Supplementary Information

Applied Microbiology and Biotechnology

Exploring the abundance of oleate hydratases in the genus *Rhodococcus* – discovery of novel enzymes with complementary substrate scope

Hanna Busch, Fabio Tonin, Natália Alvarenga, Marcel van den Broek, Simona Lu, Jean-Marc Daran, Ulf Hanefeld and Peter-Leon Hagedoorn*

Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands

Corresponding author: Peter-Leon Hagedoorn

Telephone: +31 (0)15 278 2334

Email: P.L.Hagedoorn@tudelft.nl

Contents

Table S1: Whole-genome sequencing data for R. pyridinivorans DSM 20415
Table S2: List of <i>Rhodococcus</i> strains containing an oleate hydratase categorised based on their HFam affiliation 1
Figure S1: Phylogenetic tree of 43 investigated <i>Rhodococcus</i> strains based on 16S rRNA sequences
Figure S2: Phylogenetic tree of discovered oleate hydratases from <i>Rhodococcus</i> showing three clades: (i) erythropolis-clade, (ii) equi-clade, (iii) pyridinivorans-clade
Figure S3: CLUSTAL multiple sequence alignment of <i>Rhodococcus oleate</i> hydratases compared to <i>Em</i> -OAH1 in the range of conserved FAD-binding region (G69-E96)
Figure S4: CLUSTAL multiple sequence alignment of <i>Rhodococcus</i> oleate hydratases compared to <i>Em</i> -OAH1 in the area of conserved R118GGREM123 (<i>Em</i> -OAH1) motif
Figure S5: CLUSTAL multiple sequence alignment of <i>Rhodococcus</i> oleate hydratases compared to <i>Em</i> -OAH1 in the area of conserved amino acids involved in carboxylate binding (T436 and N438)
Table S3: Molecular structures of tested fatty acids
Figure S6: GC-MS chromatograms showing the products of <i>E. coli</i> whole-cell bioconversions of <i>Re</i> Ohy (black) and <i>Rp</i> Ohy (pink) of fatty acid #1 – myrestoleic acid
Figure S7: Mass spectrum of silylated, hydroxylated myrestoleic acid
Figure S8: GC-MS chromatograms showing the products of <i>E. coli</i> whole-cell bioconversions of <i>Re</i> Ohy (black) and <i>Rp</i> Ohy (pink) of fatty acid #2 – palmitoleic acid
Figure S9: Mass spectrum of silylated, hydroxylated palmitoleic acid7
Figure S10: GC-MS chromatograms showing the products of <i>E. coli</i> whole-cell bioconversions of <i>Re</i> Ohy (black) and <i>Rp</i> Ohy (pink) of fatty acid #3 – oleic acid. 7
Figure S11: Mass spectrum of silylated, hydroxylated oleic acid7
Figure S12: GC-MS chromatograms showing the products of <i>E. coli</i> whole-cell bioconversions of <i>Re</i> Ohy (black) and <i>Rp</i> Ohy (pink) of fatty acid #4 – linoleic acid
Figure S13: Mass spectrum of silylated, hydroxylated linoleic acid
Figure S14: GC-MS chromatograms showing the products of <i>E. coli</i> whole-cell bioconversions of <i>Re</i> Ohy (black) and <i>Rp</i> Ohy (pink) of fatty acid #5 – pinolenic acid
Figure S15: Mass spectrum of silylated, hydroxylated pinolenic acid
Figure S16: GC-MS chromatograms showing the products of <i>E. coli</i> whole-cell bioconversions of <i>Re</i> Ohy (black) and <i>Rp</i> Ohy (pink) of fatty acid $#8 - \gamma$ -linolenic acid
Figure S17: Mass spectrum of silylated, hydroxylated γ-linolenic acid9
Figure S18: GC-MS chromatograms showing the products of <i>E. coli</i> whole-cell bioconversions of <i>Re</i> Ohy (black) and <i>Rp</i> Ohy (pink) of fatty acid #9 – ricinoleic acid
Figure S19: Mass spectrum of silylated, hydroxylated ricinoleic acid
Figure S20: GC-MS chromatograms showing the products of <i>E. coli</i> whole-cell bioconversions of <i>Re</i> Ohy (black) and <i>Rp</i> Ohy (pink) of fatty acid $\#10 - cis-11$ -eicosenoic acid
Figure S21: Mass spectrum of silylated, hydroxylated <i>cis</i> -11-eicosenoic acid
Figure S22: GC-MS chromatograms showing the products of <i>E. coli</i> whole-cell bioconversions of <i>Re</i> Ohy (black) and <i>Rp</i> Ohy (pink) of fatty acid $#11 - cis-11,14$ -eicosadienoic acid
Figure S23: Mass spectrum of silylated, hydroxylated <i>cis</i> -11,14-eicosadienoic acid

