Supplementary Information

Stretchable and Skin-conformable Conductors Based on Polyurethane/Laser-Induced Graphene

Alexander Dallinger^a, Kirill Keller^a, Harald Fitzek^{b,c}, Francesco Greco^{a,*}

a Institute of Solid State Physics, NAWI Graz, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria.

b Graz Centre for Electron Microscopy (ZFE), Steyrergasse 17, 8010 Graz, Austria

c Institute for Electron Microscopy and Nanoanalysis (FELMI), NAWI Graz, Graz University of Technology, Steyrergasse 17, 8010 Graz, Austria

* Corresponding author, email: <u>francesco.greco@tugraz.at</u>

Figure S1. Schematics of MPU layers.

Figure S2. Force curves for MPU samples for 5%, 10%, 30% and 100% strain cycles repeated five times.

Table S1. Summary of properties of MPU.

Property	Value
Thickness	54±6 µm
Young's Modulus	(8.5 ± 0.3) MPa
Elongation at break	> 400%
WVTR ¹	564-648 g/m ² /24 h

¹Water Vapor Transmission Rate (WVTR) provided by BSN medical.

Table S2. Summary of Raman spectra band parameters.

	LIG-F	LIG-P
G-band position/cm ⁻¹	1587.3	1582.0
G-band width/cm ⁻¹	56.2	55.4
G-band intensity/counts	98.8	99.4
D-band position/cm ⁻¹	1344.6	1342.6
D-band width/cm ⁻¹	77.7	57.8
D-band intensity/counts	85.4	105.1
D/G-ratio	0.86	1.06
2D-band position/cm ⁻¹	2686.7	2682.0
2D-band width/cm ⁻¹	97.7	99.9
2D-band intensity/counts	40.0	44.3

Figure S3. Map of LIG formation on PI influenced by laser power and speed parameters, resulting in different fluence H.

Figure S4. Stretching curve for LIG-P/MPU sample with a 100% strain/relaxation cycle and corresponding variation of electrical resistance, showing a reversible breakdown at around 60% strain (plot cut off at 1000 k Ω for better visibility).

Figure S5. Stretching curve for LIG-F/MPU sample with a 100% strain/relaxation cycle and corresponding variation of electrical resistance, showing no breakdown during the full cycle.

Figure S6. Stress relaxation curve from an applied 30% tensile strain on LIG-P/MPU, as used in fitting for the relaxation time constant for the I and II relaxations.

Figure S7. Fitting of (a) force and (b) resistance of I relaxation in Figure S6 and fitting of (c) resistance of II relaxation in Figure S6 with two exponential functions $(a \cdot e^{\frac{-x}{\tau_1}} + b \cdot e^{\frac{-x}{\tau_2}})$, resulting in a time constant $\tau_1 = 18.5 \pm 2.8$ s and $\tau_2 = 3100 \pm 1400$ s.

Figure S8. Starting resistance R_0 before each strain cycle for all LIG/MPU types.

Figure S9. Change of maximum resistance R_{max} and relaxed resistance R_{relax} over 200 cycles of tensile testing at 30% strain in the case of a) LIG-F \perp /MPU ($\phi = 90^\circ$), b) LIG-F \parallel / MPU ($\phi = 0^\circ$), c) LIG-P \perp /MPU ($\phi = 90^\circ$) and d) LIG-P \parallel /MPU ($\phi = 0^\circ$).

Figure S10. Force curve of MPU sample with a strain cycle of 30% imposed 200 times extracted from Figure S9.

Figure S11. Fitting of Young's Modulus ($Y = 8.5 \pm 0.3$ MPa) for LIG-F/MPU with 30% strain.

Figure S12. Fitting of Young's Modulus ($Y = 8.5 \pm 0.3$ MPa) for MPU with 30% strain.

Figure S13. Custom tensile testing setup for mechanical and electrical characterization showing (A) load cell, (B) electrical contacts, (C) sample, (D) movable stage.

Calculation of laser fluence

The laser fluence H for each laser raster setting was calculated as

$$H = \frac{P \cdot P_{max}/100}{s \cdot v \cdot PPI}$$
(S1)

where *P* is the set laser power (%) with respect to the maximal laser power P_{max} = 30 W, *s* is the theoretical laser spot size determined according to gaussian beam theory, *v* is the measured processing speed (depending on the sample size, v~ 110±10 mm/s) and PPI the raster resolution.