Supporting Information for:

Modeling the Alkaline Hydrolysis of Diaryl Sulfate Diesters: A Mechanistic Study

Klaudia Szeler,¹ Nicholas H. Williams,² Alvan C. Hengge,^{3,*} Shina C. L. Kamerlin^{1,*}

 Department of Chemistry – BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden.
 Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
 Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA.

Table of Contents

Supplementary Figures	3
Supplementary Tables	12
Cartesian Coordinates of Optimized Stationary Points	
Supplementary References	

Supplementary Figures

Figure S1. Overview of the (**A**) activation free energies, (**B**) partial charges at the transition state, (**C**) S-O_{nuc} and S-O_{lg} distances at the transition state and (**D**) S-O_{nuc} and S-O_{lg} bond orders at the transition state for the alkaline hydrolysis of 4-nitrophenyl sulfate with varying numbers of water molecules, obtained using the M11L¹ functional, as described in the **Methodology** section. The calculated activation free energy was obtained using transition state theory at 313.15 K, based on kinetic data provided in ref.². For the corresponding data obtained using the ω B97X-D³ and M062X⁴ functionals, see **Figures 3** and **S2**, and for the corresponding raw data see **Tables S1** to **S21**.

Figure S2. Overview of the (**A**) activation free energies, (**B**) partial charges at the transition state, (**C**) S-O_{nuc} and S-O_{lg} distances at the transition state and (**D**) S-O_{nuc} and S-O_{lg} bond orders at the transition state for the alkaline hydrolysis of 4-nitrophenyl sulfate with varying numbers of water molecules, obtained using the M062X⁴ functional, as described in the **Methodology** section. The calculated activation free energy was obtained using transition state theory at 313.15 K, based on kinetic data provided in ref.². For the corresponding data obtained using the ω B97X-D³ and M11L¹ functionals, see **Figures 3** and **S1**, and for the corresponding raw data see **Tables S1** to **S21**.

Figure S3. Overlay of the S-O_{nuc} and S-O_{lg} bond orders at the transition state for the alkaline hydrolysis of 4-nitrophenyl sulfate with varying numbers of water molecules, obtained using the ω B97X-D,³ M062X⁴ and M11L¹ functionals, as described in the **Methodology** section. For the corresponding raw data see **Tables S1** to **S21**.

Figure S4. Representative structures of the ground, transition and product states for the alkaline hydrolysis of 4-nitrophenyl sulfate obtained using the M11L functional,¹ in the presence of varying numbers of explicit solvent molecules, as described in the **Methodology** section. The calculated S-O_{nuc} and S-O_{lg} distances are annotated for each optimized reacting state (in Å), and the corresponding data obtained using the ω B97X-D³ and M062X⁴ functionals is shown in **Figures 4** and **S5**, respectively. Finally, coordinates of all optimized stationary points are provided as **Supporting Information**.

Figure S5. Representative structures of the ground, transition and product states for the alkaline hydrolysis of 4-nitrophenyl sulfate obtained using the M062X functional,⁴ in the presence of varying numbers of explicit solvent molecules, as described in the **Methodology** section. The calculated S-O_{nuc} and S-O_{lg} distances are annotated for each optimized reacting state (in Å), and the corresponding data obtained using the ω B97X-D³ and M11L¹ functionals is shown in **Figures 4** and **S4**, respectively. Finally, coordinates of all optimized stationary points are provided as **Supporting Information**.

Figure S6. A comparison of experimental ($\Delta G^{\ddagger}_{exp}$) and calculated ($\Delta G^{\ddagger}_{calc}$) activation free energies for the alkaline hydrolysis of the aryl sulfate diesters studied in this work (Figure 2), in the presence of 0 (implicit solvent), 2, 4 or 8 explicit water molecules. Data was obtained using either the (A) ω B97X-D,³ (B) M11L¹ or (C) M062X⁴ functionals. The corresponding raw data is presented in Tables S34 to S57. Experimental activation free energies were obtained at 313.15 K using transition state theory based on kinetic data provided in ref.².

Figure S7. Partial charges on (**A**) the nucleophile oxygen, (**B**) the sulfur atom and (**C**) the leaving group oxygen, at the transition states for the alkaline hydrolysis of the aryl sulfate diesters studied in this work (**Figure 2**), in the presence of 0 (implicit solvent), 2, 4 or 8 explicit water molecules. Partial charges were calculated using the M11L¹ functional and the CHELPG charge calculation scheme⁵ as described in the **Methodology** section. The corresponding charge distributions obtained using the wB97xD³ and M062X⁴ functionals are shown in **Figures 6** and **S8**, respectively, and the corresponding raw data is shown in **Table S58 to S81**.

Figure S8. Partial charges on (**A**) the nucleophile oxygen, (**B**) the sulfur atom and (**C**) the leaving group oxygen, at the transition states for the alkaline hydrolysis of the aryl sulfate diesters studied in this work (**Figure 2**), in the presence of 0 (implicit solvent), 2, 4 or 8 explicit water molecules. Partial charges were calculated using the M062X⁴ functional and the CHELPG charge calculation scheme⁵ as described in the **Methodology** section. The corresponding charge distributions obtained using the wB97xD³ and M11L¹ functionals are shown in **Figures 6** and **S7**, respectively, and the corresponding raw data is shown in **Table S58 to S81**.

Figure S9. Calculated (**A**,**C**,**E**) S-O_{nuc} and (**B**,**D**,**F**) S-O_{lg} distances at the transition states for the alkaline hydrolysis of the aryl sulfate diesters studied in this work (**Figure 2**), in the presence of 0 (implicit solvent), 2, 4 or 8 explicit water molecules. Data was obtained using either the (**A**,**B**) M11L,¹ (**C**,**D**) M062X⁴ or (**E**,**F**) ω B97X-D³ functionals. The corresponding raw data is presented in **Table S82** to **S105**.

Supplementary Tables

Table S1. Energy decomposition of the calculated activation free energies ($\Delta G^{\dagger}_{calc}$) for the alkaline hydrolysis of 4-nitrophenyl sulfate in the presence of 0 to 8 additional explicit water molecules, obtained using the $\omega B97X-D^3$ functional.^a

Water Molecules	ΔE [‡]	$\Delta \mathbf{Z} \mathbf{P} \mathbf{E}^{\ddagger}$	-TΔS [‡]	$\Delta { m G}^{\ddagger}_{ m calc}$	$\Delta G^{\ddagger}_{exp}$	v
0	10.6	0.2	3.2	14	21.5	-269.6541
1	11.8	0.4	3.2	15.4	21.5	-273.9228
2	17.4	-0.4	0.6	17.6	21.5	-289.4289
3	14.5	-0.1	1.7	16.1	21.5	-275.8035
4	13.8	-0.3	0.9	14.4	21.5	-266.4356
5	20.2	-1	-3.2	16	21.5	-282.5629
6	20.7	-0.9	-1.4	18.4	21.5	-281.2544
7	16.2	0.6	-1.4	14.2	21.5	-282.4447
8	17.3	-0.3	0.5	17.5	21.5	-281.4245

^a All energies are shown in kcal mol⁻¹, and vibrational frequencies are shown in cm⁻¹. ΔE^{\ddagger} , ΔZPE^{\ddagger} and $-T\Delta S^{\ddagger}$ denote the contributions to $\Delta G^{\ddagger}_{calc}$ from the electronic energy, zero-point energy and activation free energy, respectively. v denotes the first vibrational frequency. $\Delta G^{\ddagger}_{exp}$ denotes the experimental activation free energy at 313.15 K, obtained from the kinetic data presented in ref. ² using transition state theory.

Water Molecules	ΔE [‡]	∆ZPE [‡]	-TΔS [‡]	$\Delta {G^{\ddagger}}_{calc}$	$\Delta G^{\ddagger}_{exp}$	ν
0	9.1	-0.1	3.1	12.1	21.5	-331.4516
1	9.1	0.2	2.8	12.1	21.5	-351.8688
2	8.2	0.01	5.1	13.3	21.5	-332.1461
3	13.5	-0.4	0.7	13.8	21.5	-341.4854
4	9	-0.2	1.8	10.6	21.5	-332.1585
5	10.3	0.01	2.1	12.4	21.5	-350.3726
6	19.4	-1.5	-4.1	13.8	21.5	-349.6627
7	18.3	-1.7	-4.2	12.4	21.5	-351.3161
8	19	-1.2	-2.8	15	21.5	-349.729

Table S2. Energy decomposition of the calculated activation free energies ($\Delta G^{\dagger}_{calc}$) for the alkaline hydrolysis of 4-nitrophenyl sulfate in the presence of 0 to 8 additional explicit water molecules, obtained using the M11L¹ functional.^a

^a All energies are shown in kcal mol⁻¹, and vibrational frequencies are shown in cm⁻¹. ΔE^{\ddagger} , ΔZPE^{\ddagger} and $-T\Delta S^{\ddagger}$ denote the contributions to $\Delta G^{\ddagger}_{calc}$ from the electronic energy, zero-point energy and activation free energy, respectively. v denotes the first vibrational frequency. $\Delta G^{\ddagger}_{exp}$ denotes the experimental activation free energy at 313.15 K, obtained from the kinetic data presented in ref. ² using transition state theory.

Table	S3 .	Energy	decompo	sition of	f the	calculated	activation	free	energies	$(\Delta G^{\ddagger}{}_{calc})$	for th	e alk	aline
hydrol	ysis	of 4-nitr	ophenyl s	ulfate in	the pi	esence of	0 to 8 add	itiona	l explicit	water mo	lecules	, obta	ained
using t	he N	1062X ⁴ 1	functional.	a									

Water Molecules	ΔE [‡]	∆ ZPE [‡]	-TΔS [‡]	$\Delta {G^{\ddagger}}_{calc}$	$\Delta G^{\ddagger}_{exp}$	ν
0	7.5	0.1	2.7	10.3	21.5	-316.6842
1	8.5	0.5	2.2	10.7	21.5	-298.9999
2	6.3	0.5	4.0	10.8	21.5	-292.9074
3	9.5	0.03	1.1	10.6	21.5	-286.9348
4	11.0	-0.4	0.01	10.6	21.5	-287.6699
5	10	-0.6	-1.9	7.5	21.5	-277.9046
6	8.7	0.6	0.7	10	21.5	-278.046
7	15.1	0.01	-1.7	13.4	21.5	-279.0495
8	8.2	0.3	0.7	9.2	21.5	-283.7645

^a All energies are shown in kcal mol⁻¹, and vibrational frequencies are shown in cm⁻¹. ΔE^{\ddagger} , ΔZPE^{\ddagger} and $-T\Delta S^{\ddagger}$ denote the contributions to $\Delta G^{\ddagger}_{cale}$ from the electronic energy, zero-point energy and activation free energy, respectively. v denotes the first vibrational frequency. $\Delta G^{\ddagger}_{exp}$ denotes the experimental activation free energy at 313.15 K, obtained from the kinetic data presented in ref. ² using transition state theory.

Table S4. Experimental and calculated rate constants for the alkaline hydrolysis of 4-nitrophenyl sulfate in the presence of 0 to 8 additional explicit water molecules, obtained using the ω B97X-D³ functional.^a

Water Molecules	kcalc	$\log k_{\rm calc}$	$\log k_{\rm exp}$
0	$1.090 \ge 10^3$	3.0374	-3.9706
1	$1.148 \ge 10^2$	2.0599	-3.9706
2	3.339 x 10 ⁰	0.5236	-3.9706
3	3.724 x 10 ¹	1.5710	-3.9706
4	5.728 x 10 ²	2.7580	-3.9706
5	4.373 x 10 ¹	1.6408	-3.9706
6	9.228 x 10 ⁻¹	-0.0349	-3.9706
7	$7.900 \ge 10^2$	2.8976	-3.9706
8	3.922×10^{0}	0.5935	-3.9706

^a The calculated rate constant, k_{calc} , was derived from the calculated activation free energy, ΔG^{\ddagger} , at 313.15 K, using transition state theory. The corresponding experimental value was obtained from ref. ² after correcting the experimental second order rate constant by 0.017 M⁻¹ to take into account the entropic cost of bringing the reacting fragments into the encounter complex, following ref. ⁶.

Table S5. Experimental and calculated rate constants for the alkaline hydrolysis of 4-nitrophenyl sulfate
in the presence of 0 to 8 additional explicit water molecules, obtained using the M11L ¹ functional. ^a

Water Molecules	kcalc	log k _{calc}	$\log k_{exp}$
0	2.311 x 10 ⁴	4.3638	-3.9706
1	7.501 x 10 ³	3.8751	-3.9706
2	3.356 x 10 ³	3.5258	-3.9706
3	$1.503 \ge 10^3$	3.1770	-3.9706
4	2.578 x 10 ⁵	5.4113	-3.9706
5	$1.427 \ge 10^4$	4.1544	-3.9706
6	$1.503 \ge 10^3$	3.1770	-3.9706
7	$1.427 \ge 10^4$	4.1544	-3.9706
8	2.183×10^2	2.3391	-3.9706

^a The calculated rate constant, k_{calc} , was derived from the calculated activation free energy, ΔG^{\ddagger} , at 313.15 K, using transition state theory. The corresponding experimental value was obtained from ref.² after correcting the experimental second order rate constant by 0.017 M⁻¹ to take into account the entropic cost of bringing the reacting fragments into the encounter complex, following ref.⁶.

Table S6. Experimental and calculated rate constants for the alkaline hydrolysis of 4-nitrophenyl sulfate in the presence of 0 to 8 additional explicit water molecules, obtained using the $M062X^4$ functional.^a

Water Molecules	kcalc	$\log k_{\rm calc}$	$\log k_{\rm exp}$
0	4.175 x 10 ⁵	5.6207	-3.9706
1	2.195 x 10 ⁵	5.3414	-3.9706
2	1.869 x 10 ⁵	5.2716	-3.9706
3	2.578 x 10 ⁵	5.4113	-3.9706
4	2.578 x 10 ⁵	5.4113	-3.9706
5	3.765 x 10 ⁷	7.5758	-3.9706
6	6.763 x 10 ⁵	5.8301	-3.9706
7	2.073 x 10 ³	3.3166	-3.9706
8	2.448 x 10 ⁶	6.3889	-3.9706

^a The calculated rate constant, k_{calc} , was derived from the calculated activation free energy, ΔG^{\ddagger} , at 313.15 K, using transition state theory. The corresponding experimental value was obtained from ref. ² after correcting the experimental second order rate constant by 0.017 M⁻¹ to take into account the entropic cost of bringing the reacting fragments into the encounter complex, following ref. ⁶.

Table S7. Absolute and relative energy contributions to the calculated free energies (ΔG_{calc}) for the alkaline hydrolysis of 4-nitrophenyl sulfate in the presence of 0 to 8 additional explicit water molecules, obtained using the $\omega B97X-D^3$ functional.^a

0 waters	E	ZPE	S	ΔΕ	ΔΖΡΕ	-TΔS	ΔG_{calc}	υ
RS	-1442.7105877	135.50586	153.837	0.0	0.0	0.0	0.0	27.865
TS	-1442.6936351	135.68108	143.642	10.6	0.2	3.2	14.0	-269.6541
PS	-1442.7620338	135.88209	156.698	-32.3	0.4	-0.9	-32.8	2.5343
1 water	E	ZPE	S	ΔΕ	∆ZPE	-T∆S	$\Delta \mathbf{G}_{calc}$	υ
RS	-1519.1725361	150.27362	171.609	0.0	0.0	0.0	0.0	10.226
TS	-1519.1536605	150.71761	161.301	11.8	0.4	3.2	15.4	-273.9228
PS	-1519.2144700	150.92204	170.623	-26.3	0.6	0.3	-25.4	18.9027
2 waters	E	ZPE	S	ΔΕ	ΔZPE	-T∆S	$\Delta \mathbf{G}_{calc}$	υ
RS	-1595.6332193	166.11857	180.725	0.0	0.0	0.0	0.0	22.0334
TS	-1595.6054962	165.73854	178.694	17.4	-0.4	0.6	17.6	-289.4289
PS	-1595.6744573	166.80655	181.284	-25.9	0.7	-0.2	-25.4	17.7028
3 waters	Е	ZPE	S	ΔΕ	ΔZPE	-T∆S	$\Delta \mathbf{G}_{calc}$	υ
RS	-1672.0867685	181.02450	200.557	0.0	0.0	0.0	0.0	16.8582
TS	-1672.0636513	180.93808	195.097	14.5	-0.1	1.7	16.1	-275.8035
PS	-1672.1371688	182.14724	195.756	-31.6	1.1	1.5	-29.0	12.69610
4 waters	Е	ZPE	S	ΔΕ	ΔΖΡΕ	-T∆S	ΔG_{calc}	υ
RS	-1748.5825985	197.83378	209.165	-28.4	1.7	2.4	-24.3	20.5039
TS	-1748.5825985	197.83378	209.165	-28.4	1.7	2.4	-24.3	20.5039
PS	-1748.5825985	197.83378	209.165	-28.4	1.7	2.4	-24.3	20.5039
5 waters	E	ZPE	S	ΔE	ΔZPE	-T∆S	$\Delta \mathbf{G}_{calc}$	υ
RS	-1825.0023189	212.77408	222.328	0.0	0.0	0.0	0.0	20.2906
TS	-1824.9701787	211.75014	232.606	20.2	-1.0	-3.2	16.0	-282.5629
PS	-1825.0481055	214.06832	220.043	-28.7	1.3	0.7	-26.7	20.0403
6 waters	E	ZPE	S	ΔΕ	ΔZPE	-T∆S	ΔG_{calc}	υ
RS	-1901.4555423	227.69456	243.654	0.0	0.0	0.0	0.0	9.0437
TS	-1901.4226068	226.84023	248.15	20.7	-0.9	-1.4	18.4	-281.2544
PS	-1901.5139771	232.44189	221.155	-36.7	4.7	7.0	-24.9	24.6981
7 waters	E	ZPE	S	ΔΕ	ΔZPE	-T∆S	ΔG_{calc}	υ
RS	-1977.9024920	243.68866	255.2	0.0	0.0	0.0	0.0	13.77
TS	-1977.8766201	243.11390	259.797	16.2	-0.6	-1.4	14.2	-282.4447
PS	-1977.9355331	243.31718	262.147	-20.7	-0.4	-2.2	-23.3	19.0105

8 waters	E	ZPE	S	ΔΕ	ΔΖΡΕ	-T∆S	$\Delta \mathbf{G}_{calc}$	υ
RS	-2054.3572856	259.26468	268.855	0.0	0.0	0.0	0.0	21.8354
TS	-2054.3298017	259.00254	267.27	17.2	-0.3	0.5	17.5	-281.4245
PS	-2054.4203233	262.31221	258.444	-39.6	3.0	3.3	-33.2	20.8432

^a RS, TS and PS denote the reactant, transition and product states, respectively. E, ZPE and S denote the absolute electronic energies, zero-point energies and entropies, and ΔE , ΔZPE and $-T\Delta S$ denote the corresponding values relative to the RS (all values in kcal mol⁻¹, except S which is presented in cal mol⁻¹ K⁻¹). *v* denotes the first vibrational frequency (cm⁻¹).

Table S8. Absolute and relative energy contributions to the calculated free energies (ΔG_{calc}) for the alkaline hydrolysis of 4-nitrophenyl sulfate in the presence of 0 to 8 additional explicit water molecules, obtained using the M11L¹ functional.^a

0 waters	E	ZPE	S	ΔΕ	ΔΖΡΕ	-T∆S	ΔG_{calc}	υ
RS	-1442.7758730	132.60756	153.934	0.0	0.0	0.0	0.0	26.0193
TS	-1442.7614408	132.52363	144.06	9.1	-0.1	3.1	12.1	-331.4516
PS	-1442.8369596	133.54658	154.348	-38.3	0.9	-0.1	-37.5	20.0531
1 water	Е	ZPE	S	ΔΕ	ΔΖΡΕ	-T∆S	$\Delta \mathbf{G}_{calc}$	υ
RS	-1519.2322701	147.70918	171.123	0.0	0.0	0.0	0.0	20.9616
TS	-1519.2178372	147.87940	162.067	9.1	0.2	2.8	12.1	-351.8688
PS	-1519.2860610	148.03910	177.37	-33.8	0.3	-2.0	-35.4	13.5424
2 waters	Ε	ZPE	S	ΔE	ΔZPE	-T∆S	ΔG_{calc}	υ
RS	-1595.6796661	162.80622	192.494	0.0	0.0	0.0	0.0	17.8855
TS	-1595.6665795	162.81241	176.348	8.2	0.01	5.1	13.3	-332.1461
PS	-1595.7381136	163.80171	189.695	-36.7	1.0	0.9	-34.8	16.8895
3 waters	Е	ZPE	S	ΔE	ΔΖΡΕ	-T∆S	ΔG_{calc}	υ
RS	-1672.1435071	179.18847	197.149	0.0	0.0	0.0	0.0	14.1686
TS	-1672.1220323	178.77017	195.019	13.5	-0.4	0.7	13.8	-341.4854
PS	-1672.1899994	178.86475	206.643	-29.2	-0.3	-3.0	-32.5	19.8945
4 waters	E	ZPE	S	ΔE	ΔΖΡΕ	-T∆S	$\Delta \mathbf{G}_{calc}$	υ
RS	-1748.5846590	193.92064	221.836	0.0	0.0	0.0	0.0	18.1209
TS	-1748.5702951	193.69953	215.956	9.0	-0.2	1.8	10.6	-332.1585
PS	-1748.6433847	194.01429	226.487	-36.9	0.1	-1.5	-38.2	13.0271
5 waters	Е	ZPE	S	ΔΕ	ΔΖΡΕ	-T∆S	ΔG_{calc}	υ
RS	-1825.0394562	209.29003	241.707	0.0	0.0	0.0	0.0	13.5004
TS	-1825.0230855	209.30180	234.984	10.3	0.01	2.1	12.4	-350.3726
PS	-1825.0927422	211.46170	234.019	-33.4	2.2	2.4	-28.9	11.3288
6 waters	E	ZPE	S	ΔΕ	ΔΖΡΕ	-T∆S	ΔG_{calc}	υ
RS	-1901.5036073	226.17852	241.632	0.0	0.0	0.0	0.0	16.054
TS	-1901.4726305	224.63579	254.622	19.4	-1.5	-4.1	13.8	-349.6627
PS	-1901.5792210	229.84625	233.146	-47.4	3.7	2.7	-41.1	11.0626
7 waters	E	ZPE	S	ΔΕ	ΔΖΡΕ	-T∆S	ΔG_{calc}	υ
RS	-1977.9523154	242.09906	255.206	0.0	0.0	0.0	0.0	16.2606
TS	1077 0221450	240 41600	268 595	18.3	-17	-4.2	12.4	-351 3161
	-1977.9231430	270.71000	200.375	10.5	1.7	1.2	12.1	551.5101

8 waters	E	ZPE	S	ΔΕ	ΔΖΡΕ	-T∆S	$\Delta \mathbf{G}_{calc}$	υ
RS	-2054.4041216	257.57639	270.968	0.0	0.0	0.0	0.0	16.7626
TS	-2054.3737914	256.36054	279.803	19.0	-1.2	-2.8	15.0	-349.729
PS	-2054.4710658	260.06720	267.761	-42.0	2.5	1.0	-38.5	12.8992

^a RS, TS and PS denote the reactant, transition and product states, respectively. E, ZPE and S denote the absolute electronic energies, zero-point energies and entropies, and ΔE , ΔZPE and $-T\Delta S$ denote the corresponding values relative to the RS (all values in kcal mol⁻¹, except S which is presented in cal mol⁻¹ K⁻¹). *v* denotes the first vibrational frequency (cm⁻¹).

