minsk, Belarus.
20 21 22	35	^p Clinical Epidemiology and Medical Statistics Unit, Department of Medical, Surgical and Experimental
23 24	36	Sciences, University of Sassari, Sassari, Italy
25 26	37	^q Unit of Infectious Diseases, Department of Medical and Surgical Sciences, Alma Mater Studiorum
27 28	38	University of Bologna, Bologna, Italy.
29 30 31	39	r Blizard Institute, Queen Mary University of London, Department of Infection, Barts Health NHS
32 33	40	Trust, London, United Kingdom
34 35	41	^s University of Groningen, University Medical Center Groningen, Department of Internal Medicine,
36 37	42	Groningen, The Netherlands.
38 39 40	43	^t Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias,
41 42	44	Mexico City, Mexico. Tecnologico de Monterrey, Escuela de Medicina y Ciencias de Salud, Mexico
43 44	45	City, Mexico.
45 46	46	^u Servizio di Epidemiologia Clinica delle Malattie Respiratorie, Istituti Clinici Scientifici Maugeri IRCCS,
47 48 49	47	Tradate, Italy.
50 51	48	$^{ m v}$ Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney,
52 53	49	Australia
54 55	50	
56 57 58	51	# Authors contributed equally
58 59 60	52	

1 2		
2 3 4	53	Corresponding author: J.W.C. Alffenaar, University of Sydney, Faculty of Medicine and Health, School
5 6	54	of Pharmacy, Pharmacy Building A15, NSW 2006, Australia. Email:
7 8	55	johannes.alffenaar@sydney.edu.au; j.w.c.alffenaar@umcg.nl
9 10	56	
11 12	57	Word count: 2992
13 14 15	58	
16 17		
17 18 19		
20		
21 22		
23 24		
25 26		
27 28		
29 30		
31 32		
33 34		
35 36		
37 38		
39 40		
41 42		
43 44		
45 46		
47 48		
49 50		
51 52		
53 54		
55 56		
57		
58 59		
60		

59 Abstract

60	Introduction: Global multidrug-resistant tuberculosis (MDR-TB) treatment success rates remain
61	suboptimal. Highly active World Health Organization (WHO) Group A drugs moxifloxacin and
62	levofloxacin show intra- and inter-individual pharmacokinetic variability which can cause low drug
63	exposure. Therefore, therapeutic drug monitoring (TDM) of fluoroquinolones is recommended to
64	personalise the drug dosage, aiming to prevent development of drug resistance and optimize
65	treatment. However, TDM is considered laborious and expensive, and the clinical benefit in MDR-TB
66	has not been extensively studied. This observational multicentre study aims to determine the
67	feasibility of centralized TDM and to investigate the impact of fluoroquinolone TDM on sputum
68	conversion rates in patients with MDR-TB compared with historical controls.
69	
70	Methods and analysis: Patients aged 18 years or older with sputum smear and culture positive
71	pulmonary MDR-TB will be eligible for inclusion. Patients receiving TDM using a limited sampling
72	strategy (t=0 and t=5 hours) will be matched to historical controls without TDM in a 1:2 ratio. Sample
73	analysis and dosing advice will be performed in a centralized laboratory. Centralized TDM will be
74	considered feasible if >80% of the dosing recommendations are returned within seven days after
75	sampling and 100% within fourteen days. The number of patients who are sputum smear and culture
76	negative after two months of treatment will be determined in the prospective TDM group and will be
77	compared to the control group without TDM to determine the impact of TDM.
78	
79	Ethics and dissemination: Ethical clearance was obtained by the ethical review committees of the ten
80	participating hospitals according to local procedures or is pending (supplementary file 1). Patients
81	will be included after written informed consent. We aim to publish the study results in a peer-
82	reviewed journal.
83	

84 Trial registration: This study is registered at clinicaltrials.gov (NCT03409315)

1 ว		
2 3	85	
4		
5 6	86	Strengths and limitations of this study
7 8	87	• To our knowledge, this is the first study that investigates the impact of fluoroquinolone
9 10 11	88	therapeutic drug monitoring (TDM) on sputum smear and culture conversion rates in
12 13	89	prospective patients with multidrug-resistant tuberculosis (MDR-TB) versus historical
14 15	90	controls without TDM.
16 17	91	• The feasibility for centralised TDM will be evaluated due to participation of multiple health
18 19 20	92	care centres located in differently resourced countries from multiple regions in the world.
20 21 22	93	• The use of limited sampling strategies will reduce the burden of TDM for patients and health
23 24	94	care providers while still providing a reliable estimation of drug exposure.
25 26	95	• A limitation is that this study focuses on TDM for moxifloxacin and levofloxacin only, being
27 28	96	core drugs in MDR-TB treatment, without assessing other (core) anti-tuberculosis drugs.
29 30 31	97	
32 33	98	
34 35		
35 36		
37		
38 39		
40		
41		
42 43		
44		
45		
46 47		
48		
49		
50		
51 52		
53		
54		
55 56		
50 57		
58		
59 60		
60		

Introduction

Tuberculosis (TB) is one of the major infectious diseases worldwide with an estimated number of 10.0 million new cases in 2017.[1] In addition, multidrug-resistant TB (MDR-TB) remains a persistent problem with an estimated 458,000 new patients in 2017.[1] MDR-TB is treated from 9-20 months with a multidrug regimen.[2] The grouping of second-line anti-TB drugs was revised in 2018 by the World Health Organisation (WHO).[3] The fluoroquinolones, specifically moxifloxacin and levofloxacin, are now considered drugs of first choice (Group A drugs), together with bedaquiline and linezolid, in the treatment of MDR-TB.[2,3] The administration of Group A medicines to patients with MDR-TB has been associated with increased treatment success and reduced mortality rates in comparison with other second-line anti-TB drugs.[4] However, the estimated prevalence of fluoroquinolone-resistance among MDR-TB cases is on the rise from 14.5% in 2011 to 22% in 2017.[5,6] Mismanagement of MDR-TB treatment, especially the shorter regimen, could amplify the risk of drug resistance even further.[7] Importantly, antibiotic resistance can be acquired due to noncompliance but also insufficient drug exposures (e.g. inter-individual pharmacokinetic variability in patients treated with fluoroquinolones).[8–11] Therapeutic drug monitoring (TDM) can help to prevent acquired resistance by individualising doses based on blood drug concentrations relative to the bacterial susceptibility, ideally measured as the minimal inhibitory concentration (MIC).[7,12] Several studies described the role played by low drug concentrations on treatment outcomes.[13– 15] In the light of this evidence, it can be hypothesized that TDM, which aims for adequate dosing and exposure, could improve treatment outcomes. Yet, the added value of TDM in MDR-TB treatment outcomes has not been directly studied.[16,17] One retrospective study reported the effect of TDM on the treatment results of patients with drug-susceptible TB, either with and without diabetes.[18] In the group without diabetes, TDM had a significant beneficial effect with 73% sputum culture conversion at two months amongst patients receiving TDM versus 60% in the control group. The positive effect of TDM was even larger in patients with diabetes and TB. The isoniazid or rifampicin dose was adjusted in 12 out of 17 (71%) of the patients with diabetes based on peak

