Appendix A: Physical conditions and chemical abundances in TMC 1

Source name	T _{dust} (K)	$A_{\rm v}$ (mag)	T _{gas} (K)	$n_H (cm^{-3})$	$N(^{13}CS) (cm^{-2})^{a}$	$N(^{13}CS) / N(H_T)^{c}$	$N(ortho-H_2S)(cm^{-2})$	$N(H_2S)/N(H_T)$
TMC 1-CP+0	11.92	18.20	9.7 ± 0.8	$(3.0 \pm 0.8) \cdot 10^4$	$(3.9 \pm 1.0) \cdot 10^{12}$	$(1.1\pm 0.3)\cdot 10^{-10}$	$(3.1\pm 0.9)\cdot 10^{13}$	$(1.1 \pm 0.3) \cdot 10^{-9}$
TMC 1-CP+30	12.00	16.71	10.2 ± 0.2	$(4.6 \pm 0.4) \cdot 10^4$	$(1.6\pm 0.2)\cdot 10^{12}$	$(4.7\pm0.6)\cdot10^{-11}$	$(5.1 \pm 1.4) \cdot 10^{13}$	$(2.0\pm 0.6)\cdot 10^{-9}$
TMC 1-CP+60	12.24	13.74	11.3 ± 2.2	$(7.6 \pm 3.8) \cdot 10^4$	$(1.2\pm 0.4)\cdot 10^{11}$	$(4.3 \pm 1.4) \cdot 10^{-11}$	$(1.2\pm 0.6)\cdot 10^{13}$	$(5.7\pm0.3)\cdot10^{-10}$
TMC 1-CP+120	13.16	7.27	12.5 ± 1.3	$(3.0 \pm 0.8) \cdot 10^3$	$(2.8 \pm 1.1) \cdot 10^{12}$	$(1.9\pm 0.8)\cdot 10^{-10}$	$(5.5\pm 1.6)\cdot 10^{13}$	$(5.1 \pm 1.4) \cdot 10^{-9}$
TMC 1-CP+180	13.86	4.77	16.0 ± 2.6	$(5.4 \pm 1.6) \cdot 10^3$	$(5.4 \pm 1.5) \cdot 10^{12}$	$(5.7\pm1.6)\cdot10^{-11}$	$(4.3 \pm 1.3) \cdot 10^{13}$	$(5.9\pm 1.8)\cdot 10^{-9}$
TMC 1-CP+240	14.39	3.25	14.7 ± 1.1	$(3.2 \pm 2.0) \cdot 10^3$	$(5.2\pm 3.2)\cdot 10^{11}$	$(8.0\pm 5.0)\cdot 10^{-12}$	$(2.1 \pm 1.3) \cdot 10^{13}$	$(4.2\pm 2.1)\cdot 10^{-9~b}$
TMC 1-C+0	11.26	19.85	8.5 ± 2.0	$(9.2 \pm 6.8) \cdot 10^4$	$(1.1\pm 0.5)\cdot 10^{12}$	$(2.8\pm 1.2)\cdot 10^{-11}$	$(2.0\pm 1.5)\cdot 10^{13}$	$(6.0\pm 4.9)\cdot 10^{-10}$
TMC 1-C+30	11.32	18.47	10.3 ± 2.0	$(8.8 \pm 4.6) \cdot 10^4$	$(7.0\pm 3.9)\cdot 10^{11}$	$(1.9\pm1.1)\cdot10^{-11}$	$(2.5\pm 1.3)\cdot 10^{13}$	$(8.6\pm 5.0)\cdot 10^{-10}$
TMC 1-C+60	11.67	13.34	11.6 ± 2.2	$(2.4 \pm 1.0) \cdot 10^4$	$(9.2\pm 2.3)\cdot 10^{11}$	$(3.5\pm0.9)\cdot10^{-11}$	$(5.4\pm 2.0)\cdot 10^{13}$	$(2.6\pm 1.0)\cdot 10^{-9}$
TMC 1-C+120	13.13	4.79	11.1 ± 1.9	$(1.1 \pm 0.5) \cdot 10^4$	$(6.2\pm 1.8)\cdot 10^{11}$	$(6.5\pm1.9)\cdot10^{-11}$	$(1.0\pm 0.5)\cdot 10^{13}$	$(1.4\pm 0.6)\cdot 10^{-8}$
TMC 1-C+180	14.08	2.20	13.5 ± 1.1	$(1.1 \pm 2.8) \cdot 10^4$	$(1.8\pm 0.9)\cdot 10^{11}$	$(4.1\pm2.1)\cdot10^{-11}$	$(6.5 \pm 3.3) \cdot 10^{12} \ ^{b}$	$(1.9 \pm 1.0) \cdot 10^{-9 \ b}$
TMC 1-C+240	14.53	1.63	13.5 ± 2.7	$(5.2 \pm 1.8) \cdot 10^3$	$(1.6 \pm 1.0) \cdot 10^{11}$	$(4.9\pm3.0)\cdot10^{-11}$	$(1.5 \pm 1.0) \cdot 10^{13} \ ^{b}$	$(6.0 \pm 4.2) \cdot 10^{-9} \ ^{b}$