References	18
Amino-acid sequence synthetic RpOhy contstruct including histag	17
Nucleotide sequence synthetic RpOhy construct codon optimized for E. coli including his-tag	17
Amino-acid sequence RpOhy	16
Nucleotide sequence <i>Rp</i> Ohy	16
Figure S32: UV-visible absorption spectrum of purified <i>Rp</i> Ohy in the range from 300 – 600 nm	15
Figure S31: Influence of FAD addition to biotransformation of oleic acid to 10-hydroxystearic acid	15
Table S4: Molecular weight estimation RpOhy	14
Figure S30: Size exclusion chromatography of <i>Rp</i> Ohy	14
Figure S29: Mass spectrum of silylated, hydroxylated erucic acid	13
Figure S28: GC-MS chromatograms showing the products of <i>E. coli</i> whole-cell bioconversions of <i>Re</i> Ohy (black) and <i>Rp</i> Ohy (pink) of fatty acid #14 – erucic acid	13
Figure S27: Mass spectrum of silylated, hydroxylated arachidonic acid	13
Figure S26: GC-MS chromatograms showing the products of <i>E. coli</i> whole-cell bioconversions of <i>Re</i> Ohy (black) and <i>Rp</i> Ohy (pink) of fatty acid #13 – arachidonic acid	12
Figure S25: Mass spectrum of silylated, hydroxylated cis-11,14-eicosadienoic acid	12
Figure S24: GC-MS chromatograms showing the products of <i>E. coli</i> whole-cell bioconversions of <i>Re</i> Ohy (black) and <i>Rp</i> Ohy (pink) of fatty acid $#12 - cis$ -8,11,14-eicosatrienoic acid	12

Table S1: Whole-genome sequencing data for *R. pyridinivorans* DSM 20415 (Aziz et al. 2008).

Genome Size [kb]	5,275,644
GC content [%]	67.7
N50	204034
L50	7
Number of contigs (> 1kbp)	174
Number of subsystems	426
Number of coding sequences	5018
Number of RNAs	67

Table S2: List of *Rhodococcus* strains containing an oleate hydratase categorised based on their HFam affiliation (Schmid et al. 2016).

HFam1	HFam2	HFam3
Rhodococcus equi 103S	Rhodococcus biphenylivorans TG9	Rhodococcus R312
Rhodococcus equi ATCC 33707	Rhodococcus pyridinivorans DSM	Rhodococcus enclensis NIO-1009
	20415	
Rhodococcus equi DSSKP-R001	Rhodococcus pyridinivorans GF3	Rhodococcus erythropolis BG43
	Rhodococcus pyridinivorans	Rhodococcus erythropolis
	SB3094	CCM2595
	Rhodococcus erythropolis DSM	Rhodococcus erythropolis PR4
	43066	
		Rhodococcus erythropolis DSM
		43066
		Rhodococcus qingshengii DSM
		45257
		Rhodococcus qingshengii DSM
		46766
		Rhodococcus qingshengii dil-6-2
		Rhodococcus rhodochrous DSM
		101666
		Rhodococcus rhodochrous ATCC
		17895

Figure S1: Phylogenetic tree of 43 investigated *Rhodococcus* strains based on 16S rRNA sequences (Edgar 2004; Price et al. 2010).

0.10

Figure S2: Phylogenetic tree of discovered oleate hydratases from *Rhodococcus* showing three clades: (i) *erythropolis*-clade, (ii) *equi*-clade, (iii) *pyridinivorans*-clade.

While the *erythropolis*- and *equi*-clades are built up uniformly, the *pyridinivorans*-clade is split in two subgroups. Here, the second oleate hydratase from *R. erythropolis* DSM 43066 forms its own sub-group, while the oleate hydratases from *pyridinivorans* and *biphenylivorans* are closely related. Oleate hydratase protein sequences were aligned using muscle (version 3.8.31)(Edgar 2004). Distance-matrix was calculated by FastTree (version 2.1.9, JTT+CAT model) and then visualised by MEGA (Price et al. 2010; Kumar et al. 2016).