Page 9 of 25

1 2

BMJ Open

3 4	
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 32 4 25 26 27 28 9 30 132 34 35 37 38 9 40	
7 8	
9 10	
11 12 12	
13 14 15	
16 17	
18 19	
20 21	
22 23	
24 25	
26 27 28	
20 29 30	
31 32	
33 34	•
35 36	
37 38	
39 40	
41 42	
43 44 45	
43 46 47	
48 49	
50 51	
52 53	
54 55	
56 57	
58 59 60	
00	

125 concentration (C_{max}) targets. However, this data is not available for the group without diabetes. To 126 the best of our knowledge, such controlled studies have not yet been performed in people with 127 MDR-TB.

128 The pharmacokinetic-pharmacodynamic parameter of fluoroquinolones is both time- and 129 concentration dependent and therefore uses the ratio of area under the concentration-time curve to 130 minimal inhibitory concentration (AUC₀₋₂₄/MIC). The target value is AUC₀₋₂₄/MIC >146 for levofloxacin and free or unbound fAUC₀₋₂₄/MIC >53 for moxifloxacin which corresponds to a total (bound and 131 132 unbound) AUC₀₋₂₄/MIC >106 assuming a constant protein binding of 50%.[19,20] However, multiple 133 concentration measurements widely distributed over the dosing interval are required to compute 134 the area under the concentration-time curve from 0-24 h (AUC_{0-24}). Limited sampling strategies (LSS) 135 could be adopted to reduce the burden of frequent sampling for both patient and personnel while 136 providing a reliable estimation of AUC₀₋₂₄ using only two blood samples.[21,22] 137 Unfortunately, TDM is not always easily accessible in high TB burden areas because of practical and 138 financial reasons. Therefore, centralized TDM could be a valuable service.[23] Large laboratories are 139 generally well organised, have highly trained personnel with adequate performance of analytical 140 methods leading to reliable sample analysis results.[24] In addition, centralizing the TDM procedures 141 will engender more consistent practice from health care practitioners familiar with TDM and the 142 provision of dosing advice for anti-TB drugs. 143 The aim of the present study is, firstly, to investigate the feasibility of centralized TDM of 144 moxifloxacin and levofloxacin in the treatment of MDR-TB recruited in TB reference centres located in different continents. Secondly, the impact of TDM on treatment results will be assessed by 145 146 comparing two month sputum smear and culture conversion rates among patients who received

- 147 TDM compared with matched historical controls without TDM.
- 148

Methods and analysis 149

This observational, prospective, multicentre study aims to evaluate the feasibility of centralized TDM

of moxifloxacin and levofloxacin as well as the impact of TDM on two month sputum smear and

culture conversion rates of patients with MDR-TB. Study design and procedures are displayed in

Figure 1. The study was registered at clinicaltrials.gov (NCT03409315), recruitment started on 10

University Medical Center Groningen (UMCG) in Groningen, The Netherlands is the coordinating

centre and serves as central laboratory facility for this study. The hospitals that are involved in

Patients aged 18 years and older are eligible for inclusion if they are diagnosed with pulmonary MDR-

TB, have positive sputum smear and culture samples at time of inclusion, are treated with either oral

moxifloxacin or levofloxacin, and provide written informed consent. Pregnant or breast feeding

women will be excluded. The decision whether a patient is treated with either moxifloxacin or

levofloxacin is made by the clinician at the start of TB treatment based on local guidelines. Patients

will not be actively assigned to use moxifloxacin or levofloxacin since this is an observational study.

A total number of 120 patients (60 with moxifloxacin, 60 with levofloxacin) will be prospectively

included and compared with 240 matched historical controls (120 with moxifloxacin, 120 with

The following data will be collected in both groups: sex, age, body weight, height, country of birth,

country of residence, comorbidities, corrected QT interval, laboratory values (kidney and liver

function, electrolytes), history of previous TB treatment, bacterial susceptibility (including MIC if

available), TB presentation (cavitary or non-cavitary), current MDR-TB regimen (including drug

February 2018, and is expected to be completed in December 2020.

patient recruitment are displayed in Table 1.

Study design

Study location

Study population

levofloxacin).