Table A.1: TMC 1 physical conditions and chemical abundances

Notes:

^{*a*} When ¹³CS or C³⁴S isotopologues are not detected, ¹³CS column densities are determined from that of C³⁴S or CS, applying the ratios CS/¹³CS \approx 60 and C³⁴S/¹³CS \approx 8/3.

^b Upper bound values.

^c $N(H_T)$ stands for the total hydrogen column density: $N(H_T) = N(H) + 2 N(H_2)$.

Offset

Fig. A.1: Single dish spectra of ¹³CS 1 \rightarrow 0, ¹³CS 2 \rightarrow 1, ¹³CS 3 \rightarrow 2, C³⁴S 1 \rightarrow 0, C³⁴S 2 \rightarrow 1, C³⁴S 3 \rightarrow 2, CS 1 \rightarrow 0, CS 2 \rightarrow 1, C³⁴S 3 \rightarrow 2 transitions towards TMC 1-C positions with offsets (+0", 0"), (+30", 0"), (+60", 0"), (+120", 0"), (+180", 0"), (+240", 0"). The systemic velocity is $v_{lsr} = 6.5 \text{ km s}^{-1}$.

Fig. A.2: Single dish spectra of ¹³CS 1 \rightarrow 0, ¹³CS 2 \rightarrow 1, ¹³CS 3 \rightarrow 2, C³⁴S 1 \rightarrow 0, C³⁴S 2 \rightarrow 1, C³⁴S 3 \rightarrow 2, CS 1 \rightarrow 0, CS 2 \rightarrow 1, C³⁴S 3 \rightarrow 2 transitions towards TMC 1-CP positions with offsets (+0", 0"), (+30", 0"), (+60", 0"), (+120", 0"), (+180", 0"), (+240", 0"). The systemic velocity is $v_{lsr} = 6.5 \text{ km s}^{-1}$.