Rhodococcus	R312	KLSHKAYMI	GAGI	SNLS	AVY	LIRDO	GKWSGE	DIIIMG	LDM	HGANDG	ESAAT	FQHQY	GHR	62
Rhodococcus	enclensis NIO-1009	KLSHKAYMI	GAGI	SNLS	AVY	LIRDO	GEWNGE	DITIMG	-LDM	HGANDG	ESAAT	FQHQY	GHR	62
Rhodococcus	gingshengii DSM 46766	KLSHKAYMI	GAGI	INLS	AVY	LIRDO	GEWSGE	DITIMG	-LDM	HGANDG	ESAAT	FQHQY	GHR	62
Rhodococcus	gingshengii DSM 45257	KLSHKAYMI	GAGI	SNLSA	AVY	LIRDO	GEWSGE	DITIMG	-LDM	HGANDG	ESAAT	FQHQY	GHR	62
Rhodococcus	gingshengii dil-6-2	KLSHKAYMI	GAGI	SNLS	AVY	LIRDO	GEWSGE	DITIMG	-LDM	HGANDG	ESAAT	FQHQY	GHR	62
Rhodococcus	rhodochrous DSM 101666	KLSHKAYMI	GAGI	SNLS	AVY	LIRDO	GEWSGE	DITIMG	-LDM	HGANDG	ESAAT	FQHQY	GHR	62
Rhodococcus	erythropolis CCM2595	NLSHKAYMI	GAGI	INLS	AVY	LIRDO	GEWNGE	DITIMG	-LDM	HGANDG	ESAAT	FQHQY	GHR	62
Rhodococcus	rhodochrous ATCC 17895	NLSHKAYMI	GAGI	SNLSA	AVY	LIRDO	GEWNGE	DITIMG	-LDM	HGANDG	ESAAT	FQHQY	GHR	62
Rhodococcus	erythropolis BG43	NLSHKAYMI	GAGI	SNLS	AVY	LIRDO	GEWNGE	DITIMG	-LDM	HGANDG	ESAAT	FQHQY	GHR	62
Rhodococcus	erythropolis DSM 43066 HFam3	NLSHKAYMI	GAGI	SNLS	AVY	LIRDO	GEWNGE	DITIMG	-LDM	HGANDG	ESAAT	FQHQY	GHR	62
Rhodococcus	erythropolis PR4	NLSHKAYMI	GAGI	INLS	AVY	LIRDO	GEWNGE	DITIMG	-LDM	HGANDG	ESAAT	FQHQY	GHR	62
Rhodococcus	equi 1035	PKQAHIWIV	GGGI	GMAZ	AVF	AIRDA	AGVPGE	NVHILE	DTDI	EGGS		LD	GAR	54
Rhodococcus	equi ATCC 33707	PKQAHIWIV	GGGI	GMAZ	AVF	AIRD	AGVPGE	NVHILE	QLDI	EGGS		LD	GAR	54
Rhodococcus	equi DSSKP-R001	PKQAHIWIV	GGGI	GMAZ	AVF	AIRD	AGVPGE	NVHILE	QLDI	EGGS		LD	GAR	54
Em-OAH1		YDNSKIYII	GSGI	AGMSZ	A AYY	FIRDO	GHVPAF	NITFLE	QLHI	DGGS		LD	GAG	109
Rhodococcus	erythropolis DSM 43066 HFam2	VDGKTAWFV	GSGL/	ASLA	AAF	MIRDO	GQMAGN	INITVLE	RLKL	PGGA		LD	GIK	69
Rhodococcus	pyridinivorans SB3094	VENKTAWFV	GAGL	SMA	AVF	MIRDO	GQLSGI	KITILE	RLDL	PGGA		LD	GIK	69
Rhodococcus	pyridinivorans GF3	VENKTAWFV	GAGL	SMA	AVF	MIRDO	GQLSGI	KITILE	RLDL	PGGA		LD	GIK	69
Rhodococcus	biphenylivorans TG9	VENKTAWFV	GAGL	SMA	AVF	MIRDO	GQLSGI	KITILE	RLDL	PGGA		LD	GIK	69
Rhodococcus	pyridinivorans DSM 20415	VENKTAWFV	GAGL	SMA	AVF	MIRDO	GQLSGI	KITILE	RLDL	PGGA		LD	GIK	69
			* * :	. : : .	.* :	***		.: .:	*.:	*.			*	

Figure S3: CLUSTAL multiple sequence alignment of *Rhodococcus oleate* hydratases compared to *Em*-OAH1 in the range of conserved FAD-binding region (G69-E96) (Madeira et al. 2019).