Table S9. Absolute and relative energy contributions to the calculated free energies (ΔG_{calc}) for the alkaline hydrolysis of 4-nitrophenyl sulfate in the presence of 0 to 8 additional explicit water molecules, obtained using the M062X⁴ functional.^a

0 waters	E	ZPE	S	ΔΕ	ΔΖΡΕ	-TΔS	ΔG_{calc}	υ
RS	-1442.6434689	135.59843	151.311	0.0	0.0	0.0	0.0	29.8035
TS	-1442.6315931	135.71633	142.807	7.5	0.1	2.7	10.3	-316.6842
PS	-1442.6973623	136.14742	147.904	-33.8	0.5	1.1	-32.2	30.4802
1 water	Е	ZPE	S	ΔΕ	ΔZPE	-T∆S	$\Delta \mathbf{G}_{calc}$	υ
RS	-1519.0940823	149.96617	167.101	0.0	0.0	0.0	0.0	15.3596
TS	-1519.0813406	150.43057	160.043	8.0	0.5	2.2	10.7	-298.9999
PS	-1519.1352670	150.69595	171.254	-25.8	0.7	-1.3	-26.4	20.401
2 waters	Е	ZPE	S	ΔE	ΔZPE	-T∆S	$\Delta \mathbf{G}_{calc}$	υ
RS	-1595.1585719	164.92086	189.93	0.0	0.0	0.0	0.0	15.3242
TS	-1595.1485956	165.40078	177.103	6.3	0.5	4.0	10.8	-292.9074
PS	-1595.2115938	166.56085	178.44	-33.3	1.6	3.6	-28.0	21.2865
3 waters	Е	ZPE	S	ΔE	ΔΖΡΕ	-T∆S	ΔG_{calc}	υ
RS	-1671.9852185	180.84029	192.716	0.0	0.0	0.0	0.0	15.0767
TS	-1671.9700944	180.87399	189.063	9.5	0.03	1.1	10.6	-286.9348
PS	-1672.0265242	182.07435	191.96	-25.9	1.2	0.2	-24.4	24.4032
4 waters	Ε	ZPE	S	ΔΕ	ΔZPE	-T∆S	ΔG_{calc}	υ
RS	-1748.4273098	196.06219	208.126	0.0	0.0	0.0	0.0	21.9257
TS	-1748.4097162	195.70859	208.107	11.0	-0.4	0.01	10.6	-287.6699
PS	-1748.4702918	197.12423	207.891	-27.0	1.1	0.1	-25.8	25.862
5 waters	E	ZPE	S	ΔΕ	ΔZPE	-T∆S	ΔG_{calc}	υ
RS	-1824.8700820	211.28808	226.274	0.0	0.0	0.0	0.0	16.6705
TS	-1824.8541447	210.69593	232.445	10.0	-0.6	-1.9	7.5	-277.9046
PS	-1824.9274984	213.45421	223.182	-36.0	2.2	1.0	-32.9	11.1737
6 waters	E	ZPE	S	ΔΕ	ΔΖΡΕ	-T∆S	ΔG_{calc}	υ
RS	-1901.3121152	226.71693	239.679	0.0	0.0	0.0	0.0	19.0124
TS	-1901.2982843	227.33679	237.594	8.7	0.6	0.7	10.0	-278.046
PS	-1901.3524776	228.28582	239.854	-25.3	1.6	-0.1	-23.8	16.8398
7 waters	E	ZPE	S	ΔΕ	ΔZPE	-T∆S	ΔG_{calc}	υ
RS	-1977.7680384	243.84477	237.178	0.0	0.0	0.0	0.0	22.6625
TS	-1977.7439931	243.85549	242.454	15.1	0.01	-1.7	13.4	-279.0495
PS	-1977.7680384	245.60397	231.35	0.0	1.8	1.8	3.6	25.1431

8 waters	E	ZPE	S	ΔΕ	ΔΖΡΕ	-TΔS	$\Delta \mathbf{G}_{calc}$	υ
RS	-2054.1986122	258.61012	261.306	0.0	0.0	0.0	0.0	19.785
TS	-2054.1855888	258.95387	258.979	8.2	0.3	0.7	9.2	-283.7645
PS	-2054.2672984	261.38123	250.497	-43.1	2.8	3.4	-36.9	20.118

^a RS, TS and PS denote the reactant, transition and product states, respectively. E, ZPE and S denote the absolute electronic energies, zero-point energies and entropies, and ΔE , ΔZPE and $-T\Delta S$ denote the corresponding values relative to the RS (all values in kcal mol⁻¹, except S which is presented in cal mol⁻¹ K⁻¹). *v* denotes the first vibrational frequency (cm⁻¹).

Table S10. Partial charges at the transition state for the alkaline hydrolysis of 4-nitrophenyl sulfate in the presence of 0 to 8 additional explicit water molecules, obtained using the ω B97X-D³ functional.^a

Water Molecules	O _{nuc}	S	Olg
0	-1.116133	1.259782	-0.58486
1	-1.058482	1.183376	-0.533672
2	-1.056234	1.117773	-0.4649
3	-0.918205	1.129663	-0.504537
4	-0.903971	1.094185	-0.427313
5	-0.630151	0.977564	-0.411007
6	-0.642337	1.028546	-0.400772
7	-0.78432	1.333445	-0.536905
8	-0.808109	1.375266	-0.539817

^a Partial charges are calculated using the CHELPG⁵ charge calculation scheme, as described in the Methodology

section.

Water Molecules	O _{nuc}	S	Olg
0	-1.128893	1.244377	-0.588531
1	-1.044112	1.218874	-0.549157
2	-1.048351	1.173881	-0.508858
3	-0.923554	1.12593	-0.495079
4	-0.922275	1.035309	-0.383091
5	-0.586031	0.902254	-0.368954
6	-0.696526	1.02064	-0.397964
7	-0.771277	0.989932	-0.41659
8	-0.809259	1.14282	-0.477867

Table S11. Partial charges at the transition state for the alkaline hydrolysis of 4-nitrophenyl sulfate in the presence of 0 to 8 additional explicit water molecules, obtained using the M11L¹ functional.^a

^a Partial charges are calculated using the CHELPG⁵ charge calculation scheme, as described in the **Methodology** section.

Table S12. Partial charges at the transition state for the alkaline hydrolysis of 4-nitrophenyl sulfate in the presence of 0 to 8 additional explicit water molecules, obtained using the $M062X^4$ functional.^a

Water Molecules	O _{nuc}	S	\mathbf{O}_{lg}
0	-1.139127	1.250009	-0.560361
1	-1.03667	1.223303	-0.532325
2	-1.048017	1.195557	-0.504796
3	-0.985903	1.174767	-0.507501
4	-0.959323	1.082878	-0.417571
5	-0.739218	0.961012	-0.429012
6	-0.800466	1.074493	-0.466512
7	-0.78432	1.333445	-0.536905
8	-0.854524	1.254148	-0.535374

^a Partial charges are calculated using the CHELPG⁵ charge calculation scheme, as described in the Methodology

section.

0 waters	O _{nuc}	S	Olg
RS	-1.296563	1.12486	-0.391163
TS	-1.116133	1.259782	-0.58486
PS	-0.537492	1.114613	-0.804766
1 water	O _{nuc}	S	\mathbf{O}_{lg}
RS	-1.196337	1.194745	-0.425358
TS	-1.058482	1.183376	-0.533672
PS	-0.489962	1.081848	-0.804228
2 waters	Onuc	S	\mathbf{O}_{lg}
RS	-1.135373	1.179743	-0.392427
TS	-1.056234	1.117773	-0.4649
PS	-0.521243	1.113486	-0.801443
3 waters	O _{nuc}	S	O_{lg}
RS	-1.257745	1.129588	-0.403099
TS	-0.918205	1.129663	-0.504537
PS	-0.548219	1.053739	-0.803563
4 waters	Onuc	S	Olg
RS	-1.236077	1.037997	-0.390759
TS	-0.903971	1.094185	-0.427313
PS	-0.903971	1.094185	-0.427313
5 waters	Onuc	S	Olg
RS	-0.980929	1.211486	-0.373893
TS	-0.630151	0.977564	-0.411007
PS	-0.512696	0.939546	-0.604445
6 waters	O _{nuc}	S	O _{lg}
RS	-0.940799	1.179333	-0.384711
TS	-0.642337	1.028546	-0.400772
PS	-0.56652	1.087845	-0.766095
7 waters	O _{nuc}	S	O _{lg}
RS	-0.940799	1.235601	-0.396755
TS	-0.642337	1.333445	-0.536905
PS	-0.56652	1.00144	-0.749296

Table S13. Partial charges at key stationary points for the alkaline hydrolysis of 4-nitrophenyl sulfate in the presence of 0 to 8 additional explicit water molecules, obtained using the ω B97X-D³ functional.^a

8 waters	O _{nuc}	S	O _{lg}
RS	-1.016168	1.025112	-0.394967
TS	-0.808109	1.375266	-0.539817
PS	-0.551013	0.968566	-0.730409

^a RS, TS and PS denote the reactant, transition and product states, respectively. Partial charges are calculated using the CHELPG⁵ charge calculation scheme, as described in the **Methodology** section.

0 waters	O _{nuc}	S	Olg
RS	-1.284482	1.080957	-0.379139
TS	-1.128893	1.244377	-0.588531
PS	-0.585248	1.238508	-0.772942
1 water	O _{nuc}	S	O _{lg}
RS	-1.185066	1.082782	-0.379663
TS	-1.044112	1.218874	-0.549157
PS	-0.586398	1.153452	-0.782941
2 waters	Onuc	S	Olg
RS	-1.188192	1.032376	-0.357577
TS	-1.048351	1.173881	-0.508858
PS	-0.546385	1.050097	-0.769466
3 waters	O _{nuc}	S	O _{lg}
RS	-1.277522	1.181599	-0.402934
TS	-0.923554	1.12593	-0.495079
PS	-0.388704	0.873864	-0.789278
4 waters	Onuc	S	\mathbf{O}_{lg}
RS	-1.247046	0.996753	-0.367373
TS	-0.922275	1.035309	-0.383091
PS	-0.360786	0.822035	-0.70989
5 waters	Onuc	S	Olg
RS	-0.853296	1.037227	-0.416884
TS	-0.586031	0.902254	-0.368954
PS	-0.44271	1.014201	-0.788907
6 waters	O _{nuc}	S	Olg
RS	-1.121692	1.198191	-0.432918
TS	-0.696526	1.02064	-0.397964
PS	-0.504618	0.985203	-0.657411
7 waters	O _{nuc}	S	\mathbf{O}_{lg}
RS	-1.096003	0.833178	-0.308632
TC			0.41650
15	-0.771277	0.989932	-0.41659

Table S14. Partial charges at key stationary points for the alkaline hydrolysis of 4-nitrophenyl sulfate in the presence of 0 to 8 additional explicit water molecules, obtained using the $M11L^1$ functional.^a

8 waters	O _{nuc}	S	Olg
RS	-1.195468	0.879597	-0.324804
TS	-0.809259	1.14282	-0.477867
PS	-0.352874	0.977358	-0.666439

^a RS, TS and PS denote the reactant, transition and product states, respectively. Partial charges are calculated using the CHELPG⁵ charge calculation scheme, as described in the **Methodology** section.

0 waters	O _{nuc}	S	Olg
RS	-1.275519	1.121414	-0.387754
TS	-1.139127	1.250009	-0.560361
PS	-0.558318	1.13009	-0.804851
1 water	O _{nuc}	S	Olg
RS	-1.148959	1.152355	-0.413929
TS	-1.03667	1.223303	-0.532325
PS	-0.670233	1.137449	-0.803401
2 waters	O _{nuc}	S	\mathbf{O}_{lg}
RS	-1.174682	1.064808	-0.358528
TS	-1.048017	1.195557	-0.504796
PS	-0.454976	1.055828	-0.814666
3 waters	O _{nuc}	S	\mathbf{O}_{lg}
RS	-1.233141	1.143523	-0.421993
TS	-0.985903	1.174767	-0.507501
PS	-0.482625	1.051778	-0.824693
4 waters	O _{nuc}	S	Olg
RS	-1.238816	1.009553	-0.39931
TS	-0.959323	1.082878	-0.417571
PS	-0.455648	1.027233	-0.76437
5 waters	Onuc	S	Olg
RS	-1.058445	0.812448	-0.20884
TS	-0.739218	0.961012	-0.429012
PS	-0.409062	0.919341	-0.726438
6 waters	O _{nuc}	S	O _{lg}
RS	-1.053489	0.999697	-0.303922
TS	-0.800466	1.074493	-0.466512
PS	-0.571694	1.024421	-0.758974
7 waters	O _{nuc}	S	O _{lg}
RS	-0.815996	1.331497	-0.466748
TS	-0.846032	1.137617	-0.497321
PS	-0.568987	1.062263	-0.79949

Table S15. Partial charges at key stationary points for the alkaline hydrolysis of 4-nitrophenyl sulfate in the presence of 0 to 8 additional explicit water molecules, obtained using the $M062X^4$ functional.^a

8 waters	O _{nuc}	S	\mathbf{O}_{lg}
RS	-0.964724	1.12928	-0.397992
TS	-0.854524	1.254148	-0.535374
PS	-0.621103	1.146464	-0.805452

^a RS, TS and PS denote the reactant, transition and product states, respectively. Partial charges are calculated using the CHELPG⁵ charge calculation scheme, as described in the **Methodology** section.

Table S16. Geometries at the transition state for the alkaline hydrolysis of 4-nitrophenyl sulfate in the presence of 0 to 8 additional explicit water molecules, obtained using the $\omega B97X-D^3$ functional.^a

Water Molecules	S-O _{nuc} Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
0	2.35	1.71	0.2639	0.5569
1	2.30	1.71	0.2515	0.5641
2	2.32	1.72	0.2456	0.5485
3	2.27	1.73	0.2333	0.5505
4	2.30	1.73	0.2242	0.5336
5	2.23	1.74	0.2359	0.5244
6	2.24	1.74	0.2399	0.5334
7	2.24	1.73	0.2458	0.5488
8	2.26	1.73	0.2506	0.5523

^a Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural

bond orbital (NBO) analysis.8

Water Molecules	S-O _{nuc} Distance	S-O _{lg} Distance	S-Onuc BO	S-Olg BO
0	2.31	1.70	0.2543	0.532
1	2.27	1.70	0.2498	0.5303
2	2.30	1.70	0.2412	0.5261
3	2.24	1.71	0.2279	0.5258
4	2.26	1.71	0.2234	0.5166
5	2.21	1.73	0.2332	0.5043
6	2.20	1.73	0.2373	0.5072
7	2.21	1.72	0.2368	0.5154
8	2.22	1.72	0.2432	0.5151

Table S17. Geometries at the transition state for the alkaline hydrolysis of 4-nitrophenyl sulfate in the presence of 0 to 8 additional explicit water molecules, obtained using the $M11L^1$ functional.^a

^a Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural bond orbital (NBO) analysis.⁸

Table S18. Geometries at the transition state for the alkaline hydrolysis of 4-nitrophenyl sulfate in the presence of 0 to 8 additional explicit water molecules, obtained using the $M062X^4$ functional.^a

Water Molecules	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
0	2.39	1.69	0.2306	0.5775
1	2.31	1.69	0.225	0.582
2	2.35	1.70	0.2173	0.5692
3	2.29	1.70	0.2082	0.5734
4	2.31	1.71	0.2027	0.5577
5	2.26	1.71	0.2122	0.5495
6	2.25	1.70	0.2242	0.5785
7	2.24	1.70	0.2285	0.5885
8	2.26	1.7	0.2308	0.5915

^a Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural bond orbital (NBO) analysis.⁸

0 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.87	1.61	0.0059	0.6746
TS	2.35	1.71	0.2639	0.5569
PS	1.59	3.99	0.7569	0.0007
1 water	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.58	1.61	0.0017	0.6882
TS	2.30	1.71	0.2515	0.5641
PS	1.59	3.98	0.742	0.0007
2 waters	S-Onuc Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
RS	4.62	1.61	0.0013	0.7122
TS	2.32	1.72	0.2456	0.5485
PS	1.59	4.72	0.7438	0.0002
3 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.49	1.61	0.0003	0.7117
TS	2.27	1.73	0.2333	0.5505
PS	1.56	4.72	0.8144	0.0001
4 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.39	1.61	0.0003	0.6907
TS	2.30	1.73	0.2242	0.5336
PS	1.45	1.59	0.7446	0.0008
5 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
RS	4.35	1.61	0.0002	0.7031
TS	2.23	1.74	0.2359	0.5244
PS	1.48	4.57	1.1637	0.0001
6 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.30	1.61	0.0002	0.7175
TS	2.24	1.74	0.2399	0.5334
PS	1.49	4.76	1.0107	0.0002
7 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.95	1.61	0.001	0.6984
TS	2.24	1.73	0.2458	0.5488
PS	1.59	3.92	0.7508	0.0017

Table S19. Geometries at key stationary points for the alkaline hydrolysis of 4-nitrophenyl sulfate in the presence of 0 to 8 additional explicit water molecules, obtained using the ω B97X-D³ functional.^a

8 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	5.08	1.60	0.0004	0.719
TS	2.26	1.73	0.2506	0.5523
PS	1.48	4.40	1.0432	0.0006

^a RS, TS and PS denote the reactant, transition and product states, respectively. Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural bond orbital (NBO) analysis.⁸

0 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.79	1.59	0.0027	0.6817
TS	2.31	1.70	0.2543	0.532
PS	1.56	4.09	0.7523	0.0012
1 water	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.78	1.59	0.0008	0.6748
TS	2.27	1.70	0.2498	0.5303
PS	1.56	3.84	0.7336	0.0012
2 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
RS	3.75	1.59	0.0047	0.6768
TS	2.30	1.70	0.2412	0.5261
PS	1.56	3.82	0.737	0.0016
3 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.16	1.59	0.0005	0.6929
TS	2.24	1.71	0.2279	0.5258
PS	1.56	3.83	0.738	0.0013
4 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-Olg BO
RS	4.03	1.59	0.0005	0.676
TS	2.26	1.71	0.2234	0.5166
PS	1.56	3.96	0.7451	0.0012
5 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.31	1.58	0.0009	0.6844
TS	2.21	1.73	0.2332	0.5043
PS	1.55	3.94	0.7662	0.0011
6 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.29	1.58	0.0006	0.6909
TS	2.20	1.73	0.2373	0.5072
PS	1.45	4.54	1.069	0.0002
7 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.53	1.58	0.0006	0.6857
TS	2.21	1.72	0.2368	0.5154
DC	1.46	4.29	1.0261	0.0011

Table S20. Geometries at key stationary points for the alkaline hydrolysis of 4-nitrophenyl sulfate in the presence of 0 to 8 additional explicit water molecules, obtained using the $M11L^1$ functional.^a

8 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	5.81	1.58	0.0001	0.6991
TS	2.22	1.72	0.2432	0.5151
PS	1.46	4.6	0.9886	0.0004

^a RS, TS and PS denote the reactant, transition and product states, respectively. Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural bond orbital (NBO) analysis.⁸

0 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.53	1.61	0.0112	0.6722
TS	2.39	1.69	0.2306	0.5775
PS	1.59	3.63	0.7535	0.0014
1 water	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.47	1.61	0.0103	0.6764
TS	2.31	1.69	0.225	0.582
PS	1.59	3.73	0.7316	0.0013
2 waters	S-Onuc Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
RS	3.52	1.61	0.0085	0.6682
TS	2.35	1.70	0.2173	0.5692
PS	1.59	3.60	0.7435	0.0018
3 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.34	1.61	0.0009	0.682
TS	2.29	1.70	0.2082	0.5734
PS	1.59	3.60	0.7371	0.0018
4 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-Olg BO
RS	4.09	1.61	0.0005	0.696
TS	2.31	1.71	0.2027	0.5577
PS	1.59	3.77	0.7513	0.0013
5 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
RS	3.50	1.61	0.0014	0.6616
TS	2.26	1.71	0.2122	0.5495
PS	1.50	4.57	0.9411	0.0002
6 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.40	1.61	0.0019	0.6893
TS	2.25	1.70	0.2242	0.5785
PS	1.58	3.71	0.7623	0.0013
7 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.40	1.61	0.0016	0.681
TS	2.24	1.70	0.2285	0.5885
	2.21	1170	0.2205	0.0000

Table S21. Geometries at key stationary points for the alkaline hydrolysis of 4-nitrophenyl sulfate in the presence of 0 to 8 additional explicit water molecules, obtained using the $M062X^4$ functional.^a
8 waters	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.16	1.62	0.004	0.6855
TS	2.26	1.7	0.2308	0.5915
PS	1.48	3.99	1.1272	0.0013

^a RS, TS and PS denote the reactant, transition and product states, respectively. Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural bond orbital (NBO) analysis.⁸

Table S22. Experimental and calculated rate constants for the alkaline hydrolysis of substituted sulfate diesters in the presence of 0 explicit water molecules (pure implicit solvation), obtained using the ω B97X-D³ functional.^a

Substituent	kcalc	$\log k_{\rm calc}$	$\log k_{exp}$
4-chloro-3-nitro	1.859 x 10 ²	2.2693	-3.7799
4-nitro	$1.090 \ge 10^3$	3.0374	-3.9706
2,6-difluoro	5.439 x 10 ³	3.7355	-3.8539
2-fluoro-4-nitro	3.943 x 10 ³	3.3958	-2.9872
2,3,4,5,6-pentafluoro	3.027 x 10 ⁵	5.4810	-2.3872
3-fluoro-4-nitro	$1.427 \ge 10^4$	4.1544	-2.5114

Table S23. Experimental and calculated rate constants for the alkaline hydrolysis of substituted sulfate diesters in the presence of 2 explicit water molecules, obtained using the ω B97X-D³ functional.^a

Substituent	kcalc	log k _{calc}	$\log k_{\rm exp}$
4-chloro-3-nitro	2.859×10^3	3.4562	-3.7799
4-nitro	3.339 x 10 ⁰	0.5236	-3.9706
2,6-difluoro	3.536 x 10 ²	2.5485	-3.8539
2-fluoro-4-nitro	1.676 x 10 ⁴	4.2243	-2.9872
2,3,4,5,6-pentafluoro	3.376 x 10 ⁶	6.5284	-2.3872
3-fluoro-4-nitro	8.810 x 10 ³	3.9450	-2.5114

Table S24. Experimental and calculated rate constants for the alkaline hydrolysis of substituted sulfate diesters in the presence of 4 explicit water molecules, obtained using the ω B97X-D³ functional.^a

Substituent	kcalc	log k _{calc}	log k _{exp}
4-chloro-3-nitro	$1.090 \ge 10^3$	3.0374	-3.7799
4-nitro	5.728 x 10 ²	2.7580	-3.9706
2,6-difluoro	1.968 x 10 ⁴	4.2940	-3.8539
2-fluoro-4-nitro	4.397 x 10 ⁴	4.6432	-2.9872
2,3,4,5,6-pentafluoro	5.192 x 10 ⁷	7.7153	-2.3872
3-fluoro-4-nitro	1.858 x 10 ²	2.2690	-2.5114

^a The calculated rate constant, k_{calc} , was derived from the calculated activation free energy, ΔG^{\ddagger} , at 313.15 K, using transition state theory. The corresponding experimental value was obtained from ref. ² after correcting the experimental second order rate constant by 0.017 M⁻¹ to take into account the entropic cost of bringing the reacting fragments into the encounter complex, following ref. ⁶.

Table S25. Experimental and calculated rate constants for the alkaline hydrolysis of substituted sulfate diesters in the presence of 8 explicit water molecules, obtained using the ω B97X-D³ functional.^a

Substitutent	<i>k</i> _{calc}	log k _{calc}	$\log k_{\rm exp}$
4-chloro-3-nitro	6.690 x 10 ⁻¹	-0.1746	-3.7799
4-nitro	$3.922 \ge 10^{\circ}$	0.5935	-3.9706
2,6-difluoro	9.718 x 10 ⁻²	-1.0124	-3.8539
2-fluoro-4-nitro	1.029 x 10 ¹	1.0124	-2.9872
2,3,4,5,6-pentafluoro	5.439 x 10 ³	3.7355	-2.3872
3-fluoro-4-nitro	2.700 x 10 ¹	1.4313	-2.5114

^a The calculated rate constant, k_{calc} , was derived from the calculated activation free energy, ΔG^{\ddagger} , at 313.15 K, using transition state theory. The corresponding experimental value was obtained from ref. ² after correcting the experimental second order rate constant by 0.017 M⁻¹ to take into account the entropic cost of bringing the reacting fragments into the encounter complex, following ref. ⁶.

Table S26. Experimental and calculated rate constants for the alkaline hydrolysis of substituted sulfate diesters in the presence of 0 explicit water molecules (pure implicit solvation), obtained using the $M11L^1$ functional.^a

Substituent	kcalc	log k _{calc}	$\log k_{exp}$
4-chloro-3-nitro	5.164 x 10 ⁴	4.7130	-3.7799
4-nitro	2.311 x 10 ⁴	4.3638	-3.9706
2,6-difluoro	4.175 x 10 ⁵	5.6207	-3.8539
2-fluoro-4-nitro	1.511 x 10 ⁶	6.1793	-2.9872
2,3,4,5,6-pentafluoro	1.879 x 10 ⁸	8.2739	-2.3872
3-fluoro-4-nitro	3.555 x 10 ⁵	5.5508	-2.5114

Table S27. Experimental and calculated rate constants for the alkaline hydrolysis of substituted sulfate diesters in the presence of 2 explicit water molecules, obtained using the $M11L^1$ functional.^a

Substituent	kcalc	log k _{calc}	$\log k_{\rm exp}$
4-chloro-3-nitro	1.215 x 10 ⁴	4.0846	-3.7799
4-nitro	3.356 x 10 ³	3.5258	-3.9706
2,6-difluoro	5.759 x 10 ⁵	5.7603	-3.8539
2-fluoro-4-nitro	1.869 x 10 ⁵	5.2716	-2.9872
2,3,4,5,6-pentafluoro	1.435 x 10 ⁷	7.1569	-2.3872
3-fluoro-4-nitro	4.175 x 10 ⁵	5.6207	-2.5114

^a The calculated rate constant, k_{calc} , was derived from the calculated activation free energy, ΔG^{\ddagger} , at 313.15 K, using transition state theory. The corresponding experimental value was obtained from ref.² after correcting the experimental second order rate constant by 0.017 M⁻¹ to take into account the entropic cost of bringing the reacting fragments into the encounter complex, following ref.⁶.