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 11 of 25

1 2

3 4	177	dosages), sputum smear and culture data, treatment outcome (if known), and details on
5 6	178	fluoroquinolone use (duration, possible drug interactions or adverse events).
7 8	179	Historical control patients will be matched on age, sex, Mycobacterium tuberculosis resistance
9 10 11	180	pattern of the isolate (only regimen core drugs), comorbidities (human immunodeficiency virus [HIV],
12 13	181	diabetes, immunosuppression), presence or absence of cavitary TB on chest radiography, and dosing
14 15	182	of the fluoroquinolone (mg/kg body weight, $\pm 10\%$) to prospectively enrolled patients in a 2:1 ratio.
16 17	183	
18 19 20	184	Interventions
20 21 22	185	The objective of the feasibility of centralized TDM will be assessed by evaluating the process, by
23 24	186	which a locally collected sample will be analysed in a central laboratory and subsequent dosing
25 26	187	advice will be returned to the local physician. In brief, after at least seven days of treatment (steady
27 28	188	state) two blood samples will be collected for TDM of moxifloxacin or levofloxacin according to a
29 30 31	189	previously developed LSS.[21,22] The first sample will be collected just before drug intake (t=0) and
32 33	190	the other at 5 hours after drug intake (t=5). Samples will be transported to the central laboratory for
34 35	191	drug analysis and will be accompanied by a form including key patient characteristics for
36 37	192	personalised dosing advice (i.e. sex, age, weight, height, serum creatinine, corrected QT (QTc)
38 39 40	193	interval, MIC, TB presentation, start of treatment, other anti-TB drugs, and comorbidities). AUC ₀₋₂₄
41 42	194	will be calculated using a population pharmacokinetic model [21,22] and Bayesian dose optimisation
43 44	195	in MWPharm++ (version 1.7.3; Mediware, Groningen, The Netherlands).
45 46	196	Dosing is optimised based on AUC_{0-24}/MIC or AUC_{0-24} (in case MIC is unknown), taking into
47 48 49	197	consideration comorbidities (HIV, diabetes, and immunosuppression), persistence of TB symptoms,
50 51	198	and response to treatment so far. The Bayesian dosing software uses sex, age, height, weight, and
52 53	199	renal function in addition to drug dose and measured drug concentrations to forecast the drug
54 55	200	exposure after a dose change. For patients who are at risk for treatment failure due to the previously
56 57 58	201	mentioned reasons, a higher drug exposure is recommended. This is especially relevant in case of an
58 59 60	202	unknown individual MIC, since the actual MIC might be near the breakpoint, to prevent treatment

failure and acquired resistance. The target AUC₀₋₂₄/MIC and AUC₀₋₂₄ are shown in Table 1. If a dose change is necessary, TDM is to be repeated after at least seven days after the initiation of the new dose (steady state). Dose increases of moxifloxacin will not be advised in case of a prolonged QTc interval (>450 ms for males, >470 ms for females), because of safety reasons. As levofloxacin may be less cardiotoxic than moxifloxacin, levofloxacin dose increases are permitted in case of prolonged QTc interval, but only with adequateelectrocardiogram monitoring. Patients with prolonged QTc interval will not be excluded from the study, since TDM can still be helpful to verify drug exposure. A closely monitored follow-up including MIC determination can be advised in case of AUC₀₋₂₄ of 25 to 40 mg*h/L in combination with QTc interval prolongation. In case of very low moxifloxacin exposure $(AUC_{0-24}<20 \text{ mg}^{+}h/L)$ in combination with a prolonged QTc interval, the physician will be advised to reconsider the anti-TB regimen as moxifloxacin may be less active than expected. Laboratory methods Drug analysis: Measurement of moxifloxacin and levofloxacin plasma/serum concentrations will take place at the laboratory of the department of Clinical Pharmacy and Pharmacology in the UMCG, The Netherlands, and using validated liquid chromatography-mass spectrometry (LC-MS/MS) methods. The method for levofloxacin has an accuracy of 0.1-12.7%, within-run precision of 1.4-2.4%, and between-run precision of 3.6-4.1%. The calibration curve is linear over a range of 0.10 to 5.00 mg/L.[25] This range was successfully expanded to 0.20 to 50.0 mg/L in a recent update of the method (data on file). Accuracy of the moxifloxacin method is 2.7-7.1%, within-run precision 1.4-1.6%, and between-run precision 1.0-1.6%. The calibration curve is linear over a range of 0.05 to 5.00 mg/L.[26] For both fluoroquinolones only the total concentration (bound and unbound) will be measured. Therefore, the target AUC₀₋₂₄/MIC values of >150 [19] and >100 [20] will be used for levofloxacin and moxifloxacin, respectively (Table 2).

Page 13 of 25

1 2

2 3 4	228	Plasma and serum samples containing levofloxacin are stable for at least ten days at 50 $^{ m o}$ C and can
5	229	therefore be transported to the central facility in ambient temperature, without the need of
7 8	230	transport on dry ice.[27] The thermal stability of moxifloxacin was also tested according to the
9 10 11	231	method of Ghimire <i>et al</i> and showed that moxifloxacin serum and plasma samples are stable for at
11 12 13	232	least ten days at 50 °C as well (data on file).
14 15	233	
16 17	234	Microbiology:
18 19	235	The assessment of sputum smear and culture status after two months of MDR-TB treatment will be
20 21 22	236	performed according to the local procedures, but at least once a month until documented culture
23 24	237	conversion. MIC determination is preferred but not mandatory for TDM and will be performed
25 26	238	according to local procedures as well. To account for the differences in culture media used in drug
27 28	239	susceptibility testing, correction factors based on the critical concentrations in the WHO-document
29 30 31	240	"Technical Report on critical concentrations for drug susceptibility testing of medicines used in the
32 33	241	treatment of drug-resistant tuberculosis" will be applied.[28] The target AUC ₀₋₂₄ /MIC values for each
34 35	242	medium are shown in Table 2. Furthermore, second line molecular drug susceptibility tests will be
36 37	243	considered in case MIC data are not available.
38 39	244	
40 41 42	245	Data analysis plan
43 44	246	The primary outcome to assess the feasibility of centralized TDM will be the turn-around time, which
45 46	247	is defined by the time between blood sampling and the peripheral centres receiving the TDM results
47 48	248	including the dosing advice. The procedure is considered feasible if >80% of the collected samples
49 50 51	249	will be reported back to the physician within seven days and 100% within two weeks. Additionally,
52 53	250	the feasibility will be evaluated using secondary outcomes of sample quality after shipping and
54 55	251	completeness of required information on the sample form.
56 57	252	Furthermore, we will evaluate the role of TDM on MDR-TB treatment by comparing the percentages
58 59	253	of patients with sputum smear and culture conversion at two months in the enrolled groups. In