Rhodococcus	R312	ELGNDAGFIN	RGGRML	NEETYENLWD	VLSAIPS	SLDNPG-	KSVTDDII	DFDHAH	PTHDVAR	121
Rhodococcus	enclensis NIO-1009	ELGNDAGFIN	RGGRML	NEETYENLWD	VLSVVPS	SLDNPG-	-KSVTDDII	DFDHAH	PTHDVAR	121
Rhodococcus	gingshengii DSM 46766	ELGNDAGFIN	RGGRML	NEETYENLWD	VLSVVPS	SLDNPG-	-KSVTDDII	DFDHAH	PTHDVAR	121
Rhodococcus	gingshengii DSM 45257	ELGNDAGFIN	RGGRML	NEETYENLWD	VLSVVPS	SLDNPG-	-KSVTDDII	DFDHAH	PTHDVAR	121
Rhodococcus	gingshengii dil-6-2	ELGNDAGFIN	RGGRML	NEETYENLWD	VLSVVPS	SLDNPG-	-KSVTDDII	DFDHAH	PTHDVAR	121
Rhodococcus	rhodochrous DSM 101666	ELGNDAGFIN	RGGRML	NEETYENLWD	VLSVVPS	SLDNPG-	-KSVTDDII	DFDHAH	PTHDVAR	121
Rhodococcus	erythropolis CCM2595	ELGNDAGFIN	RGGRML	NEETYENLWD	VLSAVPS	SLDNPG-	-KSVTDDII	DFDHAH	PTHDVAR	121
Rhodococcus	rhodochrous ATCC 17895	ELGNDAGFIN	RGGRML	NEETYENLWD	VLSAVPS	SLDNPG-	-KSVTDDII	DFDHAH	PTHDVAR	121
Rhodococcus	erythropolis BG43	ELGNDAGFIN	RGGRML	NEETYENLWD	ILSAVPS	SLDNPG-	-KSVTDDII	DFDHAH	PTHDVAR	121
Rhodococcus	erythropolis DSM 43066 HFam3	ELGNDAGFIN	RGGRML	NEETYENLWD	VLSAVPS	SLDNPG-	-KSVTDDII	DFDHAH	PTHDVAR	121
Rhodococcus	erythropolis PR4	ELGNDAGFIN	RGGRML	NEETYENLWD	ILSAVPS	SLDNPG-	-KSVTDDII	DFDHAH	PTHDVAR	121
Rhodococcus	equi 1035	SPAVTDGWVT	RGGRML	EEEAYRCTWN	LFESIPS	SLENPD-	-ISVRQEIF	DFNEKV	RTDDKAR	113
Rhodococcus	equi ATCC 33707	SPAVTDGWVT	RGGRML	EEEAYRCTWN	LFESIPS	SLENPD-	-ISVRQEIF	DFNEKV	RTDDKAR	113
Rhodococcus	equi DSSKP-R001	SPAVTDGWVT	RGGRML	EEEAYRCTWN	LFESIPS	SLENPD-	-ISVRQEIF	DFNEKV	RTDDKAR	113
Em-OAH1		NPTDGYII	RGGREM	D-MTYENLWD	MFQDIPF	ALEMPAI	PYSVLDEYF	RLINDND	SNYSKAR	166
Rhodococcus	erythropolis DSM 43066 HFam2	EPEKGFVI	RGGREM	E-DHFECLWD	LFRSVPS	SIEVED-	-ASVLDEFY	WLNKDD	PNYSLQR	125
Rhodococcus	pyridinivorans SB3094	KPDKGFVI	RGGREM	E-DHMECLWD	LFRTIPS	SLEVD	-GSVLDEFY	WLNKDD	PNYSLNR	124
Rhodococcus	pyridinivorans GF3	KPDKGFVI	RGGREM	E-DHMECLWD	LFRTIPS	SLEVD	-GSVLDEFY	WLNKDD	PNYSLNR	124
Rhodococcus	<i>biphenylivorans</i> TG9	KPDKGFVI	RGGREM	E-DHMGCLWD	LFRTIPS	SLEVD	-GSVLDEFY	WLNKDD	PNYSLNR	124
Rhodococcus	pyridinivorans DSM 20415	KPDKGFVI	RGGREM	E-DHMECLWD	LFRTIPS	SLEVD	-GSVLDEFY	WLNKDD	PNYSLNR	124
		. *::	**** :	*:	:: :*:		** ::	::.	*	