Table S28. Experimental and calculated rate constants for the alkaline hydrolysis of substituted sulfate diesters in the presence of 4 explicit water molecules, obtained using the M11L¹ functional.^a

Substituent	kcalc	log k _{calc}	log k _{exp}
4-chloro-3-nitro	9.824 x 10 ⁴	4.9923	-3.7799
4-nitro	2.578 x 10 ⁵	5.4113	-3.9706
2,6-difluoro	8.365 x 10 ⁴	4.9225	-3.8539
2-fluoro-4-nitro	5.468 x 10 ⁶	6.7378	-2.9872
2,3,4,5,6-pentafluoro	1.096 x 10 ⁶	6.0399	-2.3872
3-fluoro-4-nitro	3.188 x 10 ⁴	4.5035	-2.5114

Table S29. Experimental and calculated rate constants for the alkaline hydrolysis of substituted sulfate diesters in the presence of 8 explicit water molecules, obtained using the M11L¹ functional.^a

Substituent	kcalc	$\log k_{\rm calc}$	$\log k_{\rm exp}$
4-chloro-3-nitro	2.550 x 10 ⁻¹	-0.5935	-3.7799
4-nitro	2.183 x 10 ²	2.3391	-3.9706
2,6-difluoro	5.409 x 10 ⁰	0.7331	-3.8539
2-fluoro-4-nitro	2.195 x 10 ⁵	5.3414	-2.9872
2,3,4,5,6-pentafluoro	1.503 x 10 ³	3.1770	-2.3872
3-fluoro-4-nitro	3.943 x 10 ³	3.5958	-2.5114

^a The calculated rate constant, k_{calc} , was derived from the calculated activation free energy, ΔG^{\ddagger} , at 313.15 K, using transition state theory. The corresponding experimental value was obtained from ref.² after correcting the experimental second order rate constant by 0.017 M⁻¹ to take into account the entropic cost of bringing the reacting fragments into the encounter complex, following ref.⁶.

Table S30. Experimental and calculated rate constants for the alkaline hydrolysis of substituted sulfate diesters in the presence of 0 explicit water molecules (pure implicit solvent), obtained using the $M062X^4$ functional.^a

Substituent	k _{calc}	log k _{calc}	$\log k_{\exp}$
4-chloro-3-nitro	4.904 x 10 ⁵	5.6906	-3.7799
4-nitro	4.175 x 10 ⁵	5.6207	-3.9706
2,6-difluoro	6.422 x 10 ⁶	6.8078	-3.8539
2-fluoro-4-nitro	1.685 x 10 ⁷	7.2266	-2.9872
2,3,4,5,6-pentafluoro	3.044 x 10 ⁸	8.4834	-2.3872
3-fluoro-4-nitro	9.328 x 10 ⁵	5.9698	-2.5114

Table S31. Experimental and calculated rate constants for the alkaline hydrolysis of substituted sulfate diesters in the presence of 2 explicit water molecules, obtained using the M062X⁴ functional.^a

Substituent	kcalc	log k _{calc}	$\log k_{\rm exp}$
4-chloro-3-nitro	1.154 x 10 ⁵	5.0622	-3.7799
4-nitro	1.869 x 10 ⁵	5.2716	-3.9706
2,6-difluoro	1.435 x 10 ⁷	7.1569	-3.8539
2-fluoro-4-nitro	4.421 x 10 ⁷	7.6455	-2.9872
2,3,4,5,6-pentafluoro	3.986 x 10 ⁹	9.6005	-2.3872
3-fluoro-4-nitro	5.579 x 10 ⁵	5.7466	-2.5114

Table S32. Experimental and calculated rate constants for the alkaline hydrolysis of substituted sulfate diesters in the presence of 4 explicit water molecules, obtained using the M062X⁴ functional.^a

Substituent	kcalc	$\log k_{\rm calc}$	log k _{exp}
4-chloro-3-nitro	2.592 x 10 ⁸	8.4136	-3.7799
4-nitro	2.578 x 10 ⁵	5.4112	-3.9706
2,6-difluoro	2.207 x 10 ⁸	8.3438	-3.8539
2-fluoro-4-nitro	6.098 x 10 ⁷	7.7852	-2.9872
2,3,4,5,6-pentafluoro	2.890 x 10 ⁹	9.4609	-2.3872
3-fluoro-4-nitro	7.162 x 10 ⁷	7.8550	-2.5114

^a The calculated rate constant, k_{calc} , was derived from the calculated activation free energy, ΔG^{\ddagger} , at 313.15 K, using transition state theory. The corresponding experimental value was obtained from ref. ² after correcting the experimental second order rate constant by 0.017 M⁻¹ to take into account the entropic cost of bringing the reacting fragments into the encounter complex, following ref. ⁶.

Table S33. Experimental and calculated rate constants for the alkaline hydrolysis of substituted sulfate diesters in the presence of 8 explicit water molecules, obtained using the M062X⁴ functional.^a

Substituent	kcalc	log k _{calc}	$\log k_{\rm exp}$
4-chloro-3-nitro	1.215 x 10 ⁴	4.0846	-3.7799
4-nitro	2.448 x 10 ⁶	6.3889	-3.9706
2,6-difluoro	5.759 x 10 ⁵	5.7603	-3.8539
2-fluoro-4-nitro	8.858 x 10 ⁶	6.9473	-2.9872
2,3,4,5,6-pentafluoro	9.824 x 10 ⁴	4.9923	-2.3872
3-fluoro-4-nitro	1.511 x 10 ⁶	6.1793	-2.5114

^a The calculated rate constant, k_{calc} , was derived from the calculated activation free energy, ΔG^{\ddagger} , at 313.15 K, using transition state theory. The corresponding experimental value was obtained from ref.² after correcting the experimental second order rate constant by 0.017 M⁻¹ to take into account the entropic cost of bringing the reacting fragments into the encounter complex, following ref.⁶.

Table S34. Energy decomposition of the calculated activation free energies ($\Delta G^{\dagger}_{calc}$) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 0 explicit water molecules (pure implicit solvation), obtained using the $\omega B97X-D^3$ functional.^a

Substituent	ΔE [‡]	∆ZPE [‡]	-TΔS [‡]	$\Delta G^{\ddagger}_{calc}$	$\Delta G^{\ddagger}_{exp}$	v
4-chloro-3-nitro	10.5	0.5	4.1	15.1	21.2	-285.8424
4-nitro	10.6	0.2	3.2	14	21.5	-269.6541
2,6-difluoro	8.2	0.6	4.2	13	21.3	-255.3195
2-fluoro-4-nitro	9.2	0.3	3.7	13.2	20.1	-269.6949
2,3,4,5,6-pentafluoro	6	0.4	4.3	10.5	19.2	-191.8671
3-fluoro-4-nitro	10	-0.04	2.4	12.4	19.4	-269.1173

^a All energies are shown in kcal mol⁻¹, and vibrational frequencies are shown in cm⁻¹. ΔE^{\ddagger} , ΔZPE^{\ddagger} and $-T\Delta S^{\ddagger}$ denote the contributions to $\Delta G^{\ddagger}_{calc}$ from the electronic energy, zero-point energy and activation free energy, respectively. *v* denotes the first vibrational frequency. $\Delta G^{\ddagger}_{exp}$ denotes the experimental activation free energy at 313.15 K, obtained from the kinetic data presented in ref. ² using transition state theory.

Table S35. Energy decomposition of the calculated activation free energies ($\Delta G^{\ddagger}_{calc}$) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 2 explicit water molecules, obtained using the $\omega B97X-D^3$ functional.^a

Substituent	ΔE [‡]	∆ ZPE [‡]	-ΤΔS [‡]	$\Delta {G^{\ddagger}}_{calc}$	$\Delta G^{\ddagger}_{exp}$	ν
4-chloro-3-nitro	10.4	0.2	2.8	13.4	21.2	-275.4637
4-nitro	17.4	-0.4	0.6	17.6	21.5	-289.4289
2,6-difluoro	7.8	1.4	5.5	14.7	21.3	-241.8208
2-fluoro-4-nitro	9.2	0.4	2.7	12.3	20.1	-280.3696
2,3,4,5,6-pentafluoro	5	0.7	3.3	9	19.2	-208.8696
3-fluoro-4-nitro	9.9	0.2	2.6	12.7	19.4	-283.2926

Table S36. Energy decomposition of the calculated activation free energies ($\Delta G^{\ddagger}_{calc}$) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 4 explicit water molecules, obtained using the $\omega B97X-D^3$ functional.^a

Substituent	ΔE [‡]	ΔZPE^{\ddagger}	-TΔS [‡]	$\Delta { m G}^{\ddagger}_{ m calc}$	$\Delta G^{\ddagger}_{exp}$	ν
4-chloro-3-nitro	11.8	0.03	2.2	14	21.2	-256.1365
4-nitro	13.8	-0.3	0.9	14.4	21.5	-266.4356
2,6-difluoro	6.1	1.2	4.9	12.2	21.3	-228.9236
2-fluoro-4-nitro	5.7	1	5	11.7	20.1	-225.2576
2,3,4,5,6-pentafluoro	4.3	0.4	2.6	7.3	19.2	-196.2121
3-fluoro-4-nitro	9.9	1.1	4.1	15.1	19.4	-271.425

^a All energies are shown in kcal mol⁻¹, and vibrational frequencies are shown in cm⁻¹. ΔE^{\ddagger} , ΔZPE^{\ddagger} and $-T\Delta S^{\ddagger}$ denote the contributions to $\Delta G^{\ddagger}_{calc}$ from the electronic energy, zero-point energy and activation free energy, respectively. *v* denotes the first vibrational frequency. $\Delta G^{\ddagger}_{exp}$ denotes the experimental activation free energy at 313.15 K, obtained from the kinetic data presented in ref. ² using transition state theory.

Table S37. Energy decomposition of the calculated activation free energies ($\Delta G^{\ddagger}_{calc}$) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 8 explicit water molecules, obtained using the $\omega B97X-D^3$ functional.^a

Substituent	ΔE [‡]	∆ ZPE [‡]	-TΔS [‡]	$\Delta {G^{\ddagger}}_{calc}$	$\Delta G^{\ddagger}_{exp}$	ν
4-chloro-3-nitro	24.7	-1.9	-4.2	18.6	21.2	-274.1009
4-nitro	17.3	-0.3	0.5	17.5	21.5	-281.4245
2,6-difluoro	18.2	0.6	1	19.8	21.3	-244.4031
2-fluoro-4-nitro	16.9	-1.1	0.1	16.9	20.1	-253.072
2,3,4,5,6-pentafluoro	11.4	0.5	1.1	13	19.2	-242.0959
3-fluoro-4-nitro	11.2	1.2	3.9	16.4	19.4	-265.6762

Table S38. Energy decomposition of the calculated activation free energies ($\Delta G^{\ddagger}_{calc}$) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 0 explicit water molecules (pure implicit solvation), obtained using the M11L¹ functional.^a

Substituent	ΔE [‡]	∆ ZPE [‡]	-TΔS [‡]	$\Delta {G^{\ddagger}}_{calc}$	$\Delta G^{\ddagger}_{exp}$	v
4-chloro-3-nitro	9.1	-0.1	2.6	11.6	21.2	-342.7198
4-nitro	9.1	-0.1	3.1	12.1	21.5	-331.4516
2,6-difluoro	6.6	0.2	3.5	10.3	21.3	-268.0216
2-fluoro-4-nitro	7.8	-0.3	2	9.5	20.1	-324.8034
2,3,4,5,6-pentafluoro	3.6	0.1	2.8	6.5	19.2	-189.2089
3-fluoro-4-nitro	8.4	-0.3	2.3	10.4	19.4	-319.3068

^a All energies are shown in kcal mol⁻¹, and vibrational frequencies are shown in cm⁻¹. ΔE^{\ddagger} , ΔZPE^{\ddagger} and $-T\Delta S^{\ddagger}$ denote the contributions to $\Delta G^{\ddagger}_{calc}$ from the electronic energy, zero-point energy and activation free energy, respectively. vdenotes the first vibrational frequency. $\Delta G^{\ddagger}_{exp}$ denotes the experimental activation free energy at 313.15 K, obtained from the kinetic data presented in ref.² using transition state theory.

Table S39. Energy decomposition of the calculated activation free energies ($\Delta G^{\ddagger}_{calc}$) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 2 explicit water molecules, obtained using the M11L¹ functional.^a

Substituent	ΔE [‡]	ΔZPE^{\ddagger}	-TΔS [‡]	$\Delta {G^{\ddagger}}_{calc}$	$\Delta G^{\ddagger}_{exp}$	ν
4-chloro-3-nitro	8.5	0.5	3.5	12.5	21.2	-323.5784
4-nitro	8.2	0.01	5.1	13.3	21.5	-332.1461
2,6-difluoro	6.6	0.4	3.1	10.1	21.3	-274.2715
2-fluoro-4-nitro	7.2	0.2	3.4	10.8	20.1	-310.5195
2,3,4,5,6-pentafluoro	3.9	0.3	3.9	8.1	19.2	-226.258
3-fluoro-4-nitro	7.9	0.3	2.1	10.3	19.4	-319.1242

Table S40. Energy decomposition of the calculated activation free energies ($\Delta G^{\ddagger}_{calc}$) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 4 explicit water molecules, obtained using the M11L¹ functional.^a

Substituent	ΔE [‡]	ΔZPE^{\ddagger}	-TΔS [‡]	$\Delta { m G}^{\ddagger}_{ m calc}$	$\Delta G^{\ddagger}_{exp}$	ν
4-chloro-3-nitro	12.2	-0.9	-0.1	11.2	21.2	-318.2203
4-nitro	9	-0.2	1.8	10.6	21.5	-332.1585
2,6-difluoro	9.4	0.3	1.6	11.3	21.3	-286.8493
2-fluoro-4-nitro	4.8	0.6	3.3	8.7	20.1	-270.3738
2,3,4,5,6-pentafluoro	7.7	-0.05	2.1	9.7	19.2	-241.5549
3-fluoro-4-nitro	7.3	0.8	3.8	11.9	19.4	-321.7632

^a All energies are shown in kcal mol⁻¹, and vibrational frequencies are shown in cm⁻¹. ΔE^{\ddagger} , ΔZPE^{\ddagger} and $-T\Delta S^{\ddagger}$ denote the contributions to $\Delta G^{\ddagger}_{calc}$ from the electronic energy, zero-point energy and activation free energy, respectively. *v* denotes the first vibrational frequency. $\Delta G^{\ddagger}_{exp}$ denotes the experimental activation free energy at 313.15 K, obtained from the kinetic data presented in ref. ² using transition state theory.

$M11L^1$ functional. ^a								
Substituent	ΔE [‡]	∆ ZPE [‡]	-TΔS [‡]	$\Delta G^{\ddagger}_{calc}$	$\Delta G^{\ddagger}_{exp}$	v		
4-chloro-3-nitro	18.8	-0.2	0.6	19.2	21.2	-342.5189		
4-nitro	19	-1.2	-2.8	15	21.5	-349.729		
2,6-difluoro	18.2	0.2	-1.1	17.3	21.3	-325.0493		
2-fluoro-4-nitro	7.7	0.8	2.2	10.7	20.1	-322.0363		
2,3,4,5,6-pentafluoro	19.4	-2.3	-3.3	13.8	19.2	-317.5782		
3-fluoro-4-nitro	14.8	-1.1	-0.5	13.2	19.4	-348.1176		

Table S41. Energy decomposition of the calculated activation free energies ($\Delta G^{\ddagger}_{calc}$) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 8 explicit water molecules, obtained using the M11L¹ functional ^a

Table S42. Energy decomposition of the calculated activation free energies ($\Delta G^{\ddagger}_{calc}$) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 0 explicit water molecules (pure implicit solvation), obtained using the M062X⁴ functional.^a

Substituent	ΔE^{\ddagger}	ΔZPE^{\ddagger}	-TΔS [‡]	$\Delta { m G}^{\ddagger}_{ m calc}$	$\Delta G^{\ddagger}_{exp}$	v
4-chloro-3-nitro	7	0.2	3	10.2	21.2	-302.0405
4-nitro	7.5	0.1	2.7	10.3	21.5	-316.6842
2,6-difluoro	4.3	0.4	3.9	8.6	21.3	-263.5941
2-fluoro-4-nitro	6.2	-0.2	2	8	20.1	-303.4558
2,3,4,5,6-pentafluoro	5	-0.1	1.3	6.2	19.2	-259.2123
3-fluoro-4-nitro	6.9	0.04	2.9	9.8	19.4	-311.5082

^a All energies are shown in kcal mol⁻¹, and vibrational frequencies are shown in cm⁻¹. ΔE^{\ddagger} , ΔZPE^{\ddagger} and $-T\Delta S^{\ddagger}$ denote the contributions to $\Delta G^{\ddagger}_{calc}$ from the electronic energy, zero-point energy and activation free energy, respectively. *v* denotes the first vibrational frequency. $\Delta G^{\ddagger}_{exp}$ denotes the experimental activation free energy at 313.15 K, obtained from the kinetic data presented in ref.² using transition state theory.

Table S43. Energy decomposition of the calculated activation free energies ($\Delta G^{\ddagger}_{calc}$) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 2 explicit water molecules, obtained using the M062X⁴ functional.^a

Substituent	ΔE [‡]	∆ ZPE [‡]	-TΔS [‡]	$\Delta {G^{\ddagger}}_{calc}$	$\Delta G^{\ddagger}_{exp}$	ν
4-chloro-3-nitro	6.8	1.0	3.3	11.1	21.2	-286.8049
4-nitro	6.3	0.5	4.0	10.8	21.5	-292.9074
2,6-difluoro	3.5	0.8	3.8	8.1	21.3	-263.6809
2-fluoro-4-nitro	6.4	0.1	0.9	7.4	20.1	-287.2524
2,3,4,5,6-pentafluoro	7.4	0.8	2.1	4.6	19.2	-242.4723
3-fluoro-4-nitro	6.6	0.6	2.9	10.1	19.4	-285.2326

Table S44. Energy decomposition of the calculated activation free energies ($\Delta G^{\ddagger}_{calc}$) for the alkaline hydrolysis of substituted sulfate in the presence of 4 explicit water molecules, obtained using the M062X⁴ functional.^a

Substituent	ΔE [‡]	ΔZPE^{\ddagger}	-TΔS [‡]	$\Delta { m G}^{\ddagger}_{ m calc}$	$\Delta G^{\ddagger}_{exp}$	ν
4-chloro-3-nitro	9.0	-1.2	-1.5	6.3	21.2	-285.5131
4-nitro	11.0	-0.4	0.01	10.6	21.5	-287.6699
2,6-difluoro	3.5	0.7	2.2	6.4	21.3	-254.0158
2-fluoro-4-nitro	3.3	1.3	2.7	7.2	20.1	-250.3784
2,3,4,5,6-pentafluoro	1.8	0.9	2.1	4.8	19.2	-229.391
3-fluoro-4-nitro	6.4	0.1	0.6	7.1	19.4	-292.3245

^a All energies are shown in kcal mol⁻¹, and vibrational frequencies are shown in cm⁻¹. ΔE^{\ddagger} , ΔZPE^{\ddagger} and $-T\Delta S^{\ddagger}$ denote the contributions to $\Delta G^{\ddagger}_{calc}$ from the electronic energy, zero-point energy and activation free energy, respectively. *v* denotes the first vibrational frequency. $\Delta G^{\ddagger}_{exp}$ denotes the experimental activation free energy at 313.15 K, obtained from the kinetic data presented in ref. ² using transition state theory.

Table S45. Energy decomposition of the calculated activation free energies ($\Delta G^{\ddagger}_{calc}$) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 8 explicit water molecules, obtained using the M062X⁴ functional.^a

Substituent	ΔE [‡]	ΔZPE^{\ddagger}	-ΤΔS [‡]	$\Delta { m G}^{st}_{ m calc}$	$\Delta G^{\ddagger}_{exp}$	ν
4-chloro-3-nitro	10.8	0.04	1.7	12.5	21.2	-279.4276
4-nitro	8.2	0.3	0.7	9.2	21.5	-283.7645
2,6-difluoro	12.1	0.1	-2.5	10.1	21.3	-266.2105
2-fluoro-4-nitro	6.3	0.8	1.3	8.4	21.3	-275.8933
2,3,4,5,6-pentafluoro	5.6	2.6	3	11.2	19.2	-265.0677
3-fluoro-4-nitro	7.5	0.5	1.7	9.5	19.4	-275.3139

^a All energies are shown in kcal mol⁻¹, and vibrational frequencies are shown in cm⁻¹. ΔE^{\ddagger} , ΔZPE^{\ddagger} and $-T\Delta S^{\ddagger}$ denote the contributions to $\Delta G^{\ddagger}_{calc}$ from the electronic energy, zero-point energy and activation free energy, respectively. v denotes the first vibrational frequency. $\Delta G^{\ddagger}_{exp}$ denotes the experimental activation free energy at 313.15 K, obtained from the kinetic data presented in ref. ² using transition state theory.

Table S46. Absolute and relative energy contributions to the calculated free energies (ΔG_{calc}) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 0 additional explicit water molecules (pure implicit solvation), obtained using the $\omega B97X-D^3$ functional.^a

4-chloro-3-nitro	E	ZPE	S	ΔΕ	ΔZPE	-TΔS	ΔG_{calc}	υ
RS	-1902.3042145	129.07579	163.163	0.0	0.0	0.0	0.0	17.0736
TS	-1902.2875000	129.59369	150.068	10.5	0.5	4.1	15.1	-285.8424
PS	-1902.3512863	129.96548	153.386	-29.5	0.9	3.1	-25.6	-1.6775 ^b
4-nitro	Е	ZPE	S	ΔE	∆ZPE	-T∆S	$\Delta \mathbf{G}_{calc}$	υ
RS	-1442.7105877	135.50586	153.837	0.0	0.0	0.0	0.0	27.865
TS	-1442.6936351	135.68108	143.642	10.6	0.2	3.2	14.0	-269.6541
PS	-1442.7620338	135.88209	156.698	-32.3	0.4	-0.9	-32.8	2.5343
2,6-difluoro	E	ZPE	S	ΔE	ΔZPE	-T∆S	$\Delta \mathbf{G}_{calc}$	υ
RS	-1436.6836856	123.07560	152.237	0.0	0.0	0.0	0.0	17.421
TS	-1436.6706435	123.64884	138.719	8.2	0.6	4.2	13.0	-255.3195
PS	-1436.7285555	124.22134	147.713	-28.2	1.1	1.4	-25.6	20.3575
2-fluoro-4-nitro	Е	ZPE	S	ΔE	∆ZPE	-TΔS	ΔG_{calc}	υ
RS	-1541.9430306	130.18239	159.802	0.0	0.0	0.0	0.0	26.2503
TS	-1541.9283346	130.46140	147.827	9.2	0.3	3.7	1.3	-269.6949
PS	-1541.9997668	130.96907	159.984	-35.6	0.8	0.0	-34.8	11.2244
2,3,4,5,6-pentafluoro	E	ZPE	S	ΔE	ΔZPE	-T∆S	$\Delta \mathbf{G}_{calc}$	υ
RS	-1734.3655992	107.69555	166.047	0.0	0.0	0.0	0.0	14.5274
TS	-1734.3560598	107.98307	152.786	6.0	0.3	4.2	10.5	-191.8671
PS	-1734.4264982	108.46310	157.865	-38.2	0.8	2.6	-34.9	-7.6942 ^b
3-fluoro-4-nitro	E	ZPE	S	ΔΕ	ΔZPE	-TΔS	$\Delta \mathbf{G}_{calc}$	υ
RS	-1541.9399398	130.17666	158.212	0.0	0.0	0.0	0.0	26.73270
TS	-1541.9240006	130.13265	150.672	10.0	-0.04	2.4	12.4	-269.1173

^a RS, TS and PS denote the reactant, transition and product states, respectively. E, ZPE and S denote the absolute electronic energies, zero-point energies and entropies, and ΔE , ΔZPE and $-T\Delta S$ denote the corresponding values relative to the RS (all values in kcal mol⁻¹, except S which is presented in cal mol⁻¹ K⁻¹). *v* denotes the first vibrational frequency (cm⁻¹). ^b As this imaginary frequency is so small and it's in the product state (thus not affecting the calculated activation free energy for the hydrolysis of this compound), we have ignored it. We note that these structures were obtained using a super fine optimization grid.