1 ว		
2 3 4	254	addition, we will evaluate the number of patients with low fluoroquinolone exposure requiring dose
5 6	255	changes after TDM to estimate the potential gains.
7 8 9	256	
10 11	257	Sample size calculation
12 13	258	As the primary endpoint was of descriptive nature and no data were available to perform a well-
14 15 16	259	informed sample size calculation, it was decided to power the study on the clinical impact of TDM.
10 17 18	260	The primary assumption was based on the detection of a proportional difference in sputum smear
19 20	261	and culture positivity at two months of treatment in patients with MDR-TB undergoing TDM (35%)
21 22 22	262	[29] and control patients (60%)[30]. Given an alpha error of 0.05 and statistical power of 80%, we
23 24 25	263	calculated a sample size of 60 per single group is needed (i.e. 60 prospective and 120 historical
26 27	264	control patients for moxifloxacin and equally for levofloxacin).
28 29	265	
30 31	266	Patient and public involvement
32 33 34	267	There has been no patient or public involvement in the design of this study.
35 36	268	
37 38	269	Ethics and dissemination
39 40	270	This study will be performed according to the Declaration of Helsinki and Good Clinical Practice.[31]
41 42 43	271	In each recruiting centre ethical clearance has been granted according to local regulations and
44 45	272	patient recruitment has begun at most sites (supplementary file 1) . Written informed consent will be
46 47	273	obtained from all patients undergoing TDM. The need of new informed consent for historical controls
48 49	274	was waived, because of the use of retrospective anonymous data collected for programmatic
50 51	275	purposes or previously reported data from studies for which patients had provided informed
52 53 54	276	consent.
55 56	277	This study includes historical patients who did not receive TDM as controls instead of prospectively
57 58	278	randomising patients to either receive or not receive TDM for ethical reasons. The evidence that
59 60	279	TDM actually improves MDR-TB treatment outcomes has not been confirmed in randomised

1

1 2		
3 4	280	controlled trials, but multiple studies have described treatment failure and risk of antibiotic
5 6	281	resistance due to sub therapeutic drug exposure of anti-TB drugs.[8,13,15,19,20] In combination with
7 8 9	282	a large between-patient pharmacokinetic variability [9,10], we hypothesize that TDM is able to
9 10 11	283	improve treatment outcomes by ensuring adequate exposure in individual patients. Moreover, TDM
12 13	284	for MDR-TB is recommended in guidelines when it is available.[2,32,33] We therefore considered it
14 15	285	unethical to withhold TDM.
16 17	286	Study results will be published in a peer-reviewed journal and will be presented at an international
18 19 20	287	conference.
20 21 22	288	
23 24	289	Discussion
25 26	290	We present an observational prospective multicentre study which aims to: a) evaluate the feasibility
27 28 29	291	of centralized TDM in differently resourced settings of varying TB endemicity and geographic region
30 31	292	and b) evaluate the role of TDM of moxifloxacin or levofloxacin on sputum smear and culture
32 33	293	conversion rates in patients with MDR-TB after two months of treatment.
34 35	294	Presently, TDM is offered as an adjunctive to patients with TB in only a few hospitals worldwide and
36 37 38	295	is considered to be part of the excellent clinical care.[16,23,34–36] However, general interest in TDM
38 39 40	296	and MDR-TB treatment optimization has been increasing. A consensus statement on the diagnosis
41 42	297	and treatment of MDR-TB in Europe states that TDM for second-line drugs should be used if
43 44	298	available.[33] Moreover, the use of second-line anti-TB drugs was listed in the American Thoracic
45 46	299	Society (ATS) guidelines as indication for TDM and TDM is also recommended in the European Union
47 48 49	300	Standards for Tuberculosis Prevention and Care.[32,37] Yet, TDM is considered by some to be
50 51	301	laborious, expensive and thus unpractical in countries with high TB incidence. Similar injurious
52 53	302	arguments of economistic rationing of services were applied to second-line drugs for the treatment
54 55	303	of MDR-TB in highly endemic settings and such rationing conversely led to amplification of the MDR-
56 57 58	304	TB epidemic.[38] This study will focus on the feasibility of centralized TDM, which could stimulate

1	
2 3 4	306
5 6	307
7 8	308
9 10	309
11 12 13	310
14 15	311
16 17	312
18 19	313
20 21	314
22 23 24	315
24 25 26	316
27 28	317
29 30	318
31 32	319
33 34 35	320
36 37	321
38 39	322
40 41	323
42 43	324
44 45 46	325
40 47 48	326
49 50	327
51 52	328
53 54	329
55 56	329
57 58	550

306 methods and devices in a central location. Other options to facilitate TDM are the implementation of 307 LSS, urine samples, dried-blood spots and saliva-screening methods.[34,39-41] This study will 308 additionally use LSS to increase feasibility as well as to reduce the burden of TDM. The LSS for 309 moxifloxacin and levofloxacin used in this study (0 and 5 h post-dose samples) were designed to 310 optimise AUC₀₋₂₄ [21,22], whereas the frequently used sampling schedule at 2 and 6 h post-dose is 311 more suitable to estimate C_{max} and identify delayed absorption.[42] 312 Although incorporating TDM in TB treatment has shown to give high treatment success rates in low 313 endemic countries, like the Netherlands [29], this has not yet been evaluated in well-designed 314 randomized controlled trials.[43] This study will provide a first-ever conclusion on the value of TDM 315 of moxifloxacin and levofloxacin on sputum smear and culture conversion of patients with MDR-TB. 316 It can be considered a limitation that only TDM of fluoroquinolones is performed in this study. 317 However, moxifloxacin and levofloxacin are currently among the core drugs in the MDR-treatment 318 regimen together with linezolid and bedaquiline.[3] Based on TDM criteria [44], we have selected 319 moxifloxacin and levofloxacin, because they show large inter-individual pharmacokinetic variability, 320 which emphasizes the need for personalized dosing.[9,10] Moreover, fluoroquinolone resistance is 321 on the rise and can develop during low drug exposure.[8] TDM of fluoroquinolones aims to find the 322 individual patients who have low drug exposure and would benefit from dose adjustment. Therefore, 323 it is expected that TDM of fluoroquinolones will have the largest impact on MDR-TB treatment 324 outcomes. We did not include TDM for linezolid and bedaquiline in this study, because of unclear 325 evidence for TDM of bedaquiline due to the novelty of the drug [45] and TDM of linezolid has 326 focussed more on preventing toxicity.[46–48] 327 Another limitation is that we are only evaluating interim outcomes such as sputum conversion rates 328 at two months and will not assess outcomes at the end of treatment. However, this study is primarily

