

Figure S1. Verification of KAP1 KO, Sequencing Statistics, and Cross-validation of KAP1 Target Genes in Multiple Systems. Related to Figure 1

(A) Alignment files from RNA-seq of Ctrl, KO1, and KO2 cell lines. *KAP1* deletion and insertion are indicated by red and purple boxes, respectively.

(B) Genetic alterations resulting from CRISPR-Cas9 generate early stop codons in both the KO1 and KO2 cell lines.

(C–F) Biological replicates for 4sU-seq and RNA-seq experiments are highly correlated. PCA plots of Ctrl vs KO1 samples for (C) 4sU-seq and (D) RNA-seq, and Ctrl vs KO2 samples for (E) 4sU-seq and (F) RNA-seq.

(G) Overlap of direct KAP1 target genes identified in **Figure 1H** with differentially expressed genes identified by 4sU-seq (**Top**) and RNA-seq (**Bottom**) in the KO2 cell line. Note that the KO2 analysis differs from that presented in **Figure 1** because the KO2 did not contain ERCC spike-ins for normalization (see **STAR Methods**).

(H) PCA plot of siNT vs siKAP1_1 RNA-seq.

(I) Overlap of direct KAP1 target genes identified in **Figure 1H** with differentially expressed genes identified by RNA-seq after KAP1 depletion with siKAP1_1.

Figure S2. KAP1 Regulates Pol II Promoter Levels Across Multiple Cell Line Clones and Cancer Cell Types. Related to Figure 2

(A) Heatmaps of the second replicate of Pol II, phosphorylated Pol II, CDK9, and NELFE ChIP-seq in Ctrl and KAP1 KO1 cell lines. ChIP-seq signal was normalized to *Drosophila* spike-ins.

(B) Heatmaps of Pol II ChIP signal and changes in 4sU-seq signal (Δ 4sU) in the KAP1 KO2 cell line. ChIP-seq signal was normalized to *Drosophila* spike-ins.

(C) Metagene plots (± 2 kb flanking regions) of Pol II in Ctrl vs KO2 cell lines. ChIP-seq signal was normalized to *Drosophila* spike-ins.

(D) Pol II ChIP-seq signal tracks of representative genes from each gene cluster in Ctrl and KO2 cell lines.

(E) Western blot depicting KAP1 KD efficiency in MCF7 breast cancer cells.

(F) Left; Δ Pol II heatmaps from Pol II ChIP-seq in MCF7 breast cancer cells of all human protein coding genes sorted by decreasing Δ Pol II signal throughout the entire transcriptional unit. Right; Pol II heatmaps sorted by decreasing Pol II signal surrounding the TSS (\pm 2 kb) of genes that showed decreased Pol II promoter and gene body signal upon KAP1 depletion (siKAP1) relative to Control (siNT). Data of replicates 1 (Rep 1) and 2 (Rep 2) is shown. ChIP-seq signal was normalized to *Drosophila* spike-ins.

(G) Pol II ChIP-seq signal tracks of two genes from panel (F) are shown.

(H) RT-qPCR validation of genes showing decreased Pol II promoter and gene body occupancy after RNAi-mediated KAP1 silencing in MCF7 breast cancer cells.

(I) Silver stains of purified FLAG-tagged core Pol II complex and STREP-tagged KAP1.

(J) C1 and C3 genes are lowly paused compared to highly paused C2 genes. Boxplot representation of the Pausing Index (PI) of genes from all three clusters in the HCT116 Ctrl cell line. Statistical significance was determined using Wilcoxon rank-sum test.

(K) The 7SK snRNP complex (LARP7 and HEXIM1 subunits) occupies the promoter-proximal region of genes from each KAP1 target gene cluster. Heatmaps of LARP7 and HEXIM ChIP-seq signals in parental HCT116 cells from (McNamara et al., 2016). Target genes in each cluster are sorted by decreasing Pol II levels surrounding the TSS (± 2 kb).

(L) 7SK snRNP (LARP7 and HEXIM1 subunits) ChIP-seq signal tracks of representative genes from each cluster.

Figure S3. KAP1 Regulates Genes Associated with Poor Patient Prognosis and is Necessary for Expression of TGF-β Induced Target Genes in Primary Human Colon Epithelial Cells. Related to Figure 3

(A-C) KEGG pathway analysis of (A) C1, (B) C2, and (C) C3 KAP1 target genes that were also differentially expressed upon acute KAP1 silencing with siKAP1_1.