Table S47. Absolute and relative energy contributions to the calculated free energies (ΔG_{calc}) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 2 additional explicit water molecules, obtained using the $\omega B97X-D^3$ functional.^a

4-chloro-3-nitro	E	ZPE	S	ΔΕ	∆ZPE	-T∆S	ΔG_{calc}	υ
RS	-2055.2159043	159.50741	194.514	0.0	0.0	0.0	0.0	14.4781
TS	-2055.1992769	159.68388	185.652	10.4	0.2	2.8	13.4	-275.4637
PS	-2055.2621140	160.73052	189.1	-29.0	1.2	1.7	-26.1	16.1674
4-nitro	E	ZPE	S	ΔΕ	ΔZPE	-T∆S	ΔG_{calc}	υ
RS	-1595.6332193	166.11857	180.725	0.0	0.0	0.0	0.0	22.0334
TS	-1595.6054962	165.73854	178.694	17.4	-0.4	0.6	17.6	-289.4289
PS	-1595.6744573	166.80655	181.284	-25.9	0.7	-0.2	-25.4	17.7028
2,6-difluoro	E	ZPE	S	ΔE	∆ZPE	-T∆S	$\Delta \mathbf{G}_{calc}$	υ
RS	-1589.5941658	152.82038	186.29	0.0	0.0	0.0	0.0	17.7358
TS	-1589.5818073	154.26010	168.853	7.8	1.4	5.5	14.7	-241.8208
PS	-1589.6434680	155.32919	174.728	-30.9	2.5	3.6	-24.8	13.9686
2-fluoro-4-nitro	Е	ZPE	S	ΔE	∆ZPE	-T∆S	ΔG_{calc}	υ
RS	-1694.8547048	159.94999	193.151	0.0	0.0	0.0	0.0	19.3376
тя	1604 8400412	160 20707	104 405	0.2	0.4	27	123	280 3606
15	-1094.0400412	100.39707	184.485	9.2	0.4	2.1	12.5	-280.3090
PS	-1694.9138037	161.26591	184.485	-37.1	1.3	1.5	-34.3	13.2216
PS 2,3,4,5,6-pentafluoro	-1694.9138037 E	160.39707 161.26591 ZPE	184.485 188.452 S	9.2 -37.1 ΔΕ	0.4 1.3 Δ ΖΡΕ	1.5 - Τ Δ S	-34.3 Δ G calc	-280.3090 13.2216 v
PS 2,3,4,5,6-pentafluoro RS	-1694.9138037 E -1887.2747775	160.39707 161.26591 ZPE 137.54657	184.485 188.452 S 197.269	9.2 -37.1 ΔE 0.0	0.4 1.3 Δ ΖΡΕ 0.0	1.5 -ΤΔS 0.0	-34.3 Δ G _{calc} 0.0	-280.3090 13.2216 v 19.1679
PS 2,3,4,5,6-pentafluoro RS TS	-1694.9138037 E -1887.2747775 -1887.2668689	160.39707 161.26591 ZPE 137.54657 138.25343	184.485 188.452 S 197.269 186.78	9.2 -37.1 ΔE 0.0 5.0	0.4 1.3 Δ ZPE 0.0 0.7	1.5 -TΔS 0.0 3.3		-230.3090 13.2216 v 19.1679 -208.8696
PS 2,3,4,5,6-pentafluoro RS TS PS	-1094.8400412 -1694.9138037 E -1887.2747775 -1887.2668689 -1887.3365707	160.39707 161.26591 ZPE 137.54657 138.25343 139.75578	184.485 188.452 S 197.269 186.78 189.2	9.2 -37.1 ΔE 0.0 5.0 -38.8	0.4 1.3 Δ ZPE 0.0 0.7 2.2	1.5 -TΔS 0.0 3.3 2.5	$ \begin{array}{r} -34.3 \\ \Delta G_{calc} \\ 0.0 \\ 9.0 \\ -34.0 \end{array} $	-280.3090 13.2216 v 19.1679 -208.8696 12.0491
PS 2,3,4,5,6-pentafluoro RS TS PS 3-fluoro-4-nitro	-1094.8400412 -1694.9138037 E -1887.2747775 -1887.2668689 -1887.3365707 E	160.39707 161.26591 ZPE 137.54657 138.25343 139.75578 ZPE	184.485 188.452 S 197.269 186.78 189.2 S	 9.2 -37.1 ΔE 0.0 5.0 -38.8 ΔE 	0.4 1.3 Δ ZPE 0.0 0.7 2.2 Δ ZPE	1.5 -TΔS 0.0 3.3 2.5 -TΔS	-34.3 Δ G calc 0.0 9.0 -34.0 Δ G calc	-230.3090 13.2216 v 19.1679 -208.8696 12.0491 v
PS 2,3,4,5,6-pentafluoro RS TS PS 3-fluoro-4-nitro RS	-1694.9138037 E -1887.2747775 -1887.2668689 -1887.3365707 E -1694.8517863	160.39707 161.26591 ZPE 137.54657 138.25343 139.75578 ZPE 159.98096	184.485 188.452 S 197.269 186.78 189.2 S 193.219	9.2 -37.1 ΔE 0.0 5.0 -38.8 ΔE 0.0	0.4 1.3 Δ ZPE 0.0 0.7 2.2 Δ ZPE 0.0	1.5 -TΔS 0.0 3.3 2.5 -TΔS 0.0	-34.3 ΔGcalc 0.0 9.0 -34.0 ΔGcalc 0.0	-280.3090 13.2216 v 19.1679 -208.8696 12.0491 v 16.7567
PS 2,3,4,5,6-pentafluoro RS TS PS 3-fluoro-4-nitro RS TS	-1694.9138037 E -1887.2747775 -1887.2668689 -1887.3365707 E -1694.8517863 -1694.8359636	160.39707 161.26591 ZPE 137.54657 138.25343 139.75578 ZPE 159.98096 160.17970	184.485 188.452 S 197.269 186.78 189.2 S 193.219 184.801	 9.2 -37.1 ΔE 0.0 5.0 -38.8 ΔE 0.0 9.9 	$\begin{array}{c} 0.4 \\ \hline 1.3 \\ \Delta \mathbf{ZPE} \\ \hline 0.0 \\ \hline 0.7 \\ \hline 2.2 \\ \Delta \mathbf{ZPE} \\ \hline 0.0 \\ \hline 0.2 \end{array}$	$\begin{array}{c} 2.7 \\ \hline 1.5 \\ -T\Delta S \\ 0.0 \\ \hline 3.3 \\ 2.5 \\ -T\Delta S \\ 0.0 \\ \hline 2.6 \end{array}$	-34.3 ΔGcalc 0.0 9.0 -34.0 ΔGcalc 0.0 12.7	230.3090 13.2216 v 19.1679 -208.8696 12.0491 v 16.7567 -283.2926

^a RS, TS and PS denote the reactant, transition and product states, respectively. E, ZPE and S denote the absolute electronic energies, zero-point energies and entropies, and ΔE , ΔZPE and $-T\Delta S$ denote the corresponding values relative to the RS (all values in kcal mol⁻¹, except S which is presented in cal mol⁻¹ K⁻¹). *v* denotes the first vibrational frequency (cm⁻¹).

Table S48. Absolute and relative energy contributions to the calculated free energies (ΔG_{calc}) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 4 additional explicit water molecules, obtained using the $\omega B97X-D^3$ functional.^a

4-chloro-3-nitro	E	ZPE	S	ΔΕ	∆ZPE	-T∆S	ΔG_{calc}	υ
RS	-2208.1289185	189.89797	225.274	0.0	0.0	0.0	0.0	11.3064
TS	-2208.1100991	189.93258	218.261	11.8	0.03	2.2	14.0	-256.1365
PS	-2208.1842302	191.43654	213.383	-34.7	1.5	3.7	-29.4	15.1949
4-nitro	Е	ZPE	S	ΔΕ	∆ZPE	-T∆S	ΔG_{calc}	υ
RS	-1748.5825985	197.83378	209.165	-28.4	1.7	2.4	-24.3	20.5039
TS	-1748.5825985	197.83378	209.165	-28.4	1.7	2.4	-24.3	20.5039
PS	-1748.5825985	197.83378	209.165	-28.4	1.7	2.4	-24.3	20.5039
2,6-difluoro	Е	ZPE	S	ΔE	∆ZPE	-T∆S	$\Delta \mathbf{G}_{calc}$	υ
RS	-1742.5069474	184.45982	209.868	0.0	0.0	0.0	0.0	18.3166
TS	-1742.4971831	185.65766	194.29	6.1	1.2	4.9	12.2	-228.9236
PS	-1742.5663798	186.22158	196.878	-37.3	1.8	4.1	-31.5	23.2154
2-fluoro-4-nitro	Е	ZPE	S	ΔE	∆ZPE	-T∆S	ΔG_{calc}	υ
RS	-1847.7652977	191.03741	223.554	0.0	0.0	0.0	0.0	8.2604
TS	-1847.7561367	192.00850	207.574	5.7	1.0	5.0	11.7	-225 2576
								220.2010
PS	-1847.8319125	192.73182	210.003	-41.8	1.7	4.2	-35.9	24.0498
PS 2,3,4,5,6-pentafluoro	-1847.8319125 E	192.73182 ZPE	210.003 S	-41.8 Δ Ε	1.7 Δ ΖΡΕ	4.2 -ΤΔ S	-35.9 ΔGcalc	24.0498 v
PS 2,3,4,5,6-pentafluoro RS	-1847.8319125 E -2040.1873760	192.73182 ZPE 168.63691	210.003 S 226.542	-41.8 Δ Ε 0.0	1.7 Δ ΖΡΕ 0.0	4.2 - Τ Δ S 0.0	-35.9 Δ G calc	24.0498 v 15.6112
PS 2,3,4,5,6-pentafluoro RS TS	-1847.8319125 E -2040.1873760 -2040.1804955	192.73182 ZPE 168.63691 169.01223	210.003 S 226.542 218.176	-41.8 Δ E 0.0 4.3	1.7 Δ ΖΡΕ 0.0 0.4	 4.2 -ΤΔS 0.0 2.6 	-35.9 ΔG_{calc} 0.0 7.3	24.0498 v 15.6112 -196.2121
PS 2,3,4,5,6-pentafluoro RS TS PS	-1847.8319125 E -2040.1873760 -2040.1804955 -2040.2527854	192.73182 ZPE 168.63691 169.01223 169.89541	210.003 S 226.542 218.176 226.09	-41.8 Δ Ε 0.0 4.3 -41.0	1.7 Δ ZPE 0.0 0.4 1.3	 4.2 -TΔS 0.0 2.6 0.1 	-35.9 Δ G calc 0.0 7.3 -39.6	24.0498 v 15.6112 -196.2121 13.8064
PS 2,3,4,5,6-pentafluoro RS TS PS 3-fluoro-4-nitro	-1847.8319125 E -2040.1873760 -2040.1804955 -2040.2527854 E	192.73182 ZPE 168.63691 169.01223 169.89541 ZPE	210.003 S 226.542 218.176 226.09 S	 -41.8 ΔE 0.0 4.3 -41.0 ΔE 	 1.7 ΔZPE 0.0 0.4 1.3 ΔZPE 	 4.2 -TΔS 0.0 2.6 0.1 -TΔS 	-35.9 Δ G calc 0.0 7.3 -39.6 Δ G calc	24.0498 v 15.6112 -196.2121 13.8064 v
PS 2,3,4,5,6-pentafluoro RS TS PS 3-fluoro-4-nitro RS	-1847.8319125 E -2040.1873760 -2040.1804955 -2040.2527854 E -1847.7643492	192.73182 ZPE 168.63691 169.01223 169.89541 ZPE 190.76985	210.003 S 226.542 218.176 226.09 S 223.165	 -41.8 ΔE 0.0 4.3 -41.0 ΔE 0.0 	1.7 Δ ΖΡΕ 0.0 0.4 1.3 Δ ΖΡΕ 0.0	4.2 -TΔS 0.0 2.6 0.1 -TΔS 0.0	$ \begin{array}{r} -35.9 \\ \Delta G_{calc} \\ 0.0 \\ 7.3 \\ -39.6 \\ \Delta G_{calc} \\ 0.0 \\ 0.0 \\ \end{array} $	24.0498 v 15.6112 -196.2121 13.8064 v 14.25260
PS 2,3,4,5,6-pentafluoro RS TS PS 3-fluoro-4-nitro RS TS	-1847.8319125 E -2040.1873760 -2040.1804955 -2040.2527854 E -1847.7643492 -1847.7485130	192.73182 ZPE 168.63691 169.01223 169.89541 ZPE 190.76985 191.90362	210.003 S 226.542 218.176 226.09 S 223.165 210.141	 -41.8 ΔE 0.0 4.3 -41.0 ΔE 0.0 9.9 	 1.7 ΔZPE 0.0 0.4 1.3 ΔZPE 0.0 1.1 	 4.2 -TΔS 0.0 2.6 0.1 -TΔS 0.0 4.1 	$ \frac{-35.9}{\Delta G_{calc}} \\ 0.0 \\ 7.3 \\ -39.6 \\ \Delta G_{calc} \\ 0.0 \\ 15.1 $	24.0498 v 15.6112 -196.2121 13.8064 v 14.25260 -271.425

^a RS, TS and PS denote the reactant, transition and product states, respectively. E, ZPE and S denote the absolute electronic energies, zero-point energies and entropies, and ΔE , ΔZPE and $-T\Delta S$ denote the corresponding values relative to the RS (all values in kcal mol⁻¹, except S which is presented in cal mol⁻¹ K⁻¹). *v* denotes the first vibrational frequency (cm⁻¹).

Table S49. Absolute and relative energy contributions to the calculated free energies (ΔG_{calc}) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 8 additional explicit water molecules, obtained using the $\omega B97X-D^3$ functional.^a

4-chloro-3-nitro	E	ZPE	S	ΔΕ	ΔΖΡΕ	-TΔS	$\Delta \mathbf{G}_{calc}$	υ
RS	-2513.9649011	255.10002	257.71	0.0	0.0	0.0	0.0	16.4417
TS	-2513.9254724	253.17055	271.131	24.7	-1.9	-4.2	18.6	-274.1009
PS	-2513.9892573	256.05744	268.033	-15.3	1.0	-3.2	-17.6	9.5019
4-nitro	Е	ZPE	S	ΔE	ΔZPE	-T∆S	ΔG_{calc}	υ
RS	-2054.3572856	259.26468	268.855	0.0	0.0	0.0	0.0	21.8354
TS	-2054.3298017	259.00254	267.27	17.2	-0.3	0.5	17.5	-281.4245
PS	-2054.4203233	262.31221	258.444	-39.6	3.0	3.3	-33.2	20.8432
2,6-difluoro	Е	ZPE	S	ΔE	ΔZPE	-T∆S	ΔG_{calc}	υ
RS	-2048.3334825	247.61469	258.819	0.0	0.0	0.0	0.0	10.0192
TS	-2048.3044759	248.23546	255.612	18.2	0.6	1.0	19.8	-244.4031
PS	-2048.3669334	250.31496	252.422	-21.0	2.7	2.0	-16.3	19.5536
2 fluoro 1 nitro	F	700	C	٨F	AZDE	TAC	10	
2-110010-4-111110	E	ZPE	3	ΔL	ALFE	-145	$\Delta \mathbf{G}_{calc}$	υ
RS	-2153.5990449	256.42344	S 260.295	0.0	0.0	-1Δ 5 0.0	ΔG _{calc}	v 15.4432
RS TS	-2153.5990449 -2153.5721200	256.42344 255.36330	S 260.295 259.948	0.0 16.9	0.0 -1.1	0.0 0.1	ΔG _{calc} 0.0 15.9	v 15.4432 -253.072
RS TS PS	-2153.5990449 -2153.5721200 -2153.6296227	256.42344 255.36330 254.21948	S 260.295 259.948 281.277	0.0 16.9 -19.2	0.0 -1.1 -2.2	-123 0.0 0.1 -6.6	ΔGcalc 0.0 15.9 -28.0	v 15.4432 -253.072 16.2566
2-inuoro-4-intro RS TS PS 2,3,4,5,6-pentafluoro	-2153.5990449 -2153.5721200 -2153.6296227 E	256.42344 255.36330 254.21948 ZPE	S 260.295 259.948 281.277 S	 ΔE 0.0 16.9 -19.2 ΔE 	ΔΖΡΕ 0.0 -1.1 -2.2 ΔΖΡΕ	 -ΤΔS 0.0 0.1 -6.6 -ΤΔS 	ΔGcalc 0.0 15.9 -28.0 ΔGcalc	v 15.4432 -253.072 16.2566 v
2-intro RS TS PS 2,3,4,5,6-pentafluoro RS	-2153.5990449 -2153.5721200 -2153.6296227 E -2346.0082839	ZPE 256.42344 255.36330 254.21948 ZPE 231.51664	S 260.295 259.948 281.277 S 278.407	ΔE 0.0 16.9 -19.2 ΔE 0.0	ΔΖΡΕ 0.0 -1.1 -2.2 ΔΖΡΕ 0.0	 -1ΔS 0.0 0.1 -6.6 -TΔS 0.0 	Δ G calc 0.0 15.9 -28.0 Δ G calc 0.0	v 15.4432 -253.072 16.2566 v 16.7679
2-intro RS TS PS 2,3,4,5,6-pentafluoro RS TS	-2153.5990449 -2153.5721200 -2153.6296227 E -2346.0082839 -2345.9901827	ZPE 256.42344 255.36330 254.21948 ZPE 231.51664 232.00887	S 260.295 259.948 281.277 S 278.407 274.755	ΔΕ 0.0 16.9 -19.2 ΔΕ 0.0 11.4	ΔΖΡΕ 0.0 -1.1 -2.2 ΔΖΡΕ 0.0 0.5	$ \begin{array}{c} -1\Delta S \\ 0.0 \\ 0.1 \\ -6.6 \\ -T\Delta S \\ 0.0 \\ 1.1 \\ \end{array} $	Δ G calc 0.0 15.9 -28.0 Δ G calc 0.0 13.0	v 15.4432 -253.072 16.2566 v 16.7679 -242.0959
2-intoro-4-intro RS TS PS 2,3,4,5,6-pentafluoro RS TS PS S TS PS	-2153.5990449 -2153.5721200 -2153.6296227 E -2346.0082839 -2345.9901827 -2346.1026374	ZPE 256.42344 255.36330 254.21948 ZPE 231.51664 232.00887 235.97442	S 260.295 259.948 281.277 S 278.407 274.755 256.471	ΔE 0.0 16.9 -19.2 ΔE 0.0 11.4 -59.2	ΔΖΡΕ 0.0 -1.1 -2.2 ΔΖΡΕ 0.0 4.5	 -1ΔS 0.0 0.1 -6.6 -TΔS 0.0 1.1 6.9 	Δ G calc 0.0 15.9 -28.0 Δ G calc 0.0 13.0 -47.9	v 15.4432 -253.072 16.2566 v 16.7679 -242.0959 13.8433
RS TS PS 2,3,4,5,6-pentafluoro RS TS PS 3-fluoro-4-nitro	E -2153.5990449 -2153.5721200 -2153.6296227 E -2346.0082839 -2345.9901827 -2346.1026374 E	ZPE 256.42344 255.36330 254.21948 ZPE 231.51664 232.00887 235.97442 ZPE	S 260.295 259.948 281.277 S 278.407 274.755 256.471 S	ΔE 0.0 16.9 -19.2 ΔE 0.0 11.4 -59.2 ΔE	ΔΖΡΕ 0.0 -1.1 -2.2 ΔΖΡΕ 0.0 0.5 4.5 ΔΖΡΕ	 -1ΔS 0.0 0.1 -6.6 -ΤΔS 0.0 1.1 6.9 -ΤΔS 	Δ G calc 0.0 15.9 -28.0 Δ G calc 0.0 13.0 -47.9 Δ G calc	υ 15.4432 -253.072 16.2566 υ 16.7679 -242.0959 13.8433 υ
RS TS PS 2,3,4,5,6-pentafluoro RS TS PS 3-fluoro-4-nitro RS	E -2153.5990449 -2153.5721200 -2153.6296227 E -2346.0082839 -2345.9901827 -2346.1026374 E -2153.5865409	256.42344 255.36330 254.21948 ZPE 231.51664 232.00887 235.97442 ZPE 253.94880	S 260.295 259.948 281.277 S 278.407 274.755 256.471 S 273.6	ΛΕ 0.0 16.9 -19.2 ΔΕ 0.0 11.4 -59.2 ΔΕ 0.0	ΔΖΡΕ 0.0 -1.1 -2.2 ΔΖΡΕ 0.0 0.5 4.5 ΔΖΡΕ 0.0	 -1ΔS 0.0 0.1 -6.6 -TΔS 0.0 1.1 6.9 -TΔS 0.0 	ΔGcalc 0.0 15.9 -28.0 ΔGcalc 0.0 13.0 -47.9 ΔGcalc 0.0	v 15.4432 -253.072 16.2566 v 16.7679 -242.0959 13.8433 v 12.69340
2-Intolo-4-Intro RS TS PS 2,3,4,5,6-pentafluoro RS TS PS 3-fluoro-4-nitro RS TS	E -2153.5990449 -2153.5721200 -2153.6296227 E -2346.0082839 -2345.9901827 -2346.1026374 E -2153.5865409 -2153.5686364	ZPE 256.42344 255.36330 254.21948 ZPE 231.51664 232.00887 235.97442 ZPE 253.94880 255.18823	S 260.295 259.948 281.277 S 278.407 274.755 256.471 S 273.6 260.295	ΔE 0.0 16.9 -19.2 ΔE 0.0 11.4 -59.2 ΔE 0.0 11.2	$\begin{array}{c} \Delta \mathbf{ZPE} \\ 0.0 \\ -1.1 \\ -2.2 \\ \Delta \mathbf{ZPE} \\ 0.0 \\ 0.5 \\ 4.5 \\ \Delta \mathbf{ZPE} \\ 0.0 \\ 1.2 \end{array}$	$\begin{array}{c} -1 \Delta S \\ 0.0 \\ 0.1 \\ -6.6 \\ -T \Delta S \\ 0.0 \\ 1.1 \\ 6.9 \\ -T \Delta S \\ 0.0 \\ 3.9 \end{array}$	ΔGcalc 0.0 15.9 -28.0 ΔGcalc 0.0 13.0 -47.9 ΔGcalc 0.0 16.4	v 15.4432 -253.072 16.2566 v 16.7679 -242.0959 13.8433 v 12.69340 -265.6762

^a RS, TS and PS denote the reactant, transition and product states, respectively. E, ZPE and S denote the absolute electronic energies, zero-point energies and entropies, and ΔE , ΔZPE and $-T\Delta S$ denote the corresponding values relative to the RS (all values in kcal mol⁻¹, except S which is presented in cal mol⁻¹ K⁻¹). *v* denotes the first vibrational frequency (cm⁻¹).