Source name	T _{dust} (K)	A_v (mag)	T _{gas} (K)	$n_{H} (cm^{-3})$	$N(^{13}CS) (cm^{-2})^{a}$	$N(^{13}CS) / N(H_T)$	$N(ortho - H_2S)(cm^{-2})$	$N(H_2S) / N(H_T)$
B1B-cal-0_0	11.90	76.00	9.8 ± 1.4	$(6.3 \pm 3.0) \cdot 10^5$	$(2.0 \pm 1.6) \cdot 10^{12}$	$(2.6 \pm 2.1) \cdot 10^{-11}$	$(5.2 \pm 2.5) \cdot 10^{13}$	$(4.5 \pm 2.1) \cdot 10^{-10}$
B1B-cal-10_0	11.72	59.80	10.1 ± 1.5	$(4.2 \pm 2.8) \cdot 10^5$	$(1.3 \pm 0.9) \cdot 10^{12}$	$(2.2 \pm 1.5) \cdot 10^{-11}$	$(1.8 \pm 1.2) \cdot 10^{14} c$	$(1.9 \pm 1.2) \cdot 10^{-9}$ c
B1B-cal-20_0	11.72	45.80	10.9 ± 1.7	$(1.6 \pm 0.9) \cdot 10^5$	$(1.9 \pm 1.2) \cdot 10^{12}$	$(4.0 \pm 2.6) \cdot 10^{-11}$	$(3.2 \pm 2.1) \cdot 10^{14} c$	$(4.5 \pm 2.9) \cdot 10^{-9}$ c
B1B-cal-30_0	11.54	38.70	11.9 ± 1.0	$(1.0 \pm 0.4) \cdot 10^5$	$(1.1 \pm 0.5) \cdot 10^{12}$	$(2.8 \pm 1.2) \cdot 10^{-11}$	$(3.1 \pm 1.4) \cdot 10^{14}$	$(5.2 \pm 2.3) \cdot 10^{-9}$
B1B-cal-40_0	11.54	28.39	12.1 ± 1.1	$(1.0 \pm 0.4) \cdot 10^5$	$(9.5 \pm 4.4) \cdot 10^{11}$	$(3.3 \pm 1.6) \cdot 10^{-11}$	$(2.0 \pm 0.9) \cdot 10^{13}$	$(4.5 \pm 2.0) \cdot 10^{-9}$
B1B-cal-50_0	12.39	20.00	13.2 ± 1.3	$(4.7 \pm 2.2) \cdot 10^4$	$(1.7 \pm 0.8) \cdot 10^{11}$	$(8.7 \pm 4.2) \cdot 10^{-11}$	$(1.9 \pm 0.9) \cdot 10^{13}$	$(6.0 \pm 2.9) \cdot 10^{-9}$
B1B-cal-60_0	12.67	20.00	12.3 ± 0.9	$(3.1 \pm 1.6) \cdot 10^4$	$(2.2 \pm 1.1) \cdot 10^{12}$	$(1.1 \pm 0.5) \cdot 10^{-10}$	$(3.4 \pm 1.7) \cdot 10^{14}$	$(1.1 \pm 0.6) \cdot 10^{-8}$
B1B-cal-80_0	13.24	17.05	13.2 ± 1.8	$(5.5 \pm 2.4) \cdot 10^4$	$(1.0\pm 0.3)\cdot 10^{12}$	$(6.1 \pm 1.8) \cdot 10^{-11}$	$(1.0 \pm 0.4) \cdot 10^{14}$	$(3.9 \pm 1.7) \cdot 10^{-9}$
B1B-cal-110_0	13.98	14.46	14.4 ± 1.9	$(5.2 \pm 2.1) \cdot 10^4$	$(9.8 \pm 2.7) \cdot 10^{11}$	$(6.8 \pm 1.9) \cdot 10^{-11}$	$(8.2 \pm 3.3) \cdot 10^{13}$	$(3.7 \pm 1.5) \cdot 10^{-9}$
B1B-cal-140_0	14.53	11.87	14.2 ± 1.0	$(9.5 \pm 2.5) \cdot 10^3$	$(5.4 \pm 2.7) \cdot 10^{12}$	$(4.5 \pm 2.3) \cdot 10^{-10}$	$(8.3 \pm 2.2) \cdot 10^{14}$	$(4.5 \pm 1.2) \cdot 10^{-8}$
B1B-cal-180_0	16.21	8.57	15.3 ± 1.2	$(3.6 \pm 1.7) \cdot 10^3$	$(6.2 \pm 3.3) \cdot 10^{12}$	$(7.3 \pm 3.9) \cdot 10^{-10}$	$(4.2 \pm 2.0) \cdot 10^{14}$	$(3.2 \pm 1.5) \cdot 10^{-8}$
B1B-cal-240_0	16.70	6.16	16.4 ± 1.0	$(3.8 \pm 1.8) \cdot 10^3$	$(1.6 \pm 0.8) \cdot 10^{12}$	$(2.6 \pm 1.4) \cdot 10^{-10}$	$(1.5 \pm 0.7) \cdot 10^{14}$	$(1.6 \pm 0.8) \cdot 10^{-8}$
B1B-cal-500_0	18.23	3.44	18.0 ± 5.4	$(9.6 \pm 2.2) \cdot 10^2$	$(5.5 \pm 3.0) \cdot 10^{11}$	$(1.6 \pm 0.9) \cdot 10^{-10}$	$(1.8 \pm 0.4) \cdot 10^{13 \ b}$	$(3.4 \pm 0.8) \cdot 10^{-9}$ b

Table B.1: Barnard 1b physical conditions. ¹³CS and H₂S abundances.

Appendix B: Physical conditions and chemical abundances in Barnard 1b

Notes ^a When ¹³CS or C³⁴S isotopologues are not detected, ¹³CS column densities are determined from that of C³⁴S or CS, applying the isotopic ratios CS/¹³CS \approx 60 and C³⁴S/¹³CS \approx 8/3. ^b Upper bound values. ^c Column densities are obtained from that of the isotopologue H₂³⁴S, using H₂S/H₂³⁴S \approx 22.5.