- 330 evaluate the impact of fluoroquinolone TDM. We believe that reporting the results on sputum 58
- 59 331 conversion rates is relevant as bacterial load and risk of acquired resistance are highest in the first 60

designed to determine the feasibility of centralized TDM. In addition, this is the first study to

1			
2			
3 4	332	mont	hs of therapy. Fast sputum culture conversion reduces the risk of transmission of <i>M</i> .
5 6	333	tuber	culosis strains which continues to sustain the MDR-TB epidemic.[49] With the results of this
7 8	334	study	we aim to design a future study to extensively evaluate TDM of all drugs in the regimen
9 10	335	incluc	ling the final treatment outcomes. However, such study would require substantial funding.
11 12 13	336	We he	ope that this study will show that centralized TDM is feasible and that TDM can improve the
14 15	337	qualit	y of treatment in terms of faster sputum conversion rates compared to historical experience. If
16 17	338	that n	night be the case, the major hesitations about TDM in TB treatment can be attenuated
18 19	339	favou	ring the improvement of TB management using a personalized approach.[37]
20 21	340		
22 23 24	341	Refer	ences
24 25 26	342	1	World Health Organization. Global tuberculosis report 2018. 2018.
27 28	343	2	World Health Organization. WHO consolidated guidelines on drug-resistant tuberculosis
29 30	344		treatment. 2019.
31 32	345	3	World Health Organization. Rapid Communication: Key changes to treatment of multidrug-
33 34	346		and rifampicin-resistant tuberculosis (MDR/RR-TB). 2018.
35 36 37	347	4	Ahmad N, Ahuja SD, Akkerman OW, <i>et al.</i> Treatment correlates of successful outcomes in
38 39	348		pulmonary multidrug-resistant tuberculosis: an individual patient data meta-analysis. <i>Lancet</i>
40 41	349		2018; 392 :821–34. doi:10.1016/S0140-6736(18)31644-1
42	545		2010,002.021 54.00.1010/00140 0/00(10)01044 1
43 44 45	350	5	Alffenaar J-WC, Migliori GB, Gumbo T. Multidrug-resistant tuberculosis: pharmacokinetic and
46 47	351		pharmacodynamic science. Lancet Infect Dis 2017;17:898. doi:10.1016/S1473-3099(17)30449-
48 49	352		8
50 51	353	6	World Health Organization. Global tuberculosis report 2012. 2012.
52 53	354	7	Davies Forsman L, Bruchfeld J, Alffenaar J-WC. Therapeutic drug monitoring to prevent
54 55	355		acquired drug resistance of fluoroquinolones in the treatment of tuberculosis. Eur Respir J
56 57 58	356		2017; 49 :1700173. doi:10.1183/13993003.00173-2017
58 59 60	357	8	Srivastava S, Pasipanodya JG, Meek C, et al. Multidrug-resistant tuberculosis not due to

1

1 2			
3 4	358		noncompliance but to between-patient pharmacokinetic variability. J Infect Dis
5 6	359		2011; 204 :1951–9. doi:10.1093/infdis/jir658
7 8	360	9	Van't Boveneind-Vrubleuskaya N, Seuruk T, van Hateren K, et al. Pharmacokinetics of
9 10 11	361		Levofloxacin in Multidrug- and Extensively Drug-Resistant Tuberculosis Patients. Antimicrob
11 12 13	362		Agents Chemother 2017; 61:e00343-17. doi:10.1128/AAC.00343-17
14 15	363	10	Pranger AD, van Altena R, Aarnoutse RE, et al. Evaluation of moxifloxacin for the treatment of
16 17	364		tuberculosis: 3 years of experience. <i>Eur Respir J</i> 2011; 38 :888–94.
18 19	365		doi:10.1183/09031936.00176610
20 21 22	366	11	Ghimire S, Van't Boveneind-Vrubleuskaya N, Akkerman OW, et al.
22 23 24	367		Pharmacokinetic/pharmacodynamic-based optimization of levofloxacin administration in the
25 26	368		treatment of MDR-TB. J Antimicrob Chemother 2016; 71 :2691–703. doi:10.1093/jac/dkw164
27 28	369	12	Alffenaar J-WC, Gumbo T, Aarnoutse RE. Acquired drug resistance: we can do more than we
29 30	370		think! <i>Clin Infect Dis</i> 2015; 60 :969–70. doi:10.1093/cid/ciu1146
31 32 33	371	13	Pasipanodya JG, McIlleron H, Burger A, et al. Serum drug concentrations predictive of
34 35	372		pulmonary tuberculosis outcomes. J Infect Dis 2013;208:1464–73. doi:10.1093/infdis/jit352
36 37	373	14	Modongo C, Pasipanodya JG, Magazi BT, et al. Artificial Intelligence and Amikacin Exposures
38 39	374		Predictive of Outcomes in Multidrug-Resistant Tuberculosis Patients. Antimicrob Agents
40 41 42	375		Chemother 2016; 60 :5928–32. doi:10.1128/AAC.00962-16
42 43 44	376	15	Sekaggya-Wiltshire C, von Braun A, Lamorde M, et al. Delayed Sputum Conversion in TB-HIV
45 46	377		Co-Infected Patients with Low Isoniazid and Rifampicin Concentrations. Clin Infect Dis
47 48	378		2018; 67 :708–16. doi:10.1093/cid/ciy179
49 50	379	16	Alffenaar J-WC, Tiberi S, Verbeeck RK, et al. Therapeutic Drug Monitoring in Tuberculosis:
51 52 53	380		Practical Application for Physicians. Clin Infect Dis 2017;64:104–5. doi:10.1093/cid/ciw677
54 55	381	17	Peloquin C. The Role of Therapeutic Drug Monitoring in Mycobacterial Infections. Microbiol
56 57	382		Spectr 2017;5:TNMI7-0029–2016. doi:10.1128/microbiolspec.TNMI7-0029-2016
58 59	383	18	Alkabab Y, Keller S, Dodge D, et al. Early interventions for diabetes related tuberculosis
60			