Table S50. Absolute and relative energy contributions to the calculated free energies (ΔG_{calc}) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 0 additional explicit water molecules (pure implicit solvation), obtained using the M11L¹ functional.^a

4-chloro-3-nitro	E	ZPE	S	ΔΕ	ΔZPE	-T∆S	$\Delta \mathbf{G}_{calc}$	υ
RS	-1902.3578193	126.83627	158.971	0.0	0.0	0.0	0.0	27.8721
TS	-1902.3433531	126.70291	150.819	9.1	-0.1	2.6	11.6	-342.7198
PS	-1902.4121718	127.26183	160.952	-34.1	0.4	-0.6	-34.3	15.1231
4-nitro	E	ZPE	S	ΔE	ΔZPE	-T∆S	ΔG_{calc}	υ
RS	-1442.7758730	132.60756	153.934	0.0	0.0	0.0	0.0	26.0193
TS	-1442.7614408	132.52363	144.06	9.1	-0.1	3.1	12.1	-331.4516
PS	-1442.8369596	133.54658	154.348	-38.3	0.9	-0.1	-37.5	20.0531
2,6-difluoro	E	ZPE	S	ΔE	ΔZPE	-T∆S	ΔG_{calc}	υ
RS	-1436.7306633	120.90060	149.583	0.0	0.0	0.0	0.0	21.9297
TS	-1436.7201611	121.10522	138.459	6.6	0.2	3.5	10.3	-268.0216
PS	-1436.7804009	121.64097	148.945	-31.2	0.7	0.2	-30.3	22.6591
2-fluoro-4-nitro	Е	ZPE	S	ΔE	∆ZPE	-T∆S	ΔG_{calc}	υ
RS	-1542.0000347	127.89485	156.893	0.0	0.0	0.0	0.0	27.3537
RS TS	-1542.0000347 -1541.9875827	127.89485 127.56909	156.893 150.364	0.0 7.8	-0.3	0.0	0.0 9.5	27.3537 -324.8034
RS TS PS	-1542.0000347 -1541.9875827 -1542.0698566	127.89485127.56909128.61707	156.893 150.364 156.149	0.0 7.8 -43.8	0.0 -0.3 0.7	0.0 2.0 0.2	0.0 9.5 -42.9	27.3537 -324.8034 25.387
RS TS PS 2,3,4,5,6-pentafluoro	-1542.0000347 -1541.9875827 -1542.0698566 E	127.89485 127.56909 128.61707 ZPE	156.893 150.364 156.149 S	0.0 7.8 -43.8 ΔE	0.0 -0.3 0.7 Δ ΖΡΕ	0.0 2.0 0.2 - Τ Δ S	0.0 9.5 -42.9 ΔG _{calc}	27.3537 -324.8034 25.387 v
RS TS PS 2,3,4,5,6-pentafluoro RS	-1542.0000347 -1541.9875827 -1542.0698566 E -1734.3856029	127.89485 127.56909 128.61707 ZPE 106.40281	156.893 150.364 156.149 S 160.883	0.0 7.8 -43.8 Δ Ε 0.0	0.0 -0.3 0.7 Δ ΖΡΕ 0.0	0.0 2.0 0.2 -TΔS 0.0	0.0 9.5 -42.9 Δ G calc 0.0	27.3537 -324.8034 25.387 v 20.0889
RS TS PS 2,3,4,5,6-pentafluoro RS TS	-1542.0000347 -1541.9875827 -1542.0698566 E -1734.3856029 -1734.3798443	127.89485 127.56909 128.61707 ZPE 106.40281 106.49258	156.893 150.364 156.149 S 160.883 152.094	0.0 7.8 -43.8 ΔE 0.0 3.6	0.0 -0.3 0.7 Δ ZPE 0.0 0.1	0.0 2.0 0.2 -TΔS 0.0 2.8	0.0 9.5 -42.9 Δ G calc 0.0 6.5	27.3537 -324.8034 25.387 v 20.0889 -189.2089
RS TS PS 2,3,4,5,6-pentafluoro RS TS PS	-1542.0000347 -1541.9875827 -1542.0698566 E -1734.3856029 -1734.3798443 -1734.4467195	127.89485 127.56909 128.61707 ZPE 106.40281 106.49258 107.06774	156.893 150.364 156.149 S 160.883 152.094 164.707	0.0 7.8 -43.8 ΔE 0.0 3.6 -38.4	$\begin{array}{c} 0.0 \\ -0.3 \\ 0.7 \\ \Delta \mathbf{ZPE} \\ 0.0 \\ 0.1 \\ 0.7 \end{array}$	0.0 2.0 0.2 - Τ Δ S 0.0 2.8 -1.2	0.0 9.5 -42.9 ∆Gcalc 0.0 6.5 -38.9	27.3537 -324.8034 25.387 v 20.0889 -189.2089 5.4584
RS TS PS 2,3,4,5,6-pentafluoro RS TS PS 3-fluoro-4-nitro	-1542.0000347 -1541.9875827 -1542.0698566 E -1734.3856029 -1734.3798443 -1734.4467195 E	127.89485 127.56909 128.61707 ZPE 106.40281 106.49258 107.06774 ZPE	156.893 150.364 156.149 S 160.883 152.094 164.707 S	0.0 7.8 -43.8 ΔE 0.0 3.6 -38.4 ΔE	0.0 -0.3 0.7 Δ ZPE 0.0 0.1 0.7 Δ ZPE	0.0 2.0 0.2 -TΔS 0.0 2.8 -1.2 -TΔS	0.0 9.5 -42.9 ΔGcalc 0.0 6.5 -38.9 ΔGcalc	27.3537 -324.8034 25.387 v 20.0889 -189.2089 5.4584 v
RS TS PS 2,3,4,5,6-pentafluoro RS TS PS 3-fluoro-4-nitro RS	-1542.0000347 -1541.9875827 -1542.0698566 E -1734.3856029 -1734.3798443 -1734.4467195 E -1541.9975490	127.89485 127.56909 128.61707 ZPE 106.40281 106.49258 107.06774 ZPE 127.66277	156.893 150.364 156.149 S 160.883 152.094 164.707 S 159.563	0.0 7.8 -43.8 ΔE 0.0 3.6 -38.4 ΔE 0.0	0.0 -0.3 0.7 Δ ZPE 0.0 0.1 0.7 Δ ZPE 0.0	0.0 2.0 0.2 -TΔS 0.0 2.8 -1.2 -TΔS 0.0	$ \begin{array}{c} 0.0 \\ 9.5 \\ -42.9 \\ \Delta G_{calc} \\ 0.0 \\ 6.5 \\ -38.9 \\ \Delta G_{calc} \\ 0.0 \\ \end{array} $	27.3537 -324.8034 25.387 v 20.0889 -189.2089 5.4584 v 21.6879
RS TS PS 2,3,4,5,6-pentafluoro RS TS PS 3-fluoro-4-nitro RS TS TS	-1542.0000347 -1541.9875827 -1542.0698566 E -1734.3856029 -1734.3798443 -1734.4467195 E -1541.9975490 -1541.9842218	127.89485 127.56909 128.61707 ZPE 106.40281 106.49258 107.06774 ZPE 127.66277 127.31597	156.893 150.364 156.149 S 160.883 152.094 164.707 S 159.563 152.27	0.0 7.8 -43.8 ΔE 0.0 3.6 -38.4 ΔE 0.0 8.4	$\begin{array}{c} 0.0 \\ -0.3 \\ 0.7 \\ \Delta \mathbf{ZPE} \\ 0.0 \\ 0.1 \\ 0.7 \\ \Delta \mathbf{ZPE} \\ 0.0 \\ -0.3 \end{array}$	0.0 2.0 0.2 -TΔS 0.0 2.8 -1.2 -TΔS 0.0 2.3	$\begin{array}{c} 0.0 \\ 9.5 \\ -42.9 \\ \Delta \mathbf{G}_{calc} \\ 0.0 \\ 6.5 \\ -38.9 \\ \Delta \mathbf{G}_{calc} \\ 0.0 \\ 10.4 \end{array}$	27.3537 -324.8034 25.387 v 20.0889 -189.2089 5.4584 v 21.6879 -319.3068

^a RS, TS and PS denote the reactant, transition and product states, respectively. E, ZPE and S denote the absolute electronic energies, zero-point energies and entropies, and ΔE , ΔZPE and $-T\Delta S$ denote the corresponding values relative to the RS (all values in kcal mol⁻¹, except S which is presented in cal mol⁻¹ K⁻¹). *v* denotes the first vibrational frequency (cm⁻¹).

Table S51. Absolute and relative energy contributions to the calculated free energies (ΔG_{calc}) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 2 additional explicit water molecules, obtained using the M11L¹ functional.^a

4-chloro-3-nitro	E	ZPE	S	ΔΕ	ΔΖΡΕ	-TΔS	ΔG_{calc}	υ
RS	-2055.2620499	156.67046	197.705	0.0	0.0	0.0	0.0	22.4306
TS	-2055.2484667	157.17314	186.581	8.5	0.5	3.5	12.5	-323.5784
PS	-2055.3134990	157.84919	198	-32.3	1.2	-0.1	-31.2	13.3636
4-nitro	E	ZPE	S	ΔE	∆ZPE	-T∆S	$\Delta \mathbf{G}_{calc}$	υ
RS	-1595.6796661	162.80622	192.494	0.0	0.0	0.0	0.0	17.8855
TS	-1595.6665795	162.81241	176.348	8.2	0.01	5.1	13.3	-332.1461
PS	-1595.7381136	163.80171	189.695	-36.7	1.0	0.9	-34.8	16.8895
2,6-difluoro	E	ZPE	S	ΔE	ΔZPE	-T∆S	$\Delta \mathbf{G}_{calc}$	υ
RS	-1589.6353623	151.08293	184.634	0.0	0.0	0.0	0.0	19.8214
TS	-1589.6248656	151.50084	174.591	6.6	0.4	3.1	10.1	-274.2715
PS	-1589.6818927	152.30770	183.626	-29.2	1.2	0.3	-27.7	21.3463
2-fluoro-4-nitro	Е	ZPE	S	ΔE	∆ZPE	-TΔS	ΔG_{calc}	υ
RS	-1694.9037957	157.64879	197.713	0.0	0.0	0.0	0.0	16.6447
TS	-1694.8923934	157.89537	186.996	7.2	0.2	3.4	10.8	-310.5195
PS	-1694.9696190	158.80770	194.94	-41.3	1.2	0.9	-39.3	13.9617
2,3,4,5,6-pentafluoro	E	ZPE	S	ΔE	ΔZPE	-T∆S	$\Delta \mathbf{G}_{calc}$	υ
RS	-1887.2905617	136.20351	202.435	0.0	0.0	0.0	0.0	20.6642
TS	-1887.2843890	136.52097	190.066	3.9	0.3	3.9	8.1	-226.258
PS	-1887.3557432	138.58635	190.688	-40.9	2.4	3.7	-34.8	15.1247
3-fluoro-4-nitro	E	ZPE	S	ΔΕ	ΔZPE	-TΔS	$\Delta \mathbf{G}_{calc}$	υ
RS	-1694.9020537	157.81168	193.711	0.0	0.0	0.0	0.0	22.6421
TS	-1694.8893891	158.09203	186.94	7.9	0.3	2.1	10.3	-319.1242
15								

^a RS, TS and PS denote the reactant, transition and product states, respectively. E, ZPE and S denote the absolute electronic energies, zero-point energies and entropies, and ΔE , ΔZPE and $-T\Delta S$ denote the corresponding values relative to the RS (all values in kcal mol⁻¹, except S which is presented in cal mol⁻¹ K⁻¹). *v* denotes the first vibrational frequency (cm⁻¹).

Table S52. Absolute and relative energy contributions to the calculated free energies (ΔG_{calc}) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 4 additional explicit water molecules, obtained using the M11L¹ functional.^a

4-chloro-3-nitro	E	ZPE	S	ΔΕ	ΔΖΡΕ	-TΔS	ΔG_{calc}	υ
RS	-2208.1731695	188.51369	220.321	0.0	0.0	0.0	0.0	19.1392
TS	-2208.1537816	187.62340	220.625	12.2	-0.9	-0.1	11.2	-318.2203
PS	-2208.2230609	189.34747	222.784	-31.3	0.8	-0.8	-31.2	15.7009
4-nitro	E	ZPE	S	ΔE	ΔZPE	-T∆S	$\Delta \mathbf{G}_{calc}$	υ
RS	-1748.5846590	193.92064	221.836	0.0	0.0	0.0	0.0	18.1209
TS	-1748.5702951	193.69953	215.956	9.0	-0.2	1.8	10.6	-332.1585
PS	-1748.6433847	194.01429	226.487	-36.9	0.1	-1.5	-38.2	13.0271
2,6-difluoro	E	ZPE	S	ΔE	ΔZPE	-T∆S	$\Delta \mathbf{G}_{calc}$	υ
RS	-1742.4098809	184.17449	201.372	0.0	0.0	0.0	0.0	23.1067
TS	-1742.4002826	184.73336	195.444	6.0	0.6	1.9	8.5	-254.0158
PS	-1742.4378561	184.81254	208.664	-17.6	0.6	-2.3	-19.2	14.5464
2-fluoro-4-nitro	Е	ZPE	S	ΔE	ΔZPE	-TΔS	ΔG_{calc}	υ
RS	-1847.8123900	189.36537	220.815	0.0	0.0	0.0	0.0	18.7224
TS	-1847.8046853	190.00686	210.408	4.8	0.6	3.3	8.7	-270.3738
PS	-1847.8813220	190.75027	218.078	-43.3	1.4	0.9	-41.0	18.0807
2,3,4,5,6-pentafluoro	E	ZPE	S	ΔE	∆ZPE	-TΔS	ΔG_{calc}	υ
RS	-2040.2035249	168.10969	225.341	0.0	0.0	0.0	0.0	11.7815
TS	-2040.1912314	168.05982	218.789	7.7	-0.05	2.1	9.7	-241.5549
PS	-2040.2709492	169.72211	215.335	-42.3	1.6	3.1	-37.6	14.9447
3-fluoro-4-nitro	E	ZPE	S	ΔΕ	ΔZPE	-T∆S	$\Delta \mathbf{G}_{calc}$	υ
3-fluoro-4-nitro RS	E -1847.808703	ZPE 188.71113	S 227.776	Δ Ε 0.0	Δ ΖΡΕ 0.0	-ΤΔS 0.0	$\Delta \mathbf{G}_{\mathbf{calc}}$ 0.0	υ 11.5219
3-fluoro-4-nitro RS TS	E -1847.808703 -1847.7970222	ZPE 188.71113 189.54466	S 227.776 215.567	Δ E 0.0 7.3	Δ ΖΡΕ 0.0 0.8	-ΤΔS 0.0 3.8	Δ G calc 0.0 11.9	v 11.5219 -321.7632

^a RS, TS and PS denote the reactant, transition and product states, respectively. E, ZPE and S denote the absolute electronic energies, zero-point energies and entropies, and ΔE , ΔZPE and $-T\Delta S$ denote the corresponding values relative to the RS (all values in kcal mol⁻¹, except S which is presented in cal mol⁻¹ K⁻¹). *v* denotes the first vibrational frequency (cm⁻¹).

Table S53. Absolute and relative energy contributions to the calculated free energies (ΔG_{calc}) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 8 additional explicit water molecules, obtained using the M11L¹ functional.^a

4-chloro-3-nitro	E	ZPE	S	ΔΕ	ΔΖΡΕ	-T∆S	ΔG_{calc}	υ
RS	-2513.9880841	253.18732	263.722	0.0	0.0	0.0	0.0	21.2262
TS	-2513.9582942	252.10255	272.726	18.7	-1.1	-2.8	19.2	-342.5189
PS	-2514.0591272	256.97688	258.78	-44.6	-1.6	1.5	-44.7	13.7788
4-nitro	E	ZPE	S	ΔE	ΔZPE	-T∆S	ΔG_{calc}	υ
RS	-2054.4041216	257.57639	270.968	0.0	0.0	0.0	0.0	16.7626
TS	-2054.3737914	256.36054	279.803	19.0	-1.2	-2.8	15.0	-349.729
PS	-2054.4710658	260.06720	267.761	-42.0	2.5	1.0	-38.5	12.8992
2,6-difluoro	E	ZPE	S	ΔE	∆ZPE	-T∆S	$\Delta \mathbf{G}_{calc}$	υ
RS	-2048.3575885	246.02196	264.398	0.0	0.0	0.0	0.0	17.7056
TS	-2048.3289186	245.82629	268.283	18.0	-0.2	-1.2	17.3	-325.0493
PS	-2048.3935449	247.00953	269.499	-22.6	1.0	-1.6	-23.2	12.141
2-fluoro-4-nitro	Е	ZPE	S	$\Delta \mathbf{E}$	ΔZPE	-T∆S	ΔG_{calc}	υ
RS	-2153.6223468	252 61400	273.807	0.0	0.0	0.0	0.0	20 7761
1.00	210010220.000	202.01100	-/0.00/				0.0	20.7701
TS	-2153.6100237	253.37812	266.733	7.7	0.8	2.2	10.7	-322.0363
TS PS	-2153.6100237 -2153.6845054	253.37812 255.03453	266.733 271.99	7.7 -39.0	0.8 2.4	2.2 0.6	0.0 10.7 -36.0	-322.0363 6.3165
TS PS 2,3,4,5,6-pentafluoro	-2153.6100237 -2153.6845054 E	253.37812 255.03453 ZPE	266.733 271.99 S	7.7 -39.0 Δ E	0.8 2.4 Δ ΖΡΕ	2.2 0.6 - Τ Δ S	0.0 10.7 -36.0 Δ G _{calc}	-322.0363 6.3165 v
TS PS 2,3,4,5,6-pentafluoro RS	-2153.6100237 -2153.6845054 E -2346.0206453	253.37812 255.03453 ZPE 233.05359	266.733 271.99 S 270.252	7.7 -39.0 Δ E 0.0	0.8 2.4 Δ ΖΡΕ 0.0	2.2 0.6 - Τ Δ S 0.0	10.7 -36.0 ΔGcalc 0.0	-322.0363 6.3165 v 12.3535
TS PS 2,3,4,5,6-pentafluoro RS TS	-2153.6100237 -2153.6845054 E -2346.0206453 -2345.9896939	253.37812 255.03453 ZPE 233.05359 230.71353	266.733 271.99 S 270.252 280.841	7.7 -39.0 Δ Ε 0.0 19.4	0.8 2.4 Δ ΖΡΕ 0.0 -2.3	2.2 0.6 - Τ Δ S 0.0 -3.3	$ \begin{array}{r} 0.0 \\ 10.7 \\ -36.0 \\ \Delta G_{calc} \\ 0.0 \\ 13.8 \\ \end{array} $	-322.0363 6.3165 v 12.3535 -317.5782
TS PS 2,3,4,5,6-pentafluoro RS TS PS	-2153.6100237 -2153.6845054 E -2346.0206453 -2345.9896939 -2346.0625396	253.37812 255.03453 ZPE 233.05359 230.71353 232.67986	266.733 271.99 S 270.252 280.841 281.569	 7.7 -39.0 ΔE 0.0 19.4 -26.3 	0.8 2.4 △ ZPE 0.0 -2.3 -0.4	2.2 0.6 - Τ Δ S 0.0 -3.3 -3.5	$ \begin{array}{r} 0.0 \\ 10.7 \\ -36.0 \\ \Delta G_{calc} \\ 0.0 \\ 13.8 \\ -30.2 \\ \end{array} $	-322.0363 6.3165 v 12.3535 -317.5782 15.7874
TS PS 2,3,4,5,6-pentafluoro RS TS PS 3-fluoro-4-nitro	-2153.6100237 -2153.6845054 E -2346.0206453 -2345.9896939 -2346.0625396 E	253.37812 255.03453 ZPE 233.05359 230.71353 232.67986 ZPE	266.733 271.99 S 270.252 280.841 281.569 S	 7.7 -39.0 ΔE 0.0 19.4 -26.3 ΔE 	0.8 2.4 Δ ΖΡΕ 0.0 -2.3 -0.4 Δ ΖΡΕ	 2.2 0.6 -TΔS 0.0 -3.3 -3.5 -TΔS 	0.0 10.7 -36.0 ΔGcalc 0.0 13.8 -30.2 ΔGcalc	-322.0363 6.3165 v 12.3535 -317.5782 15.7874 v
TS PS 2,3,4,5,6-pentafluoro RS TS PS 3-fluoro-4-nitro RS	-2153.6100237 -2153.6845054 E -2346.0206453 -2345.9896939 -2346.0625396 E -2153.6300518	253.37812 255.03453 ZPE 233.05359 230.71353 232.67986 ZPE 253.95391	266.733 271.99 S 270.252 280.841 281.569 S 271.178	 7.7 -39.0 ΔE 0.0 19.4 -26.3 ΔE 0.0 	0.8 2.4 Δ ΖΡΕ 0.0 -2.3 -0.4 Δ ΖΡΕ 0.0	2.2 0.6 - T Δ S 0.0 -3.3 -3.5 - T Δ S 0.0	$ \begin{array}{c} 0.0 \\ 10.7 \\ -36.0 \\ \Delta G_{calc} \\ 0.0 \\ 13.8 \\ -30.2 \\ \Delta G_{calc} \\ 0.0 \\ \end{array} $	-322.0363 6.3165 v 12.3535 -317.5782 15.7874 v 14.0848
TS PS 2,3,4,5,6-pentafluoro RS TS PS 3-fluoro-4-nitro RS TS	-2153.6100237 -2153.6845054 E -2346.0206453 -2345.9896939 -2346.0625396 E -2153.6300518 -2153.6064029	253.37812 255.03453 ZPE 233.05359 230.71353 232.67986 ZPE 253.95391 252.85472	266.733 271.99 S 270.252 280.841 281.569 S 271.178 272.923	 7.7 -39.0 ΔE 0.0 19.4 -26.3 ΔE 0.0 14.8 	0.8 2.4 Δ ΖΡΕ 0.0 -2.3 -0.4 Δ ΖΡΕ 0.0 -1.1	 2.2 0.6 -TΔS 0.0 -3.3 -3.5 -TΔS 0.0 -0.5 	$ \begin{array}{c} 0.0 \\ 10.7 \\ -36.0 \\ \Delta G_{calc} \\ 0.0 \\ 13.8 \\ -30.2 \\ \Delta G_{calc} \\ 0.0 \\ 13.2 \\ \end{array} $	-322.0363 6.3165 v 12.3535 -317.5782 15.7874 v 14.0848 -348.1176

^a RS, TS and PS denote the reactant, transition and product states, respectively. E, ZPE and S denote the absolute electronic energies, zero-point energies and entropies, and ΔE , ΔZPE and $-T\Delta S$ denote the corresponding values relative to the RS (all values in kcal mol⁻¹, except S which is presented in cal mol⁻¹ K⁻¹). *v* denotes the first vibrational frequency (cm⁻¹).

Table S54. Absolute and relative energy contributions to the calculated free energies (ΔG_{calc}) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 0 additional explicit water molecules (pure implicit solvation), obtained using the M062X⁴ functional.^a

4-chloro-3-nitro	E	ZPE	S	ΔΕ	ΔΖΡΕ	-TΔS	ΔG_{calc}	υ
RS	-1902.2303188	129.47170	158.174	0.0	0.0	0.0	0.0	24.8632
TS	-1902.2191858	129.66221	148.557	7.0	0.2	3.0	10.2	-302.0405
PS	-1902.2763628	129.97825	158.163	-28.9	0.5	0.0	-28.4	21.8115
4-nitro	Е	ZPE	S	ΔE	∆ZPE	-T∆S	$\Delta \mathbf{G}_{calc}$	υ
RS	-1442.6434689	135.59843	151.311	0.0	0.0	0.0	0.0	29.8035
TS	-1442.6315931	135.71633	142.807	7.5	0.1	2.7	10.3	-316.6842
PS	-1442.6973623	136.14742	147.904	-33.8	0.5	1.1	-32.2	30.4802
2,6-difluoro	Е	ZPE	S	ΔE	∆ZPE	-T∆S	$\Delta \mathbf{G}_{calc}$	υ
RS	-1436.6228870	123.25751	150.624	0.0	0.0	0.0	0.0	16.7084
TS	-1436.6159961	123.66497	138.298	4.3	0.4	3.9	8.6	-263.5941
PS	-1436.6695536	124.32118	143.773	-29.3	1.1	2.1	-26.1	29.8583
2-fluoro-4-nitro	Е	ZPE	S	ΔE	ΔZPE	-TΔS	ΔG_{calc}	υ
RS	-1541.8755269	130.54571	154.853	0.0	0.0	0.0	0.0	26.5774
TS	-1541.8657148	130.37507	148.341	6.2	-0.2	2.0	8.0	-303.4558
PS	-1541.9376867	130.77852	155.359	-39.0	0.2	-0.2	-38.9	15.2376
2,3,4,5,6-pentafluoro	Е	ZPE	S	ΔE	ΔZPE	-TΔS	$\Delta \mathbf{G}_{calc}$	υ
RS	-1734.3035296	108.33934	158.701	0.0	0.0	0.0	0.0	25.7602
TS	-1734.2955291	108.21717	154.41	5.0	-0.1	1.3	6.2	-259.2123
PS	-1734.3648894	109.06680	158.021	-38.5	0.7	0.2	-37.6	19.671
3-fluoro-4-nitro	Е	ZPE	S	ΔE	ΔZPE	-TΔS	$\Delta \mathbf{G}_{calc}$	υ
DC	1 5 4 1 0 7 2 4 0 0 2	120 20502	156 102	0.0	0.0	0.0	0.0	24 0205
KS	-1541.8/24892	130.38382	150.102	0.0	0.0	0.0	0.0	21.0205
TS	-1541.8724892 -1541.8615694	130.38382	146.815	6.9	0.04	2.9	9.8	-311.5082

^a RS, TS and PS denote the reactant, transition and product states, respectively. E, ZPE and S denote the absolute electronic energies, zero-point energies and entropies, and ΔE , ΔZPE and $-T\Delta S$ denote the corresponding values relative to the RS (all values in kcal mol⁻¹, except S which is presented in cal mol⁻¹ K⁻¹). *v* denotes the first vibrational frequency (cm⁻¹).