Figure S4: CLUSTAL multiple sequence alignment of *Rhodococcus* oleate hydratases compared to *Em*-OAH1 in the area of conserved R118GGREM123 (*Em*-OAH1) motif responsible for cofactor binding and presumably involved in catalysis (Madeira et al. 2019).

Rhodococcus	R312	VTTSSHELINEISRITKQLPGNALNTFVDSNVLLSIVVHHQPHYHAQKENEGVF	410
Rhodococcus	enclensis NIO-1009	VTTSSHELINEISRITKQLPGNALNTFVDSNVLLSIVVHHQPHYHAQKENEGVF	410
Rhodococcus	gingshengii DSM 46766	VTTSSHELINEISRITKQLPGNALNTFVDSNVLLSIVVHHQPHYHAQKENEGVF	410
Rhodococcus	gingshengii DSM 45257	VTTSSHELINEISRITKQLPGNALNTFVDSNVLLSIVVHHQPHYHAQKENEGVF	410
Rhodococcus	<u>qingshengii</u> dil-6-2	VTTSSHELINEISRITKQLPGNALNTFVDSNVLLSIVVHHQPHYHAQKENEGVF	410
Rhodococcus	rhodochrous DSM 101666	VTTSSHELINEISRITKQLPGNALNTFVDSNVLLSIVVHHQPHYHAQKENEGVF	410
Rhodococcus	erythropolis CCM2595	VTTSSHELINEISRITKQLPGNALNTFVDSNVLLSIVVHHQPHYHAQKENEGVF	410
Rhodococcus	rhodochrous ATCC 17895	VTTSSHELINEISRITKQLPGNALNTFVDSNVLLSIVVHHQPHYHAQKENEGVF	410
Rhodococcus	erythropolis BG43	VTTSSHELINEISRITKQLPGNALNTFVDSNVLLSIVVHHQPHYHAQKENEGVF	410
Rhodococcus	erythropolis DSM 43066 HFam3	VTTSSHELINEISRITKQLPGNALNTFVDSNVLLSIVVHHQPHYHAQKENEGVF	410
Rhodococcus	erythropolis PR4	VTTSSHELINEISRITKQLPGNALNTFVDSNVLLSIVVHHQPHYHAQKENEGVF	410
Rhodococcus	equi 103S	LTMRGDKLLRRITEYTGNEPGTGALTTWFESGWHLSTVVA¥QPHFPQQPEGVYTL	391
Rhodococcus	equi ATCC 33707	LTMRGDKLLRRITEYTGNEPGTGALTTWFESGWHLSTVVA¥QPHFPQQPEGVYTL	391
Rhodococcus	equi DSSKP-R001	LTMRGDKLLRRITEYTGNEPGTGALTTWFESGWHLSTVVA¥QPHFPQQPEGVYTL	391
Em-OAH1		LTCKPSALIDKLKEYSVNDPYSGKTVTGGIITITDSNWLMSFTCNRQPHFPEQPDDVLVL	453
Rhodococcus	erythropolis DSM 43066 HFam2	VTTLDARIPEYIEKICKRDPFSGRVVTGGIVTARDSKWLMSW <mark>TVN</mark> RQPHFKQQPKDQIVV	408
Rhodococcus	pyridinivorans SB3094	VTTIGPEIPRYIKKIAKRDPFSGNIVTGGIVTAKDSSWLLSW <mark>TVNR</mark> QPHFKAQAPDEIVV	407
Rhodococcus	pyridinivorans GF3	VTTIGPEIPRYIKKIAKRDPFSGNIVTGGIVTAKDSSWLLSW <mark>IVN</mark> RQPHFKAQAPDEIVV	407
Rhodococcus	biphenylivorans TG9	VTTIGPEIPRYIKKIAKRDPFSGNIVTGGIVTAKDSSWLLSW <mark>IVN</mark> RQPHFKAQAPDEIVV	407
Rhodococcus	pyridinivorans DSM 20415	VTTIGPEIPRYIKKIAKRDPFSGNIVTGGIVTAKDSSWLLSW <mark>TVNR</mark> QPHFKAQAPDEIVV	407
		:* : : *: * :* :* . ***: *	