Page 19 of 25

1			
2 3 4	384		associate with hastened sputum microbiological clearance in Virginia, USA. BMC Infect Dis
5 6	385		2017; 17 :125. doi:10.1186/s12879-017-2226-y
7 8	386	19	Deshpande D, Pasipanodya JG, Mpagama SG, et al. Levofloxacin
9 10	387		Pharmacokinetics/Pharmacodynamics, Dosing, Susceptibility Breakpoints, and Artificial
11 12 13	388		Intelligence in the Treatment of Multidrug-resistant Tuberculosis. Clin Infect Dis
14 15	389		2018; 67 :S293–302. doi:10.1093/cid/ciy611
16 17	390	20	Gumbo T, Louie A, Deziel MR, et al. Selection of a moxifloxacin dose that suppresses drug
18 19	391		resistance in Mycobacterium tuberculosis, by use of an in vitro pharmacodynamic infection
20 21 22	392		model and mathematical modeling. <i>J Infect Dis</i> 2004; 190 :1642–51. doi:10.1086/424849
23 24	393	21	van den Elsen SHJ, Sturkenboom MGG, Van't Boveneind-Vrubleuskaya N, et al. Population
25 26	394		Pharmacokinetic Model and Limited Sampling Strategies for Personalized Dosing of
27 28	395		Levofloxacin in Tuberculosis Patients. Antimicrob Agents Chemother 2018;62:e01092-18.
29 30 31	396		doi:10.1128/AAC.01092-18
32 33	397	22	van den Elsen SHJ, Sturkenboom MGG, Akkerman OW, et al. Limited sampling strategies using
34 35	398		linear regression and the Bayesian approach for therapeutic drug monitoring of moxifloxacin
36 37	399		in tuberculosis patients. Antimicrob Agents Chemother 2019;63:e00384-19.
38 39	400		doi:10.1128/AAC.00384-19
40 41 42	401	23	Ghimire S, Bolhuis MS, Sturkenboom MGG, et al. Incorporating therapeutic drug monitoring
43 44	402		into the World Health Organization hierarchy of tuberculosis diagnostics. Eur Respir J
45 46	403		2016; 47 :1867–9. doi:10.1183/13993003.00040-2016
47 48	404	24	Schimke I. Quality and timeliness in medical laboratory testing. Anal Bioanal Chem
49 50 51	405		2009; 393 :1499–504. doi:10.1007/s00216-008-2349-5
52 53	406	25	Ghimire S, van Hateren K, Vrubleuskaya N, et al. Determination of levofloxacin in human
54 55	407		serum using liquid chromatography tandem mass spectrometry. J Appl Bioanal 2018;4:16–25.
56 57	408		doi:10.17145/jab.18.004
58 59 60	409	26	Pranger AD, Alffenaar J-WC, Wessels AMA, et al. Determination of moxifloxacin in human

1 2			
3 4	410		plasma, plasma ultrafiltrate, and cerebrospinal fluid by a rapid and simple liquid
5 6	411		chromatography-tandem mass spectrometry method. J Anal Toxicol 2010; 34 :135–41.
7 8	412	27	Ghimire S, Jongedijk EM, van den Elsen SHJ, et al. Cross validation of liquid chromatography
9 10	413		tandem mass spectrometry method for quantification of levofloxacin in saliva. Submitted
11 12 13	414	28	World Health Organization. Technical Report on critical concentrations for drug susceptibility
14 15	415		testing of medicines used in the treatment of drug-resistant tuberculosis. 2018.
16 17	416	29	van Altena R, de Vries G, Haar CH, et al. Highly successful treatment outcome of multidrug-
18 19	417		resistant tuberculosis in the Netherlands, 2000-2009. Int J Tuberc Lung Dis 2015;19:406–12.
20 21	418		doi:10.5588/ijtld.14.0838
22 23 24	419	30	Sotgiu G, Centis R, D'Ambrosio L, et al. Efficacy, safety and tolerability of linezolid containing
25 26	420		regimens in treating MDR-TB and XDR-TB: systematic review and meta-analysis. Eur Respir J
27 28	421		2012; 40 :1430–42. doi:10.1183/09031936.00022912
29 30	422	31	World Medical Association Declaration of Helsinki: ethical principles for medical research
31 32 33	423		involving human subjects. JAMA 2013; 310 :2191–4. doi:10.1001/jama.2013.281053
33 34 35	424	32	Nahid P, Dorman SE, Alipanah N, et al. Official American Thoracic Society/Centers for Disease
36 37	425		Control and Prevention/Infectious Diseases Society of America Clinical Practice Guidelines:
38 39	426		Treatment of Drug-Susceptible Tuberculosis. <i>Clin Infect Dis</i> 2016; 63 :147–95.
40 41	427		doi:10.1093/cid/ciw376
42 43 44	428	33	Lange C, Abubakar I, Alffenaar J-WC, et al. Management of patients with multidrug-
45 46	429		resistant/extensively drug-resistant tuberculosis in Europe: a TBNET consensus statement. <i>Eur</i>
47 48	430		<i>Respir J</i> 2014; 44 :23–63. doi:10.1183/09031936.00188313
49 50	431	34	Alffenaar J-WC, Heysell SK, Mpagama SG. Therapeutic Drug Monitoring: The Need for
51 52	432		Practical Guidance. <i>Clin Infect Dis</i> 2019; 68 :1065–6. doi:10.1093/cid/ciy787
53 54 55	433	35	Lange C, Dheda K, Chesov D, <i>et al.</i> Management of drug-resistant tuberculosis. <i>Lancet</i>
56 57	434		2019; 394 :953–66. doi:10.1016/S0140-6736(19)31882-3
58 59	435	36	Alffenaar J-WC, Gumbo T, Dooley KE, <i>et al.</i> Integrating pharmacokinetics and
60			

Page 21 of 25

1 2			
2 3 4	436		pharmacodynamics in operational research to End TB. Clin Infect Dis 2019;:ciz942.
5 6	437		doi:10.1093/cid/ciz942
7 8	438	37	Migliori GB, Sotgiu G, Rosales-Klintz S, et al. ERS/ECDC Statement: European Union standards
9 10 11	439		for tuberculosis care, 2017 update. Eur Respir J 2018;51:1702678.
12 13	440		doi:10.1183/13993003.02678-2017
14 15	441	38	Nicholson T, Admay C, Shakow A, et al. Double Standards in Global Health: Medicine, Human
16 17	442		Rights Law and Multidrug-Resistant TB Treatment Policy. <i>Health Hum Rights</i> 2016; 18 :85–102.
18 19	443	39	Ghimire S, Maharjan B, Jongedijk EM, et al. Evaluation of Saliva as a Potential Alternative
20 21 22	444		Sampling Matrix for Therapeutic Drug Monitoring of Levofloxacin in Patients with Multidrug-
23 24	445		Resistant Tuberculosis. Antimicrob Agents Chemother 2019;63:e02379-18.
25 26	446		doi:10.1128/AAC.02379-18
27 28	447	40	Zuur MA, Bolhuis MS, Anthony R, et al. Current status and opportunities for therapeutic drug
29 30 31	448		monitoring in the treatment of tuberculosis. <i>Expert Opin Drug Metab Toxicol</i> 2016; 12 :509–21.
32 33	449		doi:10.1517/17425255.2016.1162785
34 35	450	41	Zentner I, Modongo C, Zetola NM, et al. Urine colorimetry for therapeutic drug monitoring of
36 37	451		pyrazinamide during tuberculosis treatment. Int J Infect Dis 2018;68:18–23.
38 39 40	452		doi:10.1016/j.ijid.2017.12.017
40 41 42	453	42	Lange C, Aarnoutse RE, Alffenaar JWC, et al. Management of patients with multidrug-resistant
43 44	454		tuberculosis. Int J Tuberc Lung Dis 2019; 23 :645–62. doi:10.5588/ijtld.18.0622
45 46	455	43	van der Burgt EPM, Sturkenboom MGG, Bolhuis MS, et al. End TB with precision treatment!
47 48 49	456		<i>Eur Respir J</i> 2016; 47 :680 LP – 682. doi:10.1183/13993003.01285-2015
50 51	457	44	Figueras A. WHO report 'Review of the evidence to include TDM in the Essential in vitro
52 53	458		Diagnostics List and prioritization of medicines to be monitored'. 2019.
54 55	459	45	Borisov SE, Dheda K, Enwerem M, et al. Effectiveness and safety of bedaquiline-containing
56 57	460		regimens in the treatment of MDR- and XDR-TB: a multicentre study. Eur Respir J
58 59 60	461		2017; 49 :1700387. doi:10.1183/13993003.00387-2017

Page 22 of 25

BMJ Open

1 2

3 4	462	46	Bolhuis MS, Tiberi S, Sotgiu G, et al. Is there still room for therapeutic drug monitoring of
5 6	463		linezolid in patients with tuberculosis? <i>Eur Respir J</i> 2016; 47 :1288 LP – 1290.
7 8	464		doi:10.1183/13993003.02185-2015
9 10 11	465	47	Alffenaar J-WC, van Altena R, Harmelink IM, et al. Comparison of the pharmacokinetics of two
12 13	466		dosage regimens of linezolid in multidrug-resistant and extensively drug-resistant tuberculosis
14 15	467		patients. Clin Pharmacokinet 2010;49:559-65. doi:10.2165/11532080-0000000000000000000000000000000000
16 17	468	48	Bolhuis MS, Akkerman OW, Sturkenboom MGG, et al. Linezolid-based Regimens for
18 19 20	469		Multidrug-resistant Tuberculosis (TB): A Systematic Review to Establish or Revise the Current
20 21 22	470		Recommended Dose for TB Treatment. <i>Clin Infect Dis</i> 2018; 67 :S327–35.
23 24	471		doi:10.1093/cid/ciy625
25 26	472	49	Migliori GB, Nardell E, Yedilbayev A, et al. Reducing tuberculosis transmission: a consensus
27 28	473		document from the World Health Organization Regional Office for Europe. Eur Respir J
29 30 31	474		2019; 53 :1900391. doi:10.1183/13993003.00391-2019
32	475		
33			
33 34 35	476	Ackno	owledgements:
34 35 36 37			owledgements: roject is part of the scientific activities of the Global Tuberculosis Network (GTN; Committees
34 35 36 37 38 39	476	The p	
34 35 36 37 38 39 40 41	476 477	The p on ph	roject is part of the scientific activities of the Global Tuberculosis Network (GTN; Committees
34 35 36 37 38 39 40	476 477 478	The p on ph TB Co	roject is part of the scientific activities of the Global Tuberculosis Network (GTN; Committees armacology- chair Jan-Willem C Alffenaar; Treatment- chair Marcela Muñoz-Torrico and Global
34 35 36 37 38 39 40 41 42 43 44 45 46	476 477 478 479	The p on ph TB Co	roject is part of the scientific activities of the Global Tuberculosis Network (GTN; Committees armacology- chair Jan-Willem C Alffenaar; Treatment- chair Marcela Muñoz-Torrico and Global ansilium- chairs M. Tadolini and S. Tiberi) and of the WHO Collaborating Centre for Tuberculosis
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	476 477 478 479 480	The p on ph TB Co and L	roject is part of the scientific activities of the Global Tuberculosis Network (GTN; Committees armacology- chair Jan-Willem C Alffenaar; Treatment- chair Marcela Muñoz-Torrico and Global ansilium- chairs M. Tadolini and S. Tiberi) and of the WHO Collaborating Centre for Tuberculosis
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	476 477 478 479 480 481	The p on ph TB Co and L Autho	roject is part of the scientific activities of the Global Tuberculosis Network (GTN; Committees aarmacology- chair Jan-Willem C Alffenaar; Treatment- chair Marcela Muñoz-Torrico and Global ansilium- chairs M. Tadolini and S. Tiberi) and of the WHO Collaborating Centre for Tuberculosis ung Diseases, Tradate, ITA-80, 2017-2020- GBM/RC/LDA.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	476 477 478 479 480 481 482	The p on ph TB Co and L Autho SE, M	roject is part of the scientific activities of the Global Tuberculosis Network (GTN; Committees narmacology- chair Jan-Willem C Alffenaar; Treatment- chair Marcela Muñoz-Torrico and Global onsilium- chairs M. Tadolini and S. Tiberi) and of the WHO Collaborating Centre for Tuberculosis ung Diseases, Tradate, ITA-80, 2017-2020- GBM/RC/LDA.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	476 477 478 479 480 481 482 483	The p on ph TB Co and L Autho SE, M CM, S	roject is part of the scientific activities of the Global Tuberculosis Network (GTN; Committees narmacology- chair Jan-Willem C Alffenaar; Treatment- chair Marcela Muñoz-Torrico and Global onsilium- chairs M. Tadolini and S. Tiberi) and of the WHO Collaborating Centre for Tuberculosis ung Diseases, Tradate, ITA-80, 2017-2020- GBM/RC/LDA.
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	476 477 478 479 480 481 482 483 484	The p on ph TB Co and L Autho SE, M CM, S LK, HI	roject is part of the scientific activities of the Global Tuberculosis Network (GTN; Committees harmacology- chair Jan-Willem C Alffenaar; Treatment- chair Marcela Muñoz-Torrico and Global ensilium- chairs M. Tadolini and S. Tiberi) and of the WHO Collaborating Centre for Tuberculosis ung Diseases, Tradate, ITA-80, 2017-2020- GBM/RC/LDA. or contributions: S, DT, GB, JWA designed the major outlines of the study. OA, LB, JB, GE, SH, HH, LK, HK, JK, KM, MM, AS, GS, MT, ST, FV, TW, MW, JZ contributed to the study design. OA, LB, JB, GE, SH, HH,

1 2		
3	488	
4 5 6	489	Funding statement: This research received no specific grant from any funding agency in the public,
7 8	490	commercial or not-for-profit sectors.
9 10 11	491	
12 13	492	Competing interests: none declared
$\begin{array}{c} 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54\\ 55\\ 56\\ 57\\ 58\\ 59\end{array}$	493	for peer terien only
60		

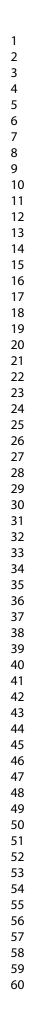
494 Figure 1. Workflow of study procedures in local hospitals and central laboratory facility.

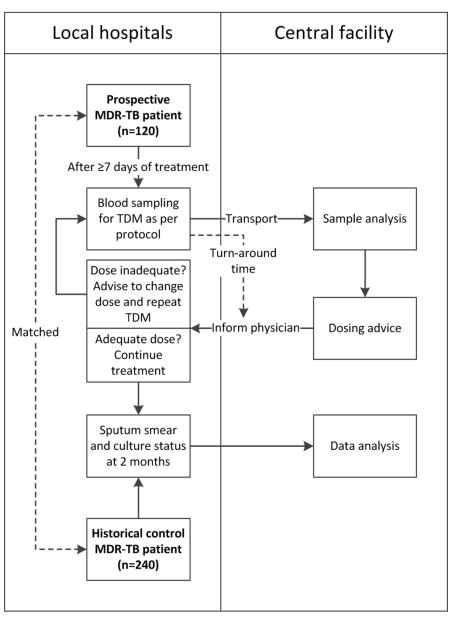
497 Table 1. List of participating hospitals and their location

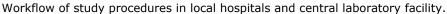
Groningen, The Netherlands Haren, The Netherlands Brisbane, Australia Stockholm, Sweden Mexico City, Mexico Athens, Greece
Brisbane, Australia Stockholm, Sweden Mexico City, Mexico
Stockholm, Sweden Mexico City, Mexico
Mexico City, Mexico
Athens. Greece
Kilimanjaro, Tanzania
Minsk, Belarus
London, United Kingdom
Bologna, Italy
Riga, Latvia
-

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

500 Table 2. Target AUC₀₋₂₄/MIC and AUC₀₋₂₄ for TDM of moxifloxacin and levofloxacin in patients with multidrug-resistant 501 tuberculosis (MDR-TB). Standard disease is defined as non-cavitary and regular disease on radiograph. Severe disease is 502 defined as cavitary or extensive disease on radiograph.


Fluoroquinolone	Pulmonary MDR-TB	Target AUC ₀₋₂₄ /MIC ^a			Target AUC ₀₋₂ (mg*h/L)
		MGIT	7H10/11	IJ	
	Standard disease	>100	>50	>25	>40
Moxifloxacin	Severe disease or comorbidities	>100	>50	>25	>60 ^b
	Standard disease	>150	>150 ^c	>75	>150
Levofloxacin	Severe disease or comorbidities	>150	>150°	>75	>200 ^b


^a Minimum inhibitory concentration (MIC) varies depending on growth media; Mycobacteria Growth


504 Indicator Tubes (MGIT), Middlebrook 7H10/7H11, and Lowenstein Jensen (LJ) agar.

^b Target AUC₀₋₂₄/MIC at site of cavity; therefore higher AUC₀₋₂₄ is required.

^c Levofloxacin critical concentration of 7H11 was extrapolated to 7H10.

107x145mm (300 x 300 DPI)

Supplementary file 1

Hospital	Ethical review committee	Reference number			
University Medical Center	Medical Ethics Review Board of	2018/029			
Groningen (central lab facility)	University Medical Center				
	Groningen				
Tuberculosis Clinic "Beatrixoord",	Medical Ethics Review Board of	2018/029			
University Medical Center	University Medical Center				
Groningen	Groningen				
Princess Alexandra Hospital	Metro South Human Research	HREC/18/QPAH/218			
	Ethics Committee				
Karolinska University Hospital	Regional ERB Stockholm	2018/1115-31/2			
Instituto Nacional de	Medical Ethics Review Board of	C24-18			
Enfermedades Respiratorias	Instituto Nacional de				
	Enfermedades Respiratorias				
Athens Chest Hospital "Sotiria"	Medical Ethics Review Board of	6000421/14-03-2018			
	Athens Chest Hospital				
Kibong'oto Infectious Diseases	National Institute for Medical	NIMR/HQ/R.8c/Vol.11/70			
Hospital	Research				
Republican Scientific and Practical	Ethics pending	Ethics pending			
Centre for Pulmonology and					
Tuberculosis					
Barts Health NHS trust	Ethics pending	Ethics pending			
St. Orsola-Malpighi Hospital,	Ethics pending	Ethics pending			
University of Bologna					
Riga East University Hospital TB	The Research Ethics Committee of	68/22.02.2018			
and Lung Disease Clinic	Rīga Stradiņš University				