Table S55. Absolute and relative energy contributions to the calculated free energies (ΔG_{calc}) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 2 additional explicit water molecules, obtained using the M062X⁴ functional.^a

4-chloro-3-nitro	E	ZPE	S	ΔΕ	ΔΖΡΕ	-T∆S	ΔG_{calc}	υ
RS	-2055.1207362	158.94941	189.054	0.0	0.0	0.0	0.0	25.6321
TS	-2055.1098227	159.91714	178.383	6.8	1.0	3.3	11.1	-286.8049
PS	-2055.1628737	159.91984	190.532	-26.4	1.0	-0.5	-25.9	18.4388
4-nitro	Е	ZPE	S	ΔE	∆ZPE	-T∆S	$\Delta \mathbf{G}_{calc}$	υ
RS	-1595.1585719	164.92086	189.93	0.0	0.0	0.0	0.0	15.3242
TS	-1595.1485956	165.40078	177.103	6.3	0.5	4.0	10.8	-292.9074
PS	-1595.2115938	166.56085	178.44	-33.3	1.6	3.6	-28.0	21.2865
2,6-difluoro	Е	ZPE	S	ΔE	∆ZPE	-T∆S	$\Delta \mathbf{G}_{calc}$	υ
RS	-1589.5139781	153.55655	176.472	0.0	0.0	0.0	0.0	12.6314
TS	-1589.5084384	154.32346	164.288	3.5	0.8	3.8	8.1	-263.6809
PS	-1589.5608268	154.86447	172.585	-29.4	1.3	1.2	-26.9	13.7385
2-fluoro-4-nitro	Е	ZPE	S	ΔE	∆ZPE	-T∆S	ΔG_{calc}	υ
RS	-1694.7662152	159.96108	186.04	0.0	0.0	0.0	0.0	16.8048
RS TS	-1694.7662152 -1694.7559900	159.96108 160.02391	186.04 183.316	0.0 6.4	0.0	0.0	0.0 7.4	16.8048 -287.2524
RS TS PS	-1694.7662152 -1694.7559900 -1694.8218693	159.96108160.02391160.97527	186.04 183.316 188.798	0.0 6.4 -34.9	0.0 0.1 1.0	0.0 0.9 -0.9	0.0 7.4 -34.8	16.8048 -287.2524 8.7122
RS TS PS 2,3,4,5,6-pentafluoro	-1694.7662152 -1694.7559900 -1694.8218693 E	159.96108 160.02391 160.97527 ZPE	186.04 183.316 188.798 S	0.0 6.4 -34.9 ΔE	0.0 0.1 1.0 Δ ΖΡΕ	0.0 0.9 -0.9 - Τ Δ S	0.0 7.4 -34.8 ΔG _{calc}	16.8048 -287.2524 8.7122 υ
RS TS PS 2,3,4,5,6-pentafluoro RS	-1694.7662152 -1694.7559900 -1694.8218693 E -1887.1950942	159.96108 160.02391 160.97527 ZPE 138.44987	186.04 183.316 188.798 S 186.076	0.0 6.4 -34.9 ΔE 0.0	0.0 0.1 1.0 Δ ΖΡΕ 0.0	0.0 0.9 -0.9 - T Δ S 0.0	0.0 7.4 -34.8 Δ G calc 0.0	16.8048 -287.2524 8.7122 υ 20.7785
RS TS PS 2,3,4,5,6-pentafluoro RS TS	-1694.7662152 -1694.7559900 -1694.8218693 E -1887.1950942 -1887.1918690	159.96108 160.02391 160.97527 ZPE 138.44987 138.86566	186.04 183.316 188.798 S 186.076 178.975	0.0 6.4 -34.9 ΔE 0.0 2.0	0.0 0.1 1.0 △ ZPE 0.0 0.4	0.0 0.9 -0.9 - Τ Δ S 0.0 2.2	0.0 7.4 -34.8 Δ G calc 0.0 4.6	16.8048 -287.2524 8.7122 v 20.7785 -242.4723
RS TS PS 2,3,4,5,6-pentafluoro RS TS PS	-1694.7662152 -1694.7559900 -1694.8218693 E -1887.1950942 -1887.1918690 -1887.2553077	159.96108 160.02391 160.97527 ZPE 138.44987 138.86566 139.56447	186.04 183.316 188.798 S 186.076 178.975 185.411	0.0 6.4 -34.9 ΔE 0.0 2.0 -37.8	$\begin{array}{c} 0.0 \\ 0.1 \\ 1.0 \\ \Delta \mathbf{ZPE} \\ 0.0 \\ 0.4 \\ 1.1 \end{array}$	0.0 0.9 -0.9 - Τ Δ S 0.0 2.2 0.2	$\begin{array}{c} 0.0 \\ \hline 7.4 \\ -34.8 \\ \Delta G_{calc} \\ 0.0 \\ \hline 4.6 \\ -36.5 \end{array}$	16.8048 -287.2524 8.7122 ν 20.7785 -242.4723 16.0994
RS TS PS 2,3,4,5,6-pentafluoro RS TS PS 3-fluoro-4-nitro	-1694.7662152 -1694.7559900 -1694.8218693 E -1887.1950942 -1887.1918690 -1887.2553077 E	159.96108 160.02391 160.97527 ZPE 138.44987 138.86566 139.56447 ZPE	186.04 183.316 188.798 S 186.076 178.975 185.411 S	0.0 6.4 -34.9 ΔE 0.0 2.0 -37.8 ΔE	0.0 0.1 1.0 Δ ΖΡΕ 0.0 0.4 1.1 Δ ΖΡΕ	0.0 0.9 -0.9 -TΔS 0.0 2.2 0.2 -TΔS	0.0 7.4 -34.8 Δ G calc 0.0 4.6 -36.5 Δ G calc	16.8048 -287.2524 8.7122 υ 20.7785 -242.4723 16.0994 υ
RS TS PS 2,3,4,5,6-pentafluoro RS TS PS 3-fluoro-4-nitro RS	-1694.7662152 -1694.7559900 -1694.8218693 E -1887.1950942 -1887.1918690 -1887.2553077 E -1694.7628895	159.96108 160.02391 160.97527 ZPE 138.44987 138.86566 139.56447 ZPE 160.01382	186.04 183.316 188.798 S 186.076 178.975 185.411 S 186.428	0.0 6.4 -34.9 ΔE 0.0 2.0 -37.8 ΔE 0.0	0.0 0.1 1.0 ΔZPE 0.0 0.4 1.1 ΔZPE 0.0	0.0 0.9 -0.9 - T Δ S 0.0 2.2 0.2 - T Δ S 0.0	$ \begin{array}{c} 0.0 \\ 7.4 \\ -34.8 \\ \Delta G_{calc} \\ 0.0 \\ 4.6 \\ -36.5 \\ \Delta G_{calc} \\ 0.0 \\ \end{array} $	16.8048 -287.2524 8.7122 υ 20.7785 -242.4723 16.0994 υ 28.4589
RS TS PS 2,3,4,5,6-pentafluoro RS TS PS 3-fluoro-4-nitro RS TS	-1694.7662152 -1694.7559900 -1694.8218693 E -1887.1950942 -1887.1918690 -1887.2553077 E -1694.7628895 -1694.7524415	159.96108 160.02391 160.97527 ZPE 138.44987 138.86566 139.56447 ZPE 160.01382 160.56909	186.04 183.316 188.798 S 186.076 178.975 185.411 S 186.428 177.313	0.0 6.4 -34.9 ΔE 0.0 2.0 -37.8 ΔE 0.0 6.6	$\begin{array}{c} 0.0 \\ 0.1 \\ 1.0 \\ \Delta ZPE \\ 0.0 \\ 0.4 \\ 1.1 \\ \Delta ZPE \\ 0.0 \\ 0.6 \\ \end{array}$	0.0 0.9 -0.9 - T Δ S 0.0 2.2 0.2 - T Δ S 0.0 2.9	$\begin{array}{c} 0.0 \\ \hline 7.4 \\ -34.8 \\ \Delta G_{calc} \\ 0.0 \\ \hline 4.6 \\ -36.5 \\ \Delta G_{calc} \\ \hline 0.0 \\ 10.1 \\ \end{array}$	16.8048 -287.2524 8.7122 ν 20.7785 -242.4723 16.0994 ν 28.4589 -285.2326

^a RS, TS and PS denote the reactant, transition and product states, respectively. E, ZPE and S denote the absolute electronic energies, zero-point energies and entropies, and ΔE , ΔZPE and $-T\Delta S$ denote the corresponding values relative to the RS (all values in kcal mol⁻¹, except S which is presented in cal mol⁻¹ K⁻¹). *v* denotes the first vibrational frequency (cm⁻¹).

Table S56. Absolute and relative energy contributions to the calculated free energies (ΔG_{calc}) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 4 additional explicit water molecules, obtained using the M062X⁴ functional.^a

4-chloro-3-nitro	E	ZPE	S	ΔΕ	ΔZPE	-T∆S	ΔG_{calc}	υ
RS	-2208.0122575	189.95869	215.269	0.0	0.0	0.0	0.0	19.9339
TS	-2207.9979597	188.73019	220.196	9.0	-1.2	-1.5	6.3	-285.5131
PS	-2208.0758671	192.54810	203.591	-39.9	2.6	3.7	-33.7	24.2042
4-nitro	Е	ZPE	S	ΔE	∆ZPE	-T∆S	$\Delta \mathbf{G}_{calc}$	υ
RS	-1748.4273098	196.06219	208.126	0.0	0.0	0.0	0.0	21.9257
TS	-1748.4097162	195.70859	208.107	11.0	-0.4	0.01	10.6	-287.6699
PS	-1748.4702918	197.12423	207.891	-27.0	1.1	0.1	-25.8	25.862
2,6-difluoro	Е	ZPE	S	ΔΕ	ΔΖΡΕ	-T∆S	ΔG_{calc}	υ
RS	-1742.4059059	183.99968	202.582	0.0	0.0	0.0	0.0	19.9971
TS	-1742.4002826	184.73336	195.444	3.5	0.7	2.2	6.4	-254.0158
PS	-1742.4378561	184.81254	208.664	-20.0	0.8	-1.9	-21.1	14.5464
2-fluoro-4-nitro	E	ZPE	S	ΔE	ΔZPE	-T∆S	ΔG_{calc}	υ
RS	-1847.6577928	190.12158	215.848	0.0	0.0	0.0	0.0	22.5405
TS	-1847 6525576	191 31248	207.305	3.3	1.2	2.7	7.2	-250 3784
	101/10220070	171.51210	-07.000				1.2	230.3704
PS	-1847.7387341	194.05504	201.412	-50.8	3.9	4.5	-42.3	12.2827
PS 2,3,4,5,6-pentafluoro	-1847.7387341 E	194.05504 ZPE	201.412 S	-50.8 Δ Ε	3.9 Δ ΖΡΕ	4.5 -ΤΔ S	-42.3 ΔGcalc	12.2827 v
PS 2,3,4,5,6-pentafluoro RS	-1847.7387341 E -2040.0836239	191.31210 194.05504 ZPE 167.75719	201.412 S 222.958	-50.8 Δ Ε 0.0	3.9 Δ ΖΡΕ 0.0	4.5 - Τ Δ S 0.0	-42.3 Δ G _{calc} 0.0	230.3764 12.2827 v 22.5661
PS 2,3,4,5,6-pentafluoro RS TS	-1847.7387341 E -2040.0836239 -2040.0807041	19131210 194.05504 ZPE 167.75719 168.61569	201.412 S 222.958 216.178	-50.8 Δ E 0.0 1.8	3.9 Δ ΖΡΕ 0.0 0.9	 4.5 -ΤΔS 0.0 2.1 	-42.3 ΔG_{calc} 0.0 4.8	230.3764 12.2827 v 22.5661 -229.391
PS 2,3,4,5,6-pentafluoro RS TS PS	-1847.7387341 E -2040.0836239 -2040.0807041 -2040.1413948	IOIISIE 194.05504 ZPE 167.75719 168.61569 169.68559	201.412 S 222.958 216.178 219.142	-50.8 Δ E 0.0 1.8 -36.3	3.9 ∆ ZPE 0.0 0.9 1.9	4.5 - T Δ S 0.0 2.1 1.2	$ \begin{array}{r} -42.3 \\ \Delta G_{calc} \\ 0.0 \\ 4.8 \\ -33.1 \end{array} $	230.3764 12.2827 v 22.5661 -229.391 13.3498
PS 2,3,4,5,6-pentafluoro RS TS PS 3-fluoro-4-nitro	-1847.7387341 E -2040.0836239 -2040.0807041 -2040.1413948 E	19131210 194.05504 ZPE 167.75719 168.61569 169.68559 ZPE	201.412 S 222.958 216.178 219.142 S	-50.8 ΔE 0.0 1.8 -36.3 ΔE	3.9 Δ ΖΡΕ 0.0 0.9 1.9 Δ ΖΡΕ	 4.5 -TΔS 0.0 2.1 1.2 -TΔS 	$ \frac{-42.3}{\Delta G_{calc}} \\ 0.0 \\ 4.8 \\ -33.1 \\ \Delta G_{calc} $	22.5661 -229.391 13.3498 v
PS 2,3,4,5,6-pentafluoro RS TS PS 3-fluoro-4-nitro RS	-1847.7387341 E -2040.0836239 -2040.0807041 -2040.1413948 E -1847.6523257	19131210 194.05504 ZPE 167.75719 168.61569 169.68559 ZPE 190.45813	201.412 S 222.958 216.178 219.142 S 214.769	-50.8 Δ E 0.0 1.8 -36.3 Δ E 0.0	3.9 Δ ΖΡΕ 0.0 0.9 1.9 Δ ΖΡΕ 0.0	 4.5 -TΔS 0.0 2.1 1.2 -TΔS 0.0 	$ \frac{-42.3}{\Delta G_{calc}} \\ 0.0 \\ 4.8 \\ -33.1 \\ \Delta G_{calc} \\ 0.0 $	2230.3764 12.2827 v 22.5661 -229.391 13.3498 v 18.2816
PS 2,3,4,5,6-pentafluoro RS TS PS 3-fluoro-4-nitro RS TS	-1847.7387341 E -2040.0836239 -2040.0807041 -2040.1413948 E -1847.6523257 -1847.6420810	19131210 194.05504 ZPE 167.75719 168.61569 169.68559 ZPE 190.45813 190.53481	201.412 S 222.958 216.178 219.142 S 214.769 212.837	-50.8 Δ E 0.0 1.8 -36.3 Δ E 0.0 6.4	3.9 Δ ΖΡΕ 0.0 1.9 Δ ΖΡΕ 0.0	4.5 -TΔS 0.0 2.1 1.2 -TΔS 0.0 0.6	$ \frac{-42.3}{\Delta G_{calc}} \\ 0.0 \\ 4.8 \\ -33.1 \\ \Delta G_{calc} \\ 0.0 \\ 7.1 $	230.3764 12.2827 v 22.5661 -229.391 13.3498 v 18.2816 -292.3245

^a RS, TS and PS denote the reactant, transition and product states, respectively. E, ZPE and S denote the absolute electronic energies, zero-point energies and entropies, and ΔE , ΔZPE and $-T\Delta S$ denote the corresponding values relative to the RS (all values in kcal mol⁻¹, except S which is presented in cal mol⁻¹ K⁻¹). *v* denotes the first vibrational frequency (cm⁻¹).

Table S57. Absolute and relative energy contributions to the calculated free energies (ΔG_{calc}) for the alkaline hydrolysis of substituted sulfate diesters in the presence of 8 additional explicit water molecules, obtained using the M062X⁴ functional.^a

4-chloro-3-nitro	E	ZPE	S	ΔΕ	ΔZPE	-TΔS	ΔG_{calc}	υ
RS	-2513.7909346	253.34747	260.123	0.0	0.0	0.0	0.0	21.437
TS	-2513.7737635	253.38714	254.641	10.8	0.04	1.7	12.5	-279.4276
PS	-2513.8669030	256.52395	246.337	-47.7	3.2	4.3	-40.2	17.5961
4-nitro	E	ZPE	S	ΔE	ΔZPE	-T∆S	$\Delta \mathbf{G}_{calc}$	υ
RS	-2054.1986122	258.61012	261.306	0.0	0.0	0.0	0.0	19.785
TS	-2054.1855888	258.95387	258.979	8.2	0.3	0.7	9.2	-283.7645
PS	-2054.2672984	261.38123	250.497	-43.1	2.8	3.4	-36.9	20.118
2,6-difluoro	E	ZPE	S	ΔE	ΔZPE	-T∆S	$\Delta \mathbf{G}_{calc}$	υ
RS	-2048.1832695	246.33395	252.61	0.0	0.0	0.0	0.0	22.5942
TS	-2048.1633144	246.38654	260.715	12.5	0.1	-2.5	10.1	-266.2105
PS	-2048.2254820	248.24379	249.356	-26.5	1.9	1.0	-23.6	19.2489
2-fluoro-4-nitro	Е	ZPE	S	ΔE	∆ZPE	-T∆S	ΔG_{calc}	υ
RS	-2153.4343846	253.86993	261.213	0.0	0.0	0.0	0.0	26.7784
TS	-2153.4243330	254.63689	257.159	6.3	0.8	1.3	8.4	-275.8933
							0	_/0.0200
PS	-2153.5234315	257.25805	241.666	-55.9	3.4	6.1	-46.4	19.9415
PS 2,3,4,5,6-pentafluoro	-2153.5234315 E	257.25805 ZPE	241.666 S	-55.9 Δ Ε	3.4 Δ ΖΡΕ	6.1 - Τ Δ S	-46.4 Δ G calc	19.9415 v
PS 2,3,4,5,6-pentafluoro RS	-2153.5234315 E -2345.8626304	257.25805 ZPE 230.60870	241.666 S 268.447	-55.9 Δ Ε 0.0	3.4 Δ ΖΡΕ 0.0	6.1 -T∆S 0.0	-46.4 Δ G calc	19.9415 υ 25.7861
PS 2,3,4,5,6-pentafluoro RS TS	-2153.5234315 E -2345.8626304 -2345.8536709	257.25805 ZPE 230.60870 233.20247	241.666 S 268.447 258.991	 -55.9 ΔE 0.0 5.6 	3.4 Δ ΖΡΕ 0.0 2.6	 6.1 -ΤΔS 0.0 3.0 	-46.4 Δ G calc 0.0 11.2	19.9415 υ 25.7861 -265.0677
PS 2,3,4,5,6-pentafluoro RS TS PS	-2153.5234315 E -2345.8626304 -2345.8536709 -2345.9524015	257.25805 ZPE 230.60870 233.20247 233.84567	241.666 S 268.447 258.991 253.307	-55.9 ΔE 0.0 5.6 -56.3	3.4 Δ ZPE 0.0 2.6 3.2	 6.1 -TΔS 0.0 3.0 4.7 	-46.4 Δ Gcalc 0.0 11.2 -48.4	19.9415 v 25.7861 -265.0677 21.7803
PS 2,3,4,5,6-pentafluoro RS TS PS 3-fluoro-4-nitro	-2153.5234315 E -2345.8626304 -2345.8536709 -2345.9524015 E	257.25805 ZPE 230.60870 233.20247 233.84567 ZPE	241.666 S 268.447 258.991 253.307 S	 -55.9 ΔE 0.0 5.6 -56.3 ΔE 	 3.4 ΔZPE 0.0 2.6 3.2 ΔZPE 	 6.1 -TΔS 0.0 3.0 4.7 -TΔS 	-46.4 Δ Gcalc 0.0 11.2 -48.4 Δ Gcalc	19.9415 v 25.7861 -265.0677 21.7803 v
PS 2,3,4,5,6-pentafluoro RS TS PS 3-fluoro-4-nitro RS	-2153.5234315 E -2345.8626304 -2345.8536709 -2345.9524015 E -2153.4318381	257.25805 ZPE 230.60870 233.20247 233.84567 ZPE 253.79773	241.666 S 268.447 258.991 253.307 S 262.279	 -55.9 ΔE 0.0 5.6 -56.3 ΔE 0.0 	 3.4 ΔΖΡΕ 0.0 2.6 3.2 ΔΖΡΕ 0.0 	 6.1 -TΔS 0.0 3.0 4.7 -TΔS 0.0 	-46.4 Δ G calc 0.0 11.2 -48.4 Δ G calc 0.0	19.9415 v 25.7861 -265.0677 21.7803 v 24.0739
PS 2,3,4,5,6-pentafluoro RS TS PS 3-fluoro-4-nitro RS TS	-2153.5234315 E -2345.8626304 -2345.8536709 -2345.9524015 E -2153.4318381 -2153.4202168	257.25805 ZPE 230.60870 233.20247 233.84567 ZPE 253.79773 254.34733	241.666 S 268.447 258.991 253.307 S 262.279 256.71	 -55.9 ΔE 0.0 5.6 -56.3 ΔE 0.0 7.3 	3.4 Δ ZPE 0.0 2.6 3.2 Δ ZPE 0.0 0.5	 6.1 -TΔS 0.0 3.0 4.7 -TΔS 0.0 1.7 	-46.4 Δ Gcalc 0.0 11.2 -48.4 Δ Gcalc 0.0 9.5	19.9415 v 25.7861 -265.0677 21.7803 v 24.0739 -275.3139

^a RS, TS and PS denote the reactant, transition and product states, respectively. E, ZPE and S denote the absolute electronic energies, zero-point energies and entropies, and ΔE , ΔZPE and $-T\Delta S$ denote the corresponding values relative to the RS (all values in kcal mol⁻¹, except S which is presented in cal mol⁻¹ K⁻¹). v denotes the first vibrational frequency (cm⁻¹).

Table S58. Partial charges at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 0 additional explicit water molecules (pure implicit solvation), obtained using the ω B97X-D³ functional.^a

Water Molecules	O _{nuc}	S	Olg
4-chloro-3-nitro	-1.111641	1.232147	-0.572697
4-nitro	-1.116133	1.259782	-0.58486
2,6-difluoro	-1.10774	1.19289	-0.471096
2-fluoro-4-nitro	-1.121515	1.219911	-0.527337
2,3,4,5,6-pentafluoro	-1.123791	1.119482	-0.400261
3-fluoro-4-nitro	-1.120591	1.231624	-0.559804

^a Partial charges are calculated using the CHELPG⁵ charge calculation scheme, as described in the **Methodology** section.

Table S59. Partial charges at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 2 additional explicit water molecules, obtained using the ω B97X-D³ functional.^a

Water Molecules	Onuc	S	Olg
4-chloro-3-nitro	-1.052228	1.154162	-0.505857
4-nitro	-1.056234	1.117773	-0.4649
2,6-difluoro	-1.115392	1.211859	-0.463366
2-fluoro-4-nitro	-1.056456	1.065096	-0.405403
2,3,4,5,6-pentafluoro	-1.133838	1.125565	-0.377429
3-fluoro-4-nitro	-1.068044	1.115811	-0.464594

^a Partial charges are calculated using the CHELPG⁵ charge calculation scheme, as described in the Methodology

Table S60. Partial charges at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 4 additional explicit water molecules, obtained using the ω B97X-D³ functional.^a

Water Molecules	O _{nuc}	S	Olg
4-chloro-3-nitro	-0.906699	1.15772	-0.430702
4-nitro	-0.903971	1.094185	-0.427313
2,6-difluoro	-0.946515	0.981219	-0.312967
2-fluoro-4-nitro	-0.936568	0.995378	-0.372016
2,3,4,5,6-pentafluoro	-0.919628	0.973341	0.029137
3-fluoro-4-nitro	-0.911288	0.975482	-0.438907

^a Partial charges are calculated using the CHELPG⁵ charge calculation scheme, as described in the **Methodology** section.

Table S61. Partial charges at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 8 additional explicit water molecules, obtained using the ω B97X-D³ functional.^a

Water Molecules	Onuc	S	Olg
4-chloro-3-nitro	-0.818968	1.53004	-0.557081
4-nitro	-0.808109	1.375266	-0.539817
2,6-difluoro	-0.719478	1.129583	-0.187656
2-fluoro-4-nitro	-0.794135	1.115757	-0.309453
2,3,4,5,6-pentafluoro	-0.648572	0.903609	0.131355
3-fluoro-4-nitro	-0.889096	1.226026	-0.545571

^a Partial charges are calculated using the CHELPG⁵ charge calculation scheme, as described in the **Methodology** section.

Table S62. Partial charges at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 0 additional explicit water molecules (pure implicit solvation), obtained using the $M11L^1$ functional.^a

Water Molecules	O _{nuc}	S	Olg
4-chloro-3-nitro	-1.126065	1.238842	-0.581367
4-nitro	-1.128893	1.244377	-0.588531
2,6-difluoro	-1.123921	1.210062	-0.475852
2-fluoro-4-nitro	-1.131816	1.20932	-0.523576
2,3,4,5,6-pentafluoro	-1.126397	1.120806	-0.396262
3-fluoro-4-nitro	-1.139186	1.221296	-0.559813

^a Partial charges are calculated using the CHELPG⁵ charge calculation scheme, as described in the **Methodology** section.