Figure S5: CLUSTAL multiple sequence alignment of *Rhodococcus* oleate hydratases compared to *Em*-OAH1 in the area of conserved amino acids involved in carboxylate binding (T436 and N438) (Madeira et al. 2019).

Table S3: Molecular structures of tested fatty acids.

#	Name	molecular structure
1	myristoleic acid	0
	14:1, <i>cis-</i> 9	С
2	palmitoleic acid	Ö
	16:1, <i>cis</i> -9	ОН
3	oleic acid	0
	18:1, <i>cis</i> -9	ОН
4	linoleic acid	0
	18:2, <i>cis</i> -9,12	ОН
5	pinolenic acid	
	18:3, <i>cis</i> -5,9,12	ОН
6	cis-vaccenic acid	<u> </u>
	18:1, <i>cis</i> -11	ОН
7	trans-vaccenic acid	0
	18:1, trans-11	ОН
8	γ-linolenic acid	0
	18:3, <i>cis</i> -6,9,12	ОН
9	ricinoleic acid	
	18:1, <i>cis-</i> 9, (<i>R</i>)-12-OH	
10	cis-11-eicosenoic acid	0
	20:1, <i>cis</i> -11	ОН
11	cis-11,14-eicosadienoic acid	O
	20:2, <i>cis</i> -8,11	ОН
12	cis-8,11,14-eicosatrienoic acid	0
	20:3, <i>cis</i> -8,11,14	ОН
13	arachidonic acid	0"
	20:4, <i>cis</i> -5,8,11,14	ОН
14	erucic acid	O 11
	22:1, <i>cis</i> -13	ОН
15	nervonic acid	0
	24:1, <i>cis</i> -15	ОН

GC-MS data of hydroxylated fatty acids:

Figure S6: GC-MS chromatograms showing the products of *E. coli* whole-cell bioconversions of *Re*Ohy (black) and *Rp*Ohy (pink) of fatty acid #1 – myrestoleic acid. S: substrate, P: product.

Figure S7: Mass spectrum of silvlated, hydroxylated myrestoleic acid with significant fragment ions: m/z 159 and 331.

Figure S8: GC-MS chromatograms showing the products of *E. coli* whole-cell bioconversions of *Re*Ohy (black) and *Rp*Ohy (pink) of fatty acid #2 – palmitoleic acid. S: substrate, P: product.

Figure S9: Mass spectrum of silylated, hydroxylated palmitoleic acid with significant fragment ions: m/z 187 and 331.

Figure S10: GC-MS chromatograms showing the products of *E. coli* whole-cell bioconversions of *Re*Ohy (black) and *Rp*Ohy (pink) of fatty acid #3 – oleic acid. S: substrate, P: product.

Figure S11: Mass spectrum of silylated, hydroxylated oleic acid with significant fragment ions: *m/z* 215 and 331.

Figure S12: GC-MS chromatograms showing the products of *E. coli* whole-cell bioconversions of *Re*Ohy (black) and *Rp*Ohy (pink) of fatty acid #4 – linoleic acid. S: substrate, P: product.

Figure S13: Mass spectrum of silylated, hydroxylated linoleic acid with significant fragment ion: m/z 331. Ion 213 was not detected due to an re-arrangement following the allyl-position of the alcohol.

Figure S14: GC-MS chromatograms showing the products of *E. coli* whole-cell bioconversions of *Re*Ohy (black) and *Rp*Ohy (pink) of fatty acid #5 – pinolenic acid. S: substrate, P: product.

Figure S15: Mass spectrum of silvlated, hydroxylated pinolenic acid with significant fragment ions highlighted: m/z 329. Ion 213 was not detected due to an re-arrangement following the allyl-position of the alcohol.

Figure S16: GC-MS chromatograms showing the products of *E. coli* whole-cell bioconversions of *Re*Ohy (black) and *Rp*Ohy (pink) of fatty acid #8 – γ -linolenic acid. S: substrate, P: product.

Figure S17: Mass spectrum of silylated, hydroxylated γ -linolenic acid with significant fragment ions highlighted: m/z 329. Ion 213 was not detected due to an re-arrangement following the allyl-position of the alcohol.

Figure S18: GC-MS chromatograms showing the products of *E. coli* whole-cell bioconversions of *Re*Ohy (black) and *Rp*Ohy (pink) of fatty acid #9 – ricinoleic acid. S: substrate, P: product.

Figure S19: Mass spectrum of silvlated, hydroxylated ricinoleic acid with significant fragment ions highlighted: m/z 187 and 331.

Figure S20: GC-MS chromatograms showing the products of *E. coli* whole-cell bioconversions of *Re*Ohy (black) and *Rp*Ohy (pink) of fatty acid #10 - cis-11-eicosenoic acid. S: substrate, P: product.

Figure S21: Mass spectrum of silylated, hydroxylated *cis*-11-eicosenoic acid with significant fragment ions highlighted: m/z 215 and 359.

Figure S22: GC-MS chromatograms showing the products of *E. coli* whole-cell bioconversions of *Re*Ohy (black) and *Rp*Ohy (pink) of fatty acid #11 - cis-11,14-eicosadienoic acid. S: substrate, P: product.

Figure S23: Mass spectrum of silylated, hydroxylated *cis*-11,14-eicosadienoic acid with significant fragment ions highlighted: m/z 359. Ion 213 was not detected due to a re-arrangement following the allyl-position of the alcohol.

Figure S24: GC-MS chromatograms showing the products of *E. coli* whole-cell bioconversions of *Re*Ohy (black) and *Rp*Ohy (pink) of fatty acid #12 - cis-8,11,14-eicosatrienoic acid. S: substrate, P: product.

Figure S25: Mass spectrum of silvlated, hydroxylated *cis*-11,14-eicosadienoic acid with significant fragment ions highlighted: m/z 357. Ion 213 was not detected due to a re-arrangement following the allyl-position of the alcohol.

Figure S26: GC-MS chromatograms showing the products of *E. coli* whole-cell bioconversions of *Re*Ohy (black) and *Rp*Ohy (pink) of fatty acid #13 – arachidonic acid. S: substrate, P: product.

Figure S27: Mass spectrum of silvlated, hydroxylated arachidonic acid with significant fragment ions highlighted: m/z 355. Ion 213 was not detected due to a re-arrangement following the allyl-position of the alcohol.

Figure S28: GC-MS chromatograms showing the products of *E. coli* whole-cell bioconversions of *Re*Ohy (black) and *Rp*Ohy (pink) of fatty acid #14 – erucic acid. S: substrate, P: product.

Figure S29: Mass spectrum of silylated, hydroxylated erucic acid with significant fragment ions highlighted: m/z 215 and 387.

Figure S30: Size exclusion chromatography of RpOhy

A) Analytical SEC of 1, 5 and 10 mg *Rp*Ohy; B) Protein standards SEC with Thyroglobulin (670 kDa), γ -globulin (158 kDa), Ovalbumin (44 kDa), Myoglobin (17 kDa) and Vitamin B12 (1.35 kDa); C) SEC calibration curve. SEC conditions: Superdex S200 10/300 GL running with 0.5 ml/min 20 mM Tris pH 8.0 containing 250 mM NaCl.

Table S4: Molecular weight estimation RpOhy

Peak	V_e (ml)	K _{av}	Mw calculated (kDa)	Apparent oligomeric state
1	8.76	0.110	1,200	18
2	12.4	0.369	153	2.3
3	13.9	0.473	67.4	0.99

 V_e is the elution volume. Void volume $V_o = 7.2$ ml, total column volume $V_t = 21.4$ ml. Gel-phase distribution coefficient $K_{av} = \frac{V_e - V_o}{V_t - V_o}$

Figure S31: Influence of FAD addition to biotransformation of oleic acid to 10-hydroxystearic acid. *Reaction conditions*: 5 μM *Rp*Ohy, 20 mM acetate buffer (pH 