(D) KAP1 is overexpressed in several cancer tumors (T) relative to non-tumor (NT). Differential expression of KAP1 was analyzed in colon adenocarcinoma/rectal adenocarcinoma (CRC), Bladder Urothelial Carcinoma (BLCA), Breast Invasive Carcinoma (BRCA), Cholangiocarcinoma (CHOL), Head and Neck Squamous Cell Carcinoma (HNSC), Pan-Kidney Cancer (KIPAN), Liver Hepatocellular Carcinoma (LIHC), Lung Adenocarcinoma (LUAD), Lung Squamous Cell Carcinoma (LUSC), Prostate Adenocarcinoma (PRAD), Stomach and Esophageal Carcinoma (STES), Thyroid Carcinoma (THCA), Uterine Corpus Endometrial Carcinoma (UCEC) using TCGA RNA-seq data. Fold change for each matched sample of NT and T adjacent tissue was calculated (mean $log_2(fold change) \pm SEM T vs NT$). Number of patients for each tumor is indicated in brackets. Statistical significance was determined using paired *t*-test.

(E) Scatterplot representation of *KAP1* expression levels in NT and T of CRC patient samples. Differential expression of *KAP1* was analyzed in CRC patients of 50 matched samples of T and NT adjacent tissue. Dots represent expression value of each patient and error bars represent mean \pm SEM.

(F) The association of C1 genes (e.g., *TGFB111*) expression level (low or high) with disease-free survival of selected CRC patients. Plotted is the Kaplan-Meier survival analysis and *P*-value Coxregression/Hazard Ratio.

(G) Expression of 39 C1 genes is upregulated in matched samples of T vs NT (n = 50) and correlates with *KAP1* tumor expression levels (n = 626) in CRC patients (P<0.05 by Pearson analysis). Differential expression of genes upregulated in CRC was determined as in **Figure S3D**. Statistical significance for genes upregulated in CRC was determined using paired *t*-test. P<0.05 was considered statistically significant.

(H) KEGG pathway analysis identified functional annotations for the 39 C1 genes in panel (G). Statistical significance was determined using paired *t*-test. P < 0.01.

(I) C1 genes deep deletion events in 592 CRC patients (TCGA) were analyzed. Histogram plots show the percentage of genes that are deleted in less than 2%, between 2 to 5%, or more than 5% of CRC patient samples.

(J) Western blot verification of efficient RNAi-mediated KAP1 silencing and SMAD2 phosphorylation (P-SMAD2) in HCEC cells transfected with siNT and siKAP1 and treated with TGF- β 1 for 2 hr, 8 hr, or vehicle (DMSO) control.

(K) Expression of TGF- β -inducible/SMAD2 target genes, a control gene not induced by TGF- β (*U6*), and *KAP1* after TGF- β 1 treatment in siNT and siKAP1 HCEC cells (mean expression relative to vehicle treatment ± SEM; normalized to 7*SK*; n = 3).

(L) ChIP-qPCR analysis of SMAD2 in Ctrl vs KO1 HCT116 cell lines at C2/C3 (SMAD2-) gene promoters (mean \pm SEM; n = 3).

(M) SMAD2 ChIP analysis, and IgG as negative control, in parental HCT116 cells followed by qPCR of C1 (SMAD2+) and C2/C3 (SMAD2-) gene promoters (mean \pm SEM; n = 3).

Figure S4. The KAP1 PHD-BD Domain Does Not Interact with the Preferred Histone Peptide Substrates of Other TIF1 Family Members. Related to Figure 4

(A) Coomassie staining of recombinant GST and GST-tagged KAP1 PHD-BD and PHD domains.

(B) Coomassie staining of recombinant GST and GST-tagged KAP1, TIF1 α , and TIF1 γ PHD-BD domains.

(C) The KAP1 PHD-BD cassette does not bind histone peptides recognized by TIF1α. *In vitro* peptide binding assays between recombinant GST-tagged KAP1 or TIF1α PHD-BD domains and the histone peptides recognized by TIF1α. Western blots probed with anti-GST.

(D) The KAP1 PHD-BD cassette does not bind histone peptides recognized by TIF1 γ . *In vitro* peptide binding assays between recombinant GST-tagged KAP1 or TIF1 γ PHD-BD domains and the histone peptides recognized by TIF1 γ . Western blots probed with anti-GST.

(E) Sequence alignment of KAP1, TIF1 γ , and TIF1 α PHD-BD domains. Residues highlighted in green are critical for TIF1 γ 's interaction with H3K9me3 and H3K18ac marks, while residues highlighted in red are critical for TIF1 α 's interaction with H3K23ac.