Table S63. Partial charges at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 2 additional explicit water molecules, obtained using the $M11L^1$ functional.^a

Water Molecules	Onuc	S	\mathbf{O}_{lg}
4-chloro-3-nitro	-1.054268	1.177652	-0.516051
4-nitro	-1.048351	1.173881	-0.508858
2,6-difluoro	-1.107014	1.239456	-0.483114
2-fluoro-4-nitro	-1.064281	1.138652	-0.434989
2,3,4,5,6-pentafluoro	-1.155153	1.095868	-0.355669
3-fluoro-4-nitro	-1.060325	1.167686	-0.493242

^a Partial charges are calculated using the CHELPG⁵ charge calculation scheme, as described in the Methodology

Table S64. Partial charges at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 4 additional explicit water molecules, obtained using the M11L¹ functional.^a

Water Molecules	O _{nuc}	S	Olg
4-chloro-3-nitro	-0.869986	1.038718	-0.332873
4-nitro	-0.922275	1.035309	-0.383091
2,6-difluoro	-0.915672	0.973609	-0.273618
2-fluoro-4-nitro	-0.905535	0.953933	-0.305688
2,3,4,5,6-pentafluoro	-0.878166	0.980448	0.092381
3-fluoro-4-nitro	-1.006325	0.933329	-0.364949

^a Partial charges are calculated using the CHELPG⁵ charge calculation scheme, as described in the **Methodology** section.

Table S65. Partial charges at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 8 additional explicit water molecules, obtained using the $M11L^1$ functional.^a

Water Molecules	O _{nuc}	S	O _{lg}
4-chloro-3-nitro	-0.770574	1.310195	-0.37252
4-nitro	-0.809259	1.14282	-0.477867
2,6-difluoro	-0.720382	1.157698	-0.205206
2-fluoro-4-nitro	-0.850967	1.064396	-0.333301
2,3,4,5,6-pentafluoro	-0.688973	0.802573	0.075625
3-fluoro-4-nitro	-0.822024	1.283624	-0.535008

^a Partial charges are calculated using the CHELPG⁵ charge calculation scheme, as described in the **Methodology**

Table S66. Partial charges at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 0 additional explicit water molecules (pure implicit solvation), obtained using the $M062X^4$ functional.^a

Water Molecules	O _{nuc}	S	Olg
4-chloro-3-nitro	-1.138291	1.236014	-0.564708
4-nitro	-1.139127	1.250009	-0.560361
2,6-difluoro	-1.136644	1.210623	-0.464085
2-fluoro-4-nitro	-1.140526	1.206306	-0.502166
2,3,4,5,6-pentafluoro	-1.144043	1.084718	-0.393913
3-fluoro-4-nitro	-1.142764	1.240041	-0.545671

^a Partial charges are calculated using the CHELPG⁵ charge calculation scheme, as described in the **Methodology** section.

Table S67. Partial charges at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 2 additional explicit water molecules, obtained using the $M062X^4$ functional.^a

Water Molecules	Onuc	S	\mathbf{O}_{lg}
4-chloro-3-nitro	-1.049775	1.22034	-0.521161
4-nitro	-1.048017	1.195557	-0.504796
2,6-difluoro	-1.12217	1.205036	-0.437561
2-fluoro-4-nitro	-1.055519	1.124415	-0.423785
2,3,4,5,6-pentafluoro	-1.159782	1.115634	-0.352506
3-fluoro-4-nitro	-1.052143	1.212126	-0.498027

^a Partial charges are calculated using the CHELPG⁵ charge calculation scheme, as described in the Methodology

Table S68. Partial charges at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 4 additional explicit water molecules, obtained using the M062X⁴ functional.^a

Water Molecules	O _{nuc}	S	Olg
4-chloro-3-nitro	-0.950593	1.076789	-0.408504
4-nitro	-0.959323	1.082878	-0.417571
2,6-difluoro	-1.002794	1.001605	-0.285461
2-fluoro-4-nitro	-0.989268	0.998185	-0.323282
2,3,4,5,6-pentafluoro	-1.004115	1.026607	0.042262
3-fluoro-4-nitro	-1.035300	1.000186	-0.418766

^a Partial charges are calculated using the CHELPG⁵ charge calculation scheme, as described in the **Methodology** section.

Table S69. Partial charges at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 8 additional explicit water molecules, obtained using the M062X⁴ functional.^a

Water Molecules	O _{nuc}	S	\mathbf{O}_{lg}
4-chloro-3-nitro	-0.94733	1.313362	-0.498923
4-nitro	-0.854524	1.254148	-0.535374
2,6-difluoro	-0.825784	1.061389	-0.11393
2-fluoro-4-nitro	-0.927407	1.060805	-0.306961
2,3,4,5,6-pentafluoro	-0.739404	0.712602	-0.238053
3-fluoro-4-nitro	-0.789773	1.301197	-0.50345

^a Partial charges are calculated using the CHELPG⁵ charge calculation scheme, as described in the **Methodology** section.

Table S70. Partial charges at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 0 additional explicit water molecules (pure implicit solvation), obtained using the ω B97X-D³ functional.^a

4-chloro-3-nitro	Onuc	S	Olg
RS	-1.291921	1.096961	-0.387663
TS	-1.111641	1.232147	-0.572697
PS	-0.509717	1.072833	-0.855893
4-nitro	Onuc	S	Olg
RS	-1.296563	1.12486	-0.391163
TS	-1.116133	1.259782	-0.58486
PS	-0.537492	1.114613	-0.804766
2,6-difluoro	O _{nuc}	S	Olg
RS	-1.323328	1.183321	-0.347723
TS	-1.10774	1.19289	-0.471096
PS	-0.605661	1.191238	-0.802531
2-fluoro-4-nitro	O _{nuc}	S	Olg
RS	-1.296515	1.091244	-0.338531
TS	-1.121515	1.219911	-0.527337
PS	-0.582166	1.231353	-0.770628
2,3,4,5,6-pentafluoro	O _{nuc}	S	Olg
RS	-1.307134	1.160055	-0.296363
TS	-1.123791	1.119482	-0.400261
PS	-0.509743	1.102915	-0.782979
3-fluoro-4-nitro	Onuc	S	Olg
RS	-1.296716	1.091253	-0.374008
TS	-1.120591	1.231624	-0.559804
PS	-0.578857	1.21737	-0.798075

^a RS, TS and PS denote the reactant, transition and product states, respectively. Partial charges are calculated using

4-chloro-3-nitro	O _{nuc}	S	O _{lg}
RS	-1.205177	1.139172	-0.406195
TS	-1.052228	1.154162	-0.505857
PS	-0.50458	1.091234	-0.85603
4-nitro	O _{nuc}	S	O _{lg}
RS	-1.135373	1.179743	-0.392427
TS	-1.056234	1.117773	-0.4649
PS	-0.521243	1.113486	-0.801443
2,6-difluoro	Onuc	S	Olg
RS	-1.193485	1.176152	-0.351537
TS	-1.115392	1.211859	-0.463366
PS	-0.529381	1.099076	-0.811984
2-fluoro-4-nitro	O _{nuc}	S	O _{lg}
RS	-1.201943	1.11984	-0.377146
TS	-1.056456	1.065096	-0.405403
PS	-0.501699	1.100824	-0.750857
2,3,4,5,6-pentafluoro	Onuc	S	Olg
RS	-1.219956	1.041389	-0.237303
TS	-1.133838	1.125565	-0.377429
PS	-0.477058	1.01544	-0.741634
3-fluoro-4-nitro	Onuc	S	Olg
RS	-1.200008	1.125621	-0.377
TS	-1.068044	1.115811	-0.464594
PS	-0.515291	1.049907	-0.812597

Table S71. Partial charges at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 2 additional explicit water molecules, obtained using the ω B97X-D³ functional.^a

^a RS, TS and PS denote the reactant, transition and product states, respectively. Partial charges are calculated using

4-chloro-3-nitro	O _{nuc}	S	Olg
RS	-1.229317	1.041916	-0.341015
TS	-0.906699	1.15772	-0.430702
PS	-0.479935	0.96767	-0.755464
4-nitro	O _{nuc}	S	Olg
RS	-1.236077	1.037997	-0.390759
TS	-0.903971	1.094185	-0.427313
PS	-0.903971	1.094185	-0.427313
2,6-difluoro	Onuc	S	Olg
RS	-1.088478	0.971709	-0.220458
TS	-0.946515	0.981219	-0.312967
PS	-0.515885	0.992838	-0.707345
2-fluoro-4-nitro	O _{nuc}	S	Olg
RS	-1.085704	0.989754	-0.264487
TS	-0.936568	0.995378	-0.372016
PS	-0.500829	1.017799	-0.776886
2,3,4,5,6-pentafluoro	Onuc	S	Olg
RS	-1.092728	0.966197	-0.002528
TS	-0.919628	0.973341	0.029137
PS	-0.512507	1.054881	-0.696406
3-fluoro-4-nitro	Onuc	S	Olg
RS	-1.246425	0.990739	-0.357892
TS	-0.911288	0.975482	-0.438907
PS	-0.602037	1.111286	-0.819751

Table S72. Partial charges at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 4 additional explicit water molecules, obtained using the ω B97X-D³ functional.^a

^a RS, TS and PS denote the reactant, transition and product states, respectively. Partial charges are calculated using

4-chloro-3-nitro	O _{nuc}	S	Olg
RS	-0.718829	1.146725	-0.413029
TS	-0.818968	1.53004	-0.557081
PS	-0.419947	0.891689	-0.805632
4-nitro	O _{nuc}	S	Olg
RS	-1.016168	1.025112	-0.394967
TS	-0.808109	1.375266	-0.539817
PS	-0.551013	0.968566	-0.730409
2,6-difluoro	Onuc	S	Olg
RS	-0.962349	1.128122	-0.29799
TS	-0.719478	1.129583	-0.187656
PS	-0.49093	1.060843	-0.673744
2-fluoro-4-nitro	O _{nuc}	S	O _{lg}
RS	-1.027716	1.108502	-0.489306
TS	-0.794135	1.115757	-0.309453
PS	-0.433804	0.912395	-0.505965
2,3,4,5,6-pentafluoro	Onuc	S	Olg
RS	-1.058844	0.899329	-0.193228
TS	-0.648572	0.903609	0.131355
PS	-0.58977	1.110336	-0.706082
3-fluoro-4-nitro	Onuc	S	Olg
RS	-0.976802	1.184277	-0.393949
TS	-0.889096	1.226026	-0.545571
PS	-0.617534	1.044413	-0.770858

Table S73. Partial charges at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 8 additional explicit water molecules, obtained using the ω B97X-D³ functional.^a

^a RS, TS and PS denote the reactant, transition and product states, respectively. Partial charges are calculated using

Table S74. Partial charges at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 0 additional explicit water molecules (pure implicit solvation), obtained using the $M11L^1$ functional.^a

4-chloro-3-nitro	O _{nuc}	S	Olg
RS	-1.283734	1.078308	-0.382041
TS	-1.126065	1.238842	-0.581367
PS	-0.556229	1.119408	-0.845815
4-nitro	Onuc	S	Olg
RS	-1.284482	1.080957	-0.379139
TS	-1.128893	1.244377	-0.588531
PS	-0.585248	1.238508	-0.772942
2,6-difluoro	O _{nuc}	S	Olg
RS	-1.325572	1.136336	-0.317996
TS	-1.123921	1.210062	-0.475852
PS	-0.528407	1.121804	-0.783681
2-fluoro-4-nitro	O _{nuc}	S	O _{lg}
RS	-1.277816	1.019658	-0.314991
TS	-1.131816	1.20932	-0.523576
PS	-0.549292	1.10734	-0.737144
2,3,4,5,6-pentafluoro	O _{nuc}	S	Olg
RS	-1.288597	0.996416	-0.243606
TS	-1.126397	1.120806	-0.396262
PS	-0.541094	1.095936	-0.769538
3-fluoro-4-nitro	Onuc	S	Olg
RS	-1.285697	1.028887	-0.352591
TS	-1.139186	1.221296	-0.559813
DC			

^a RS, TS and PS denote the reactant, transition and product states, respectively. Partial charges are calculated using
4-chloro-3-nitro	O _{nuc}	S	Olg
RS	-1.193072	1.083588	-0.38828
TS	-1.054268	1.177652	-0.516051
PS	-0.592371	1.058217	-0.851023
4-nitro	O _{nuc}	S	Olg
RS	-1.188192	1.032376	-0.357577
TS	-1.048351	1.173881	-0.508858
PS	-0.546385	1.050097	-0.769466
2,6-difluoro	Onuc	S	Olg
RS	-1.227928	1.033377	-0.336466
TS	-1.107014	1.239456	-0.483114
PS	-0.499219	1.156265	-0.795488
2-fluoro-4-nitro	O _{nuc}	S	O _{lg}
RS	-1.183884	0.997508	-0.345811
TS	-1.064281	1.138652	-0.434989
PS	-0.604822	1.038779	-0.733007
2,3,4,5,6-pentafluoro	Onuc	S	Olg
RS	-1.224148	0.98398	-0.234458
TS	-1.155153	1.095868	-0.355669
PS	-0.520891	1.03032	-0.724211
3-fluoro-4-nitro	Onuc	S	Olg
RS	-1.196171	1.072024	-0.374475
TS	-1.060325	1.167686	-0.493242
PS	-0.574846	1.083251	-0.767394

Table S75. Partial charges at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 2 additional explicit water molecules, obtained using the M11L¹ functional.^a

^a RS, TS and PS denote the reactant, transition and product states, respectively. Partial charges are calculated using

4-chloro-3-nitro	O _{nuc}	S	Olg
RS	-1.293306	0.996599	-0.396281
TS	-0.869986	1.038718	-0.332873
PS	-0.48212	1.019022	-0.745712
4-nitro	O _{nuc}	S	Olg
RS	-1.247046	0.996753	-0.367373
TS	-0.922275	1.035309	-0.383091
PS	-0.360786	0.822035	-0.70989
2,6-difluoro	Onuc	S	Olg
RS	-1.101469	0.929305	-0.220078
TS	-0.915672	0.973609	-0.273618
PS	-0.625749	1.041767	-0.770563
2-fluoro-4-nitro	O _{nuc}	S	Olg
RS	-1.100258	0.907941	-0.222727
TS	-0.905535	0.953933	-0.305688
PS	-0.520253	0.94726	-0.723689
2,3,4,5,6-pentafluoro	Onuc	S	Olg
RS	-1.082253	0.980383	-0.17232
TS	-0.878166	0.980448	0.092381
PS			
	-0.50781	0.949684	-0.621905
3-fluoro-4-nitro	-0.50781 Onuc	0.949684 S	-0.621905 Olg
3-fluoro-4-nitro RS	-0.50781 Onuc -1.247119	0.949684 S 0.994394	-0.621905 Olg -0.298148
3-fluoro-4-nitro RS TS	-0.50781 O nuc -1.247119 -1.006325	0.949684 S 0.994394 0.933329	-0.621905 O _{lg} -0.298148 -0.364949

Table S76. Partial charges at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 4 additional explicit water molecules, obtained using the M11L¹ functional.^a

^a RS, TS and PS denote the reactant, transition and product states, respectively. Partial charges are calculated using

4-chloro-3-nitro	O _{nuc}	S	Olg
RS	-1.217712	1.25397	-0.383196
TS	-0.770574	1.310195	-0.37252
PS	-0.563039	1.160276	-0.788853
4-nitro	O _{nuc}	S	Olg
RS	-1.195468	0.879597	-0.324804
TS	-0.809259	1.14282	-0.477867
PS	-0.352874	0.977358	-0.666439
2,6-difluoro	Onuc	S	Olg
RS	-1.120235	0.957035	-0.214598
TS	-0.720382	1.157698	-0.205206
PS	-0.550149	0.895955	-0.64519
2-fluoro-4-nitro	O _{nuc}	S	Olg
RS	-1.121165	1.002055	-0.311068
TS	-0.850967	1.064396	-0.333301
PS	-0.563774	1.009113	-0.528711
2,3,4,5,6-pentafluoro	Onuc	S	Olg
RS	-1.038878	0.917971	-0.202779
TS	-0.688973	0.802573	0.075625
PS	-0.467841	0.81433	-0.580926
3-fluoro-4-nitro	Onuc	S	Olg
RS	-1.120558	1.31893	-0.445532
TS	-0.822024	1.283624	-0.535008
PS	-0.519243	1.116256	-0.766397

Table S77. Partial charges at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 8 additional explicit water molecules, obtained using the M11L¹ functional.^a

^a RS, TS and PS denote the reactant, transition and product states, respectively. Partial charges are calculated using

Table S78. Partial charges at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 0 additional explicit water molecules (pure implicit solvation), obtained using the $M062X^4$ functional.^a

4-chloro-3-nitro	O _{nuc}	S	Olg
RS	-1.278676	1.10438	-0.386967
TS	-1.138291	1.236014	-0.564708
PS	-0.55209	1.113685	-0.868249
4-nitro	Onuc	S	Olg
RS	-1.275519	1.121414	-0.387754
TS	-1.139127	1.250009	-0.560361
PS	-0.558318	1.13009	-0.804851
2,6-difluoro	O _{nuc}	S	Olg
RS	-1.333103	1.171004	-0.332848
TS	-1.136644	1.210623	-0.464085
PS	-0.535889	1.121027	-0.799473
2-fluoro-4-nitro	O _{nuc}	S	Olg
RS	-1.277332	1.055781	-0.330178
TS	-1.140526	1.206306	-0.502166
PS	-0.541	1.090886	-0.761832
2,3,4,5,6-pentafluoro	O _{nuc}	S	Olg
RS	-1.302291	1.047271	-0.27546
TS	-1.144043	1.084718	-0.393913
PS	-0.542495	1.094986	-0.779909
3-fluoro-4-nitro	Onuc	S	Olg
RS	-1.281241	1.083053	-0.368749
TS	-1.142764	1.240041	-0.545671
PS	-0.550723	1.110838	-0.79328

^a RS, TS and PS denote the reactant, transition and product states, respectively. Partial charges are calculated using

4-chloro-3-nitro	O _{nuc}	S	Olg
RS	-1.183837	1.149404	-0.419296
TS	-1.049775	1.22034	-0.521161
PS	-0.548575	1.033961	-0.855738
4-nitro	O _{nuc}	S	O _{lg}
RS	-1.174682	1.064808	-0.358528
TS	-1.048017	1.195557	-0.504796
PS	-0.454976	1.055828	-0.814666
2,6-difluoro	Onuc	S	Olg
RS	-1.235459	1.131061	-0.32058
TS	-1.12217	1.205036	-0.437561
PS	-0.5427	1.143453	-0.770924
2-fluoro-4-nitro	O _{nuc}	S	Olg
RS	-1.177047	1.123947	-0.371349
TS	-1.055519	1.124415	-0.423785
PS	-0.525182	1.072611	-0.783297
2,3,4,5,6-pentafluoro	Onuc	S	Olg
RS	-1.230799	1.026602	-0.260471
TS	-1.159782	1.115634	-0.352506
PS	-0.538141	1.114017	-0.737218
3-fluoro-4-nitro	Onuc	S	Olg
RS	-1.185341	1.13244	-0.384258
TS	-1.052143	1.212126	-0.498027
PS	-0.545217	1.096529	-0.817359

Table S79. Partial charges at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 2 additional explicit water molecules, obtained using the M062X⁴ functional.^a

^a RS, TS and PS denote the reactant, transition and product states, respectively. Partial charges are calculated using

4-chloro-3-nitro	O _{nuc}	S	Olg
RS	-1.225708	1.027141	-0.429412
TS	-0.950593	1.076789	-0.408504
PS	-0.596497	1.090874	-0.847179
4-nitro	O _{nuc}	S	O _{lg}
RS	-1.238816	1.009553	-0.39931
TS	-0.959323	1.082878	-0.417571
PS	-0.455648	1.027233	-0.76437
2,6-difluoro	Onuc	S	Olg
RS	-1.114188	0.938976	-0.195632
TS	-1.002794	1.001605	-0.285461
PS	-0.599429	1.001954	-0.704403
2-fluoro-4-nitro	O _{nuc}	S	O _{lg}
RS	-1.110392	0.977804	-0.252159
TS	-0.989268	0.998185	-0.323282
PS	-0.616365	1.168065	-0.781993
2,3,4,5,6-pentafluoro	Onuc	S	Olg
RS	-1.134079	1.010442	0.018025
TS	-1.004115	1.026607	0.042262
PS	-0.511334	1.016364	-0.580361
3-fluoro-4-nitro	Onuc	S	Olg
RS	-1.189591	0.934662	-0.309007
TS	-1.0353	1.000186	-0.418766
PS	-0.483169	1.016664	-0.752615

Table S80. Partial charges at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 4 additional explicit water molecules, obtained using the M062X⁴ functional.^a

^a RS, TS and PS denote the reactant, transition and product states, respectively. Partial charges are calculated using

4-chloro-3-nitro	O _{nuc}	S	Olg
RS	-1.026154	1.294638	-0.404148
TS	-0.94733	1.313362	-0.498923
PS	-0.604425	0.917057	-0.82233
4-nitro	O _{nuc}	S	Olg
RS	-0.964724	1.12928	-0.397992
TS	-0.854524	1.254148	-0.535374
PS	-0.621103	1.146464	-0.805452
2,6-difluoro	Onuc	S	Olg
RS	-0.881376	0.889385	-0.252883
TS	-0.825784	1.061389	-0.11393
PS	-0.556304	1.08863	-0.587597
2-fluoro-4-nitro	O _{nuc}	S	O _{lg}
RS	-1.078287	1.068172	-0.322814
TS	-0.927407	1.060805	-0.306961
PS	-0.607599	1.087578	-0.7628
2,3,4,5,6-pentafluoro	Onuc	S	\mathbf{O}_{lg}
RS	-0.724007	0.746927	-0.156613
TS	-0.739404	0.712602	-0.238053
PS	-0.627537	0.998366	-0.667454
3-fluoro-4-nitro	Onuc	S	Olg
RS	-1.061803	1.267365	-0.408913
TS	-0.789773	1.301197	-0.50345
PS	-0.467775	0.952009	-0.77534

Table S81. Partial charges at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 8 additional explicit water molecules, obtained using the M062X⁴ functional.^a

^a RS, TS and PS denote the reactant, transition and product states, respectively. Partial charges are calculated using

Table S82. Geometries at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 0 additional explicit water molecules (pure implicit solvation), obtained using the ω B97X-D³ functional.^a

Water Molecules	S-O _{nuc} Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
4-chloro-3-nitro	2.35	1.71	0.2621	0.5633
4-nitro	2.35	1.71	0.2639	0.5569
2,6-difluoro	2.41	1.70	0.2263	0.5636
2-fluoro-4-nitro	2.38	1.72	0.2496	0.5467
2,3,4,5,6-pentafluoro	2.50	1.70	0.1916	0.5556
3-fluoro-4-nitro	2.38	1.71	0.2529	0.552

^a Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural bond orbital (NBO) analysis.⁸

Table S83. Geometries at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 2 additional explicit water molecules, obtained using the ω B97X-D³ functional.^a

Water Molecules	S-O _{nuc} Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
4-chloro-3-nitro	2.32	1.72	0.2476	0.549
4-nitro	2.32	1.72	0.2456	0.5485
2,6-difluoro	2.38	1.71	0.2188	0.5496
2-fluoro-4-nitro	2.35	1.72	0.2335	0.5353
2,3,4,5,6-pentafluoro	2.44	1.72	0.2005	0.5381
3-fluoro-4-nitro	2.34	1.72	0.2381	0.5415

Table S84. Geometries at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 4 additional explicit water molecules, obtained using the ω B97X-D³ functional.^a

Water Molecules	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
4-chloro-3-nitro	2.31	1.73	0.2211	0.5312
4-nitro	2.30	1.73	0.2242	0.5336
2,6-difluoro	2.34	1.72	0.2088	0.551
2-fluoro-4-nitro	2.36	1.71	0.2039	0.5515
2,3,4,5,6-pentafluoro	2.42	1.73	0.1772	0.5216
3-fluoro-4-nitro	2.30	1.72	0.226	0.5462

^a Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural bond orbital (NBO) analysis.⁸

Table S85. Geometries at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 8 additional explicit water molecules, obtained using the ω B97X-D³ functional.^a

Water Molecules	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
4-chloro-3-nitro	2.26	1.73	0.2475	0.5495
4-nitro	2.26	1.73	0.2506	0.5523
2,6-difluoro	2.29	1.73	0.2207	0.5456
2-fluoro-4-nitro	2.31	1.73	0.2264	0.5356
2,3,4,5,6-pentafluoro	2.33	1.74	0.207	0.5322
3-fluoro-4-nitro	2.26	1.7	0.2464	0.5856