Source name	T _{dust} (K)	A_v (mag)	T _{gas} (K)	$n_{H} (cm^{-3})$	$N(SO) (cm^{-2})$	$N(SO) / N(H_T)$
B1B-cal-0_0	11.90	76.00	9.8 ± 1.4	$(6.3 \pm 3.0) \cdot 10^5$	$(2.4\pm 0.6)\cdot 10^{14}$	$(1.5 \pm 0.4) \cdot 10^{-9}$
B1B-cal-10_0	11.72	59.80	10.1 ± 1.5	$(4.2 \pm 2.8) \cdot 10^5$	$(2.5\pm 0.9)\cdot 10^{14}$	$(2.1 \pm 0.8) \cdot 10^{-9}$
B1B-cal-20_0	11.72	45.80	10.9 ± 1.7	$(1.6 \pm 0.9) \cdot 10^5$	$(2.7 \pm 1.0) \cdot 10^{14}$	$(2.9 \pm 1.1) \cdot 10^{-9}$
B1B-cal-30_0	11.54	38.70	11.9 ± 1.0	$(1.0 \pm 0.4) \cdot 10^5$	$(2.4 \pm 1.6) \cdot 10^{14}$	$(3.2 \pm 2.1) \cdot 10^{-9}$
B1B-cal-40_0	11.54	28.39	12.1 ± 1.0	$(1.0 \pm 0.4) \cdot 10^5$	$(9.9 \pm 4.5) \cdot 10^{13}$	$(1.7 \pm 0.8) \cdot 10^{-9}$
B1B-cal-50_0	12.39	20.00	13.2 ± 1.0	$(4.7 \pm 2.2) \cdot 10^4$	$(5.2 \pm 1.7) \cdot 10^{13}$	$(1.3 \pm 0.4) \cdot 10^{-9}$
B1B-cal-60_0	12.67	20.00	12.3 ± 1.0	$(3.1 \pm 1.6) \cdot 10^4$	$(4.8 \pm 1.6) \cdot 10^{13}$	$(1.2 \pm 0.4) \cdot 10^{-9}$
B1B-cal-80_0	13.24	17.05	13.2 ± 1.8	$(5.5 \pm 2.4) \cdot 10^4$	$(2.2\pm 0.8)\cdot 10^{13}$	$(6.5 \pm 2.3) \cdot 10^{-10}$
B1B-cal-110_0	13.98	14.46	14.4 ± 1.9	$(5.2 \pm 2.1) \cdot 10^4$	$(3.4 \pm 1.9) \cdot 10^{13}$	$(1.2 \pm 0.7) \cdot 10^{-9}$
B1B-cal-140_0	14.53	11.87	14.2 ± 1.0	$(9.5 \pm 2.5) \cdot 10^3$	$(4.2 \pm 2.2) \cdot 10^{13}$	$(1.8 \pm 0.9) \cdot 10^{-9}$
B1B-cal-180_0	16.21	8.57	15.3 ± 1.2	$(3.6 \pm 1.7) \cdot 10^3$	$(4.9\pm 2.4)\cdot 10^{13}$	$(2.9 \pm 1.4) \cdot 10^{-9}$
B1B-cal-240_0	16.70	6.16	16.4 ± 1.0	$(3.8 \pm 1.8) \cdot 10^3$	$(4.9 \pm 2.6) \cdot 10^{13}$	$(4.0 \pm 2.1) \cdot 10^{-9}$
B1B-cal-500_0	18.23	3.44	18.0 ± 5.4	$(9.6 \pm 2.2) \cdot 10^2$	$(1.5 \pm 0.3) \cdot 10^{12} a$	$(2.2 \pm 0.5) \cdot 10^{-10} a$

Table B.2: Barnard 1b physical conditions and SO abundances.

Notes

^a Upper bound values

Fig. B.1: Single dish spectra of ¹³CS 1 \rightarrow 0, ¹³CS 2 \rightarrow 1, ¹³CS 3 \rightarrow 2, C³⁴S 1 \rightarrow 0, C³⁴S 2 \rightarrow 1, C³⁴S 3 \rightarrow 2, CS 1 \rightarrow 0, CS 2 \rightarrow 1, C³⁴S 3 \rightarrow 2 transitions towards positions with offsets (+0", 0"), (+30", 0"), (+60", 0"), (+120", 0"), (+180", 0"), (+240", 0") in the Barnard 1b filament. The systemic velocity is $v_{lsr} = 6.5 \text{ km s}^{-1}$.