(F) *In vitro* peptide binding assay between the SUMO deficient C651A KAP1 PHD-BD domain mutant and the H4 tail. Western blots probed with anti-GST.

Figure S5. Identification of KAP1:H4 Interacting Residues and Examination of Nucleosome Positioning at Downregulated Genes. Related to Figure 5

(A) Heatmap highlighting hotspots of pairwise contacts in the production run of the MD simulation.

(B) Sequence alignment of KAP1 PHD domains from various species. Residues highlighted in red are exact matches between species. The arrow denotes the position of the key E662 residue in human KAP1 and its conservation across various species.

(C) Coomassie staining of purified GST, GST-tagged WT KAP1 and point mutants.

(D) MNase-digested nucleosomal DNA profiles of HCT116 Ctrl and KO1 cell lines for two replicates. Red arrows indicate samples used for library preparation. The position of the Mono-, Di-, and Trinucleosomes is indicated with arrows.

(E) Violin plots showing distribution of Nucleosome Free Region (NFR) width in Ctrl and KO1 cell lines for downregulated KAP1 target genes. The thick dash line represents the median width and the two dotted lines represent quartiles.

(F) NFR widths were calculated for each gene cluster and the differences (KO1/Ctrl) were plotted as a violin plot [differences were non-significant (P=0.2866 between the three clusters by the Kruskal-Wallis test)].

(G) Metagene analysis showing the distribution of normalized nucleosome dyads relative to the TSS of downregulated KAP1 target genes from all three clusters.

(H) Linear fit of the nucleosome dyads in Ctrl and KO1 cell lines near the 5'-end of downregulated genes. The slope represents the average spacing between the indicated nucleosomes.

(I) Heatmap representation of nucleosome dyads relative to the NFR center of the downregulated genes. Genes were ranked order based on increasing NFR width. The white long dash line denotes the center of the NFR.

Figure S6. Purification of KAP1 Deletion Constructs. Related to Figure 6 Silver stains of purified STREP-tagged WT KAP1 and deletion constructs (ΔRB and $\Delta RBCC$).

Target	Primer Sequence (5'-3')	Assav
gRNA: KAP1	Fwd: CACCGGGAGCGCTTTTCGCCGCCAG	CRISPR-Cas9
KO1	Rev: AAACCTGGCGGCGAAAAGCGCTCCC	
gRNA: KAP1	Fwd: CACCGAAAGCGCTCCACCGCCCCTT	CRISPR-Cas9
KO2	Rev: AAACAAGGGGCGGTGGAGCGCTTTC	
Primer: RPL19	Fwd: ATCGATCGCCACATGTATCA	RT-qPCR
Gene Body	Rev: GCGTGCTTCCTTGGTCTTAG	
Primer: U6	Fwd: CTCGCTTCGGCAGCACATATAC	RT-qPCR
	Rev: GGAACGCTTCACGAATTTGCGTG	
Primer: BMP4	Fwd: CCAGACTGAAGCCGGTAAAG	RT-qPCR
Gene Body	Rev: TGATACCTGAGACGGGGAAG	
Primer: SMAD2	Fwd: GATGGCTTTCTCAAGCTCATC	RT-qPCR
Gene Body	Rev: GCCGCCAGTTGTGAAGAG	
Primer: TGFB111	Fwd: GGTATGCAAGCCTCG	RT-qPCR
Gene body	Rev: TAAGTTCCTGAAGCAACC	
Primer: PDGFC	Fwd: GGGTCTTCAAGCCCAAATCT	RT-qPCR
Gene Body	Rev: CAGCCCAAGGTTTCCTCATA	
Primer: EGR3	Fwd: TTGAGGGTGAGCGGC	RT-qPCR
Gene Body	Rev: CATGATTCCTGACTACAACCT	
Primer: ID3 Gene	Fwd: ACATCGCATTGTTACAGAAAGTCACC	RT-qPCR
Body	Rev: GGCAGAGCTGGTCTTCTGGT	
Primer: PAM Gene	Fwd: TGCAACCAGGCAGTGACCAG	RT-qPCR
Body	Rev: GTGAACTGGCCTGGCAGAGG	
Primer: BAMBI	Fwd: TGATGCTGCCCACTG	RT-qPCR
Gene Body	Rev: TATGGTGGTGCCAGA	
Primer: TWIST1	Fwd: CTGCCCTCGGACAAGCTGAG	RT-qPCR
Gene Body	Rev: TAGTGGGACGCGGACATGGA	
Primer: ZNFHX2	Fwd: TTCGGTCCTGCCTACCACCA	RT-qPCR
Gene Body	Rev: GTGCCTGCTGTGGAGGTGTT	
Primer: AGPAT1	Fwd: TGGGCGACCTCAGACATGACA	RT-qPCR
Gene Body	Rev: GGCCGCTGTGTGCCC	
Primer: SOX4	Fwd: AAGATCATGGAGCAGTCGCC	RT-qPCR
Gene Body	Rev: CGCCTCTCGAATGAAAGGGA	
Primer: PMEPA1	Fwd: TGCAAACGCTCTTTGTTCCAG	RT-qPCR
Gene Body	Rev: GATGAAGGACCGTGCAGACA	
Primer: CDK9	Fwd: GTGTTCGACTTCTGCGAGCATGAC	qRT-PCR
Gene Body	Rev: CTATGCAGGATCTTGTTTCTGTGG	
Primer: 7SK	Fwd: GGATGTGAGGCGATCTGGC	RT-qPCR
	Rev: AAAAGAAAGGCAGACTGCCAC	
Primer: KAP1	Fwd: CAGGATGCGAACCAGTGCT	RT-qPCR
Gene Body	Rev: CTTGGTGTACTTCACCCGCT	
Primer: CDKN1A	Fwd: CTGGAGACTCTCAGGGTCGAAA	RT-qPCR
Gene Body	Rev: GATTAGGGCTTCCTCTTGGAGAA	
Primer: NFKBIA	Fwd: TCCTGAGCTCCGAGACTTTC	RT-qPCR
Gene Body	Rev: GTAGTTGGTAGCCTTCAGG	
Primer: E2F1	Fwd: TCAGCACCTCGGCAGCCC	RT-qPCR
Gene Body	Rev: AGAAGTCACGCTATGAGACCT	

 Table S6. DNA Oligonucleotides used in this study. Related to STAR Methods and Figures 1–6

Primer: LIG1	Fwd: ACGCCAAGCTCCAGGC	RT-qPCR
Gene Body	Rev: TGAGCAACTTGCTGCGCT	*
Primer: CDC20	Fwd: GTTCTGGCCACATCCACCACC	RT-qPCR
Gene Body	Rev: CCACACATTGACCAAGTTATC	*
Primer: CDC25B	Fwd: TTGTCTTCAAGATGCCATGGA	RT-qPCR
Gene Body	Rev: CCGAGCTGGGTCTCTGGG	*
Primer: MAPK3	Fwd: TGTGGTTGAGCTGATCCA	RT-qPCR
Gene Body	Rev: CCAAGTCCATCGACATCTGGT	-
Primer: HIST13A	Fwd: CGTTTCCAGAGCTCCGCTGTG	RT-qPCR
Gene Body	Rev: ATGATAGTGACGCGCTTG	_
Primer: BAX	Fwd: TGATTGCCGCCGTGGA	RT-qPCR
Gene Body	Rev: CAAAGTAGAAAAGGGCGACAA	
Primer: SFN	Fwd: CTGGGCCTGCTGGACAGC	RT-qPCR
Gene Body	Rev: TTCTTGTCGTCACCGGTG	
Primer: CALML5	Fwd: CGGTTGACACGGATGGAAAC	RT-qPCR
Gene Body	Rev: TGGAAGCTGATTTCGCCGT	
Primer: BCL11B	Fwd: ATCACTTCACCTCTGCGTGC	RT-qPCR
Gene Body	Rev: ACCTGACAACTGACACTGGC	
Primer: BMP4	Fwd: CTGCAGGCTCGAGATAGCTT	ChIP-qPCR
Promoter	Rev: GAAGATGCGAGAAGGCAGAG	
Primer: TGFB111	Fwd: GTCCGTGGCCCCTCAC	ChIP-qPCR
Promoter	Rev: GCGGGCAGAGGCGAAA	
Primer: PDGFC	Fwd: ACTGGCTGTCAACAGGTGCT	ChIP-qPCR
Promoter	Rev: TAGAGGTGTTCCGTGGAAGG	
Primer: PAM	Fwd: GGGGGAGGGAGCTCAACAGA	ChIP-qPCR
Promoter	Rev: ACTCCGGAATGACAGGGGCT	
Primer: AGPAT1	Fwd: TGGAGGGGAGGTGGGAGTG	ChIP-qPCR
Promoter	Rev: TAGCGGCGGCAGCAGC	
Primer: <i>ID3</i>	Fwd: CGGTCACTTATAGAGCCTGCC	ChIP-qPCR
Promoter	Rev: TTGAATCCGCGGCTCC	
Primer: <i>EGR3</i>	Fwd: ACGCGGCCTCAGTATTGA	ChIP-qPCR
Promoter	Rev: CTAGGAAGCGGCGGG	
Primer: <i>RHOBTB3</i>	Fwd: GATGAGCGGATTGCGGGTGA	ChIP-qPCR
Promoter	Rev: GAACAGGAAGTGCGGGGGGAC	
Primer: BAMBI	Fwd: AGAGACCTGGGCTGGCG	ChIP-qPCR
Promoter	Rev: CTAGCCCCGGGTCGG	
Primer: TWISTT	Fwd: TGCGCCGCTTGCGTC	ChIP-qPCR
Promoter	Rev: AAGCTGGCGGGCTGAG	
Primer: <i>PKM</i>	Fwd: TCACCTCCGGCGCTGAC	ChIP-qPCR
Promoter		
Primer: NPL		ChiP-qPCR
Promoter		
Primer: GAPDH		ChiP-qPCR
Promoter Drimory CD60		ChID ~DCD
Primer: CD09		Chip-qPCK
Drimor: VAD1		Mutaganasia
C651A		winagenesis
Drimer: KAD1		Mutaganagia
FILLER: KAP1		winagenesis
E002/003A	KEV. OUATUTACCAUUUUUUUUUUUUUUUUUUU	

Primer: KAP1	Fwd:GGTTGCACATAACCGCATCGCCTGGCTTCTGGCAG	Mutagenesis
L637A	Rev:CTGCCAGAAGCCAGGCGATGCGGTTATGTGCAACC	
Primer: KAP1	Fwd: GTAGGATCCCCGGGAACCCTG	pGEX2T
PHD-BD	Rev: GTAGAATTCTCAACCAAGTTCTCTGCT	BamHI/EcoRI
Primer: KAP1	Fwd: GTAGGATCCCCGGGAACCCTG	pGEX2T
PHD	Rev: GTAGAATTCTCAGTGCTCCCTGACCTG	BamHI/EcoRI
Primer: TIF1α	Fwd: CCGGGATCCCCCAATGAGGAC	pGEX2T
PHD-BD	Rev: CCGGGATCCTTATGGATAGAGGTTCTT	BamHI
Primer: TIF1y	Fwd: CCGGGATCCGATGATGACCCA	pGEX2T
PHD-BD	Rev: CCGGGATCCTTATGCGAAGGTCCT	BamHI
Primer:	Fwd: CCGAAGCTTATGGCGGCCTCCGCGGCGGC	pcDNA4TO
KAP1∆PHD-BD	Rev: AATCTCGAGCTTGGCCACCAC	HindIII/XhoI
Primer:	Fwd: CCGAAGCTTATGGCGGCCTCCGCGGCGGC	pcDNA4TO
KAP1∆BD	Rev: AATCTCGAGCTTGGCCACCAC	HindIII/XhoI
Primer:	Fwd: CCGGGAACCCTGGATGACCTGAAGGAG	pcDNA4TO
KAP1∆PHD	Rev: CTCCTCCTTCAGGTCATCCAGGGTTCC	HindIII/XhoI
Primer:	Fwd:CACCAGTACCAGTTCTTAAAGATGATTGTGGATCC	pcDNA4TO
KAP1∆CC	С	HindIII/XhoI
	Rev:GGGATCCACAATCATCTTTAAGAACTGGTACTGGT	
	G	
Primer:	Fwd:CCGAAGCTTATGCCACCTAAAAAGAAGCGTAAGG	pcDNA4TO
KAP1∆RB	TTGAGGATGCAGTGAGGAACCAG	HindIII/XhoI
	Rev:CCGCTCGAGGGGGGCCATCACCAGGGCCAC	
Primer:	Fwd:CCGAAGCTTATGCCACCTAAAAAGAAGCGTAAGG	pcDNA4TO
KAP1∆RBCC	TTAAGATGATTGTGGATCCC	HindIII/XhoI
	Rev:CCGCTCGAGGGGGCCATCACCAGGGCCAC	
Primer: SMAD2	Fwd:CGGAATTCGCCACCATGTCGTCCATCTTGCCATTC	pcDNA4TO
	AC	HindIII/XhoI
	Rev: CCGCTCGAGTGACATGCTTGAGCAACGCAC	