Table S86. Geometries at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 0 additional explicit water molecules (pure implicit solvation), obtained using the $M11L^1$ functional.^a

Water Molecules	S-O _{nuc} Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
4-chloro-3-nitro	2.31	1.69	0.2428	0.5515
4-nitro	2.31	1.70	0.2543	0.532
2,6-difluoro	2.35	1.68	0.2196	0.554
2-fluoro-4-nitro	2.34	1.70	0.2327	0.5274
2,3,4,5,6-pentafluoro	2.41	1.68	0.193	0.5462
3-fluoro-4-nitro	2.33	1.70	0.2408	0.5268

^a Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural bond orbital (NBO) analysis.⁸

Table S87. Geometries at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 2 additional explicit water molecules, obtained using the M11L¹ functional.^a

Water Molecules	S-O _{nuc} Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
4-chloro-3-nitro	2.29	1.70	0.2466	0.536
4-nitro	2.30	1.70	0.2412	0.5261
2,6-difluoro	2.32	1.69	0.2294	0.5407
2-fluoro-4-nitro	2.32	1.71	0.231	0.5176
2,3,4,5,6-pentafluoro	2.37	1.69	0.2087	0.5316
3-fluoro-4-nitro	2.31	1.71	0.2377	0.5171

Table S88. Geometries at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 4 additional explicit water molecules, obtained using the M11L¹ functional.^a

Water Molecules	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
4-chloro-3-nitro	2.26	1.71	0.2249	0.5191
4-nitro	2.26	1.71	0.2234	0.5166
2,6-difluoro	2.28	1.69	0.2208	0.5397
2-fluoro-4-nitro	2.31	1.69	0.2116	0.5347
2,3,4,5,6-pentafluoro	2.34	1.70	0.1947	0.5122
3-fluoro-4-nitro	2.29	1.71	0.2175	0.5171

^a Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural bond orbital (NBO) analysis.⁸

Table S89. Geometries at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 8 additional explicit water molecules, obtained using the $M11L^1$ functional.^a

Water Molecules	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
4-chloro-3-nitro	2.22	1.72	0.2459	0.5249
4-nitro	2.22	1.72	0.2432	0.5151
2,6-difluoro	2.23	1.71	0.2311	0.5246
2-fluoro-4-nitro	2.26	1.71	0.2314	0.5172
2,3,4,5,6-pentafluoro	2.25	1.72	0.2213	0.513
3-fluoro-4-nitro	2.23	1.71	0.2377	0.54

Table S90. Geometries at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 0 additional explicit water molecules (pure implicit solvation), obtained using the $M062X^4$ functional.^a

Water Molecules	S-O _{nuc} Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
4-chloro-3-nitro	2.39	1.69	0.2314	0.5774
4-nitro	2.39	1.69	0.2306	0.5775
2,6-difluoro	2.44	1.69	0.196	0.5769
2-fluoro-4-nitro	2.41	1.69	0.2203	0.5659
2,3,4,5,6-pentafluoro	2.47	1.70	0.1949	0.5604
3-fluoro-4-nitro	2.40	1.69	0.2266	0.5701

^a Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural bond orbital (NBO) analysis.⁸

Table S91. Geometries at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 2 additional explicit water molecules, obtained using the M062X⁴ functional.^a

Water Molecules	S-O _{nuc} Distance	S-O _{lg} Distance	S-Onuc BO	S-Olg BO
4-chloro-3-nitro	2.35	1.70	0.2195	0.5732
4-nitro	2.35	1.70	0.2173	0.5692
2,6-difluoro	2.40	1.69	0.2047	0.577
2-fluoro-4-nitro	2.38	1.70	0.2041	0.5583
2,3,4,5,6-pentafluoro	2.45	1.69	0.1841	0.5703
3-fluoro-4-nitro	2.36	1.70	0.2125	0.5659

^a Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural

bond orbital (NBO) analysis.8

Table S92. Geometries at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 4 additional explicit water molecules, obtained using the M062X⁴ functional.^a

Water Molecules	S-O _{nuc} Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
4-chloro-3-nitro	2.33	1.71	0.1936	0.553
4-nitro	2.31	1.71	0.2027	0.5577
2,6-difluoro	2.36	1.70	0.1882	0.5676
2-fluoro-4-nitro	2.37	1.69	0.1855	0.5679
2,3,4,5,6-pentafluoro	2.42	1.71	0.1609	0.5367
3-fluoro-4-nitro	2.33	1.70	0.1979	0.5643

^a Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural bond orbital (NBO) analysis.⁸

Table S93. Geometries at the transition state for the alkaline hydrolysis of substituted sulfate diesters in the presence of 8 additional explicit water molecules, obtained using the M062X⁴ functional.^a

Water Molecules	S-O _{nuc} Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
4-chloro-3-nitro	2.29	1.69	0.2281	0.5897
4-nitro	2.26	1.7	0.2308	0.5915
2,6-difluoro	2.32	1.70	0.1921	0.5599
2-fluoro-4-nitro	2.35	1.7	0.1936	0.5551
2,3,4,5,6-pentafluoro	2.34	1.71	0.1888	0.5625
3-fluoro-4-nitro	2.26	1.7	0.2228	0.5915

Table S94. Geometries at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 0 additional explicit water molecules (pure implicit solvation), obtained using the ω B97X-D³ functional.^a

4-chloro-3-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.04	1.62	0.0037	0.6738
TS	2.35	1.71	0.2621	0.5633
PS	1.59	5.96	0.763	0.0001
4-nitro	S-Onuc Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
RS	3.87	1.61	0.0059	0.6746
TS	2.35	1.71	0.2639	0.5569
PS	1.59	3.99	0.7569	0.0007
2,6-difluoro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.70	1.62	0.0032	0.6669
TS	2.41	1.70	0.2263	0.5636
PS	1.59	4.62	0.7485	0.0005
2-fluoro-4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.90	1.62	0.0059	0.66
TS	2.38	1.72	0.2496	0.5467
PS	1.59	4.10	0.7539	0.0006
2,3,4,5,6- pentafluoro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.26	1.63	0.0036	0.6431
TS	2.50	1.70	0.1916	0.5556
PS	1.59	4.95	0.7576	0.0003
3-fluoro-4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.87	1.62	0.0059	0.666
TS	2.38	1.71	0.2529	0.552
PS	1.59	4.18	0.7542	0.0005

4-chloro-3-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.58	1.62	0.0016	0.676
TS	2.32	1.72	0.2476	0.549
PS	1.59	4.62	0.7432	0.0002
4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.62	1.61	0.0013	0.7122
TS	2.32	1.72	0.2456	0.5485
PS	1.59	4.72	0.7438	0.0002
2,6-difluoro	S-Onuc Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
RS	3.48	1.62	0.0097	0.6722
TS	2.35	1.70	0.2195	0.5732
PS	1.59	3.42	0.7332	0.0037
2-fluoro-4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.60	1.62	0.0017	0.6573
TS	2.35	1.72	0.2335	0.5353
PS	1.59	4.72	0.7458	0.0002
2,3,4,5,6- pentafluoro	S-O _{nuc} Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
RS	3.88	1.64	0.0066	0.631
TS	2.44	1.72	0.2005	0.5381
PS	1.59	4.65	0.7496	0.0002
3-fluoro-4-nitro	S-Onuc Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
RS	4.62	1.62	0.0017	0.6655
TS	2.34	1.72	0.2381	0.5415
PS	1.59	3.88	0.7551	0.0008

Table S95. Geometries at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 2 additional explicit water molecules, obtained using the ω B97X-D³ functional.^a

4-chloro-3-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.67	1.61	0.0004	0.6712
TS	2.31	1.73	0.2211	0.5312
PS	1.55	4.41	0.8323	0.0003
4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.39	1.61	0.0003	0.6907
TS	2.30	1.73	0.2242	0.5336
PS	1.45	1.59	0.7446	0.0008
2,6-difluoro	S-Onuc Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
RS	3.80	1.63	0.0055	0.6457
TS	2.34	1.72	0.2088	0.551
PS	1.56	4.56	0.8262	0.0003
2-fluoro-4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.69	1.63	0.0077	0.6427
TS	2.36	1.71	0.2039	0.5515
PS	1.56	4.67	0.8203	0.0002
2,3,4,5,6- pentafluoro	S-O _{nuc} Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
RS	3.72	1.64	0.0072	0.6151
TS	2.42	1.73	0.1772	0.5216
PS	3.72	1.64	0.0072	0.6151
3-fluoro-4-nitro	S-Onuc Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
RS	4.68	1.62	0.0005	0.6722
TS	2.30	1.72	0.226	0.5462
PS	1.48	4.73	1.0626	0.0001

Table S96. Geometries at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 4 additional explicit water molecules, obtained using the ω B97X-D³ functional.^a

4-chloro-3-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.41	1.61	0.0005	0.6994
TS	2.26	1.73	0.2475	0.5495
PS	1.59	4.54	0.7378	0.0003
4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	5.08	1.60	0.0004	0.719
TS	2.26	1.73	0.2506	0.5523
PS	1.48	4.40	1.0432	0.0006
2,6-difluoro	S-Onuc Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
RS	5.63	1.61	0.0001	0.6893
TS	2.29	1.73	0.2207	0.5456
PS	1.58	4.6	0.768	0.0003
2-fluoro-4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	5.21	1.62	0.0002	0.6765
TS	2.31	1.73	0.2264	0.5356
PS	1.59	3.52	0.7492	0.0021
2,3,4,5,6- pentafluoro	S-O _{nuc} Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
RS	4.57	1.63	0.0006	0.6744
TS	2.33	1.74	0.207	0.5322
PS	1.47	5.5	1.1459	0.0001
3-fluoro-4-nitro	S-Onuc Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
RS	4.29	1.61	0.0005	0.6863
TS	2.26	1.7	0.2464	0.5856
PS	1.49	5.06	1.0854	0.0011

Table S97. Geometries at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 8 additional explicit water molecules, obtained using the ω B97X-D³ functional.^a

Table S98. Geometries at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 0 additional explicit water molecules (pure implicit solvation), obtained using the $M11L^1$ functional.^a

4-chloro-3-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.76	1.59	0.0032	0.6809
TS	2.31	1.69	0.2428	0.5515
PS	1.56	3.77	0.7547	0.0017
4-nitro	S-Onuc Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
RS	3.79	1.59	0.0027	0.6817
TS	2.31	1.70	0.2543	0.532
PS	1.56	4.09	0.7523	0.0012
2,6-difluoro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.39	1.59	0.0012	0.6351
TS	2.35	1.68	0.2196	0.554
PS	1.56	3.59	0.7462	0.0022
2-fluoro-4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.71	1.60	0.0036	0.6697
TS	2.34	1.70	0.2327	0.5274
PS	1.56	3.81	0.757	0.0011
2,3,4,5,6- pentafluoro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.82	1.61	0.0013	0.6044
TS	2.41	1.68	0.193	0.5462
PS	1.56	3.76	0.7542	0.0015
3-fluoro-4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.77	1.59	0.0026	0.684
TS	2.33	1.70	0.2408	0.5268
PS	1.56	3.86	0.7573	0.0011

4-chloro-3-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.76	1.59	0.0048	0.6801
TS	2.29	1.70	0.2466	0.536
PS	1.56	3.78	0.7415	0.0018
4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.75	1.59	0.0047	0.6768
TS	2.30	1.70	0.2412	0.5261
PS	1.56	3.82	0.737	0.0016
2,6-difluoro	S-Onuc Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
RS	4.36	1.59	0.002	0.6482
TS	2.32	1.69	0.2294	0.5407
PS	1.56	3.64	0.7284	0.0022
2-fluoro-4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.73	1.60	0.0044	0.6678
TS	2.32	1.71	0.231	0.5176
PS	1.56	3.83	0.7455	0.0012
2,3,4,5,6- pentafluoro	S-O _{nuc} Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
RS	3.71	1.61	0.0119	0.6278
TS	2.34	1.70	0.1947	0.5122
PS	1.52	4.63	0.8365	0.0002
3-fluoro-4-nitro	S-Onuc Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
RS	3.72	1.59	0.005	0.6763
TS	2.31	1.71	0.2377	0.5171
PS	1.56	3.81	0.7411	0.0018

Table S99. Geometries at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 2 additional explicit water molecules, obtained using the M11L¹ functional.^a

4-chloro-3-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.09	1.59	0.0006	0.6782
TS	2.26	1.71	0.2249	0.5191
PS	1.55	3.95	0.7735	0.0015
4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.03	1.59	0.0005	0.676
TS	2.26	1.71	0.2234	0.5166
PS	1.56	3.96	0.7451	0.0012
2,6-difluoro	S-Onuc Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
RS	3.84	1.59	0.0091	0.6506
TS	2.28	1.69	0.2208	0.5397
PS	1.54	3.73	0.791	0.0017
2-fluoro-4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.77	1.59	0.0015	0.6547
TS	2.31	1.69	0.2116	0.5347
PS	1.54	3.59	0.7975	0.0016
2,3,4,5,6- pentafluoro	S-O _{nuc} Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
RS	3.71	1.61	0.0119	0.6278
TS	2.34	1.70	0.1947	0.5122
PS	1.52	4.63	0.8365	0.0002
3-fluoro-4-nitro	S-Onuc Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
RS	3.66	1.60	0.0018	0.655
TS	2.29	1.71	0.2175	0.5171
PS	1.56	4.54	0.7564	0.0005

Table S100. Geometries at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 4 additional explicit water molecules, obtained using the M11L¹ functional.^a

4-chloro-3-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.27	1.59	0.0008	0.6709
TS	2.22	1.72	0.2459	0.5249
PS	1.46	4.8	0.9992	0.0002
4-nitro	S-Onuc Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
RS	5.81	1.58	0.0001	0.6991
TS	2.22	1.72	0.2432	0.5151
PS	1.46	4.6	0.9886	0.0004
2,6-difluoro	S-Onuc Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
RS	4.89	1.59	0.0005	0.6649
TS	2.23	1.71	0.2311	0.5246
PS	1.56	3.62	0.7711	0.0032
2-fluoro-4-nitro	S-One Distance	S-O _{lg} Distance	S-Onuc BO	S-Olg BO
2 114010 1 11110		no o ig – antitutto i	·····	
RS	3.39	1.6	0.003	0.6371
RS TS	3.39 2.26	1.6 1.71	0.003 0.2314	0.6371 0.5172
RS TS PS	3.39 2.26 1.55	1.6 1.71 3.64	0.003 0.2314 0.7785	0.6371 0.5172 0.001
RS TS PS 2,3,4,5,6- pentafluoro	3.39 2.26 1.55 S-O_{nuc} Distance	1.6 1.71 3.64 S-Olg Distance	0.003 0.2314 0.7785 S-O _{nuc} BO	0.6371 0.5172 0.001 S-O _{lg} BO
RS TS PS 2,3,4,5,6- pentafluoro RS	3.39 2.26 1.55 S-O_{nuc} Distance 3.77	1.6 1.71 3.64 S-Olg Distance 1.62	0.003 0.2314 0.7785 S-O_{nuc} BO 0.0008	0.6371 0.5172 0.001 S-O_{lg} BO 0.6486
RS TS PS 2,3,4,5,6- pentafluoro RS TS	3.39 2.26 1.55 S-O_{nuc} Distance 3.77 2.25	1.6 1.71 3.64 S-O _{lg} Distance 1.62 1.72	0.003 0.2314 0.7785 S-O_{nuc} BO 0.0008 0.2213	0.6371 0.5172 0.001 S-O _{lg} BO 0.6486 0.513
RS TS PS 2,3,4,5,6- pentafluoro RS TS PS	3.39 2.26 1.55 S-O_{nuc} Distance 3.77 2.25 1.56	1.6 1.71 3.64 S-O _{lg} Distance 1.62 1.72 3.93	0.003 0.2314 0.7785 S-O_{nuc} BO 0.0008 0.2213 0.768	0.6371 0.5172 0.001 S-O_{1g} BO 0.6486 0.513 0.0021
RS TS PS 2,3,4,5,6- pentafluoro RS TS PS 3-fluoro-4-nitro	3.39 2.26 1.55 S-O_{nuc} Distance 3.77 2.25 1.56 S-O_{nuc} Distance	1.6 1.71 3.64 S-O _{lg} Distance 1.62 1.72 3.93 S-O _{lg} Distance	0.003 0.2314 0.7785 S-O _{nuc} BO 0.0008 0.2213 0.768 S-O _{nuc} BO	0.6371 0.5172 0.001 S-O_{lg} BO 0.6486 0.513 0.0021 S-O_{lg} BO
RS TS PS 2,3,4,5,6- pentafluoro RS TS PS 3-fluoro-4-nitro RS	3.39 2.26 1.55 S-O_{nuc} Distance 3.77 2.25 1.56 S-O_{nuc} Distance 4.97	1.6 1.71 3.64 S-Olg Distance 1.62 1.72 3.93 S-Olg Distance 1.6	0.003 0.2314 0.7785 S-O_{nuc} BO 0.0008 0.2213 0.768 S-O_{nuc} BO 0.0003	0.6371 0.5172 0.001 S-O_{lg} BO 0.6486 0.513 0.0021 S-O_{lg} BO 0.6687
RS TS PS 2,3,4,5,6- pentafluoro RS TS PS 3-fluoro-4-nitro RS TS	3.39 2.26 1.55 S-Onuc Distance 3.77 2.25 1.56 S-Onuc Distance 4.97 2.23	1.6 1.71 3.64 S-O _{lg} Distance 1.62 1.72 3.93 S-O _{lg} Distance 1.6 1.71	0.003 0.2314 0.7785 S-O_{nuc} BO 0.0008 0.2213 0.768 S-O_{nuc} BO 0.0003 0.2377	0.6371 0.5172 0.001 S-O _{lg} BO 0.6486 0.513 0.0021 S-O _{lg} BO 0.6687 0.54

Table S101. Geometries at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 8 additional explicit water molecules, obtained using the M11L¹ functional.^a

Table S102. Geometries at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 0 additional explicit water molecules (pure implicit solvation), obtained using the $M062X^4$ functional.^a

4-chloro-3-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.61	1.61	0.0097	0.6705
TS	2.39	1.69	0.2314	0.5774
PS	1.59	3.58	0.752	0.0022
4-nitro	S-Onuc Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
RS	3.53	1.61	0.0112	0.6722
TS	2.39	1.69	0.2306	0.5775
PS	1.59	3.63	0.7535	0.0014
2,6-difluoro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.31	1.62	0.0042	0.6624
TS	2.44	1.69	0.196	0.5769
PS	1.59	3.28	0.7421	0.0047
2-fluoro-4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.54	1.62	0.0113	0.6576
TS	2.41	1.69	0.2203	0.5659
PS	1.59	3.56	0.7545	0.0016
2,3,4,5,6- pentafluoro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.70	1.64	0.0073	0.6398
TS	2.47	1.70	0.1949	0.5604
PS	1.59	3.49	0.7503	0.0023
3-fluoro-4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.57	1.61	0.0105	0.6633
TS	2.40	1.69	0.2266	0.5701
PS	1.59	3.59	0.7545	0.0016

^a RS, TS and PS denote the reactant, transition and product states, respectively. Bond distances are shown in Å. Bond orders (BO) were calculated based on the Wiberg bond index⁷ using natural bond orbital (NBO) analysis.⁸

4-chloro-3-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.8	1.61	0.0066	0.6703
TS	2.43	1.67	0.2193	0.587
PS	4.9	1.55	0.8516	0.0003
4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.52	1.61	0.0085	0.6682
TS	2.35	1.70	0.2173	0.5692
PS	1.59	3.60	0.7435	0.0018
2,6-difluoro	S-Onuc Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
RS	3.29	1.62	0.018	0.6546
TS	2.40	1.69	0.2047	0.577
PS	1.59	3.20	0.7509	0.0052
2-fluoro-4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.36	1.62	0.0133	0.655
TS	2.38	1.70	0.2041	0.5583
PS	1.58	3.51	0.7607	0.0019
2,3,4,5,6- pentafluoro	S-O _{nuc} Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
RS	3.35	1.63	0.0183	0.638
TS	2.45	1.69	0.1841	0.5703
PS	1.59	3.36	0.7575	0.0032
3-fluoro-4-nitro	S-Onuc Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
RS	3.47	1.62	0.0097	0.6651
TS	2.36	1.70	0.2125	0.5659

Table S103. Geometries at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 2 additional explicit water molecules, obtained using the M062X⁴ functional.^a

4-chloro-3-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.27	1.61	0.0009	0.6795
TS	2.33	1.71	0.1936	0.553
PS	1.50	4.64	0.9739	0.0002
4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	4.09	1.61	0.0005	0.696
TS	2.31	1.71	0.2027	0.5577
PS	1.59	3.77	0.7513	0.0013
2,6-difluoro	S-Onuc Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
RS	3.19	1.63	0.0181	0.6397
TS	2.36	1.70	0.1882	0.5676
PS	1.60	3.17	0.7007	0.0065
2-fluoro-4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.19	1.63	0.0188	0.6392
TS	2.37	1.69	0.1855	0.5679
PS	1.48	4.72	1.0595	0.0002
2,3,4,5,6- pentafluoro	S-O _{nuc} Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
RS	2.98	1.66	0.0297	0.5907
TS	2.42	1.71	0.1609	0.5367
PS	1.58	3.47	0.7484	0.0026
3-fluoro-4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
RS	3.22	1.62	0.0049	0.6592
TS	2.33	1.70	0.1979	0.5643
PS	1.59	3.47	0.7329	0.0021

Table S104. Geometries at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 4 additional explicit water molecules, obtained using the M062X⁴ functional.^a

4-chloro-3-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.2	1.62	0.0037	0.6745
TS	2.29	1.69	0.2281	0.5897
PS	1.48	4.59	1.1217	0.0003
4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.16	1.62	0.004	0.6855
TS	2.26	1.7	0.2308	0.5915
PS	1.48	3.99	1.1272	0.0013
2,6-difluoro	S-Onuc Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
RS	3.32	1.62	0.0027	0.6531
TS	2.32	1.70	0.1921	0.5599
PS	1.59	3.20	0.7749	0.0058
2-fluoro-4-nitro	S-O _{nuc} Distance	S-O _{lg} Distance	S-O _{nuc} BO	S-O _{lg} BO
RS	3.13	1.62	0.0062	0.6462
TS	2.35	1.7	0.1936	0.5551
PS	1.49	4.07	1.0766	0.0006
2,3,4,5,6- pentafluoro	S-O _{nuc} Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
RS	3.08	1.64	0.0074	0.6401
TS	2.34	1.71	0.1888	0.5625
PS	1.48	3.86	1.1097	0.0008
3-fluoro-4-nitro	S-Onuc Distance	S-O _{lg} Distance	S-Onuc BO	S-O _{lg} BO
RS	3.28	1.62	0.0026	0.6761
TS	2.26	1.7	0.2228	0.5915
PS	1.49	4.88	1.0429	0.0004

Table S105. Geometries at key stationary points for the alkaline hydrolysis of substituted sulfate diesters in the presence of 8 additional explicit water molecules, obtained using the M062X⁴ functional.^a

Cartesian Coordinates of Optimized Stationary Points

Due to the large number of stationary points involved, Cartesian coordinates of all stationary points have been presented as a separate zip file.

Supplementary References

1. Peverati, R.; Truhlar, D. G., M11-L: A Local Density Functional That Provides Improved Accuracy for Electronic Structure Calculations in Chemistry and Physics. *J. Phys. Chem. Lett.* **2012**, *3*, 117-124.

2. Younker, J. M.; Hengge, A. C., A Mechanistic Study of the Alkaline Hydrolysis of Diaryl Sulfate Diesters. *J. Org. Chem.* **2004**, *69*, 9043-9048.

3. Chai, J.-D.; Head-Gordon, M., Long-Range Corrected Hybrid Density Functionals with Damped Atom–Atom Dispersion Corrections. *Phys. Chem. Chem. Phys.* **2008**, *10*, 6615-6620.

4. Zhao, Y.; Truhlar, D. G., The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. *Theor. Chem. Acc.* **2008**, *120*, 215-241.

5. Breneman, C. M.; Wiberg, K. B., Determining Atom-Centered Monopoles from Molecular Electrostatic Potentials. The Need for High Sampling Density in Formamide Conformational Analysis. *J. Comp. Chem.* **1990**, *11*, 361-373.

6. Hine, J., Rate and Equilibrium in the Addition of Bases to Electrophilic Carbon and in $S_N 1$ Reactions. J. Am. Chem. Soc. **1971**, 93, 3701-3708.

7. Wiberg, K. B., Application of the Pople-Santry-Segal CNDO Method to the Cyclopropylcarbinyl and Cyclobutyl Cation and to Bicyclobutane. *Tetrahedron* **1968**, *24*, 1083-1096.

8. Foster, J. P.; Weinhold, F., Natural Hybrid Orbitals. J. Am. Chem. Soc. 1980, 102, 7211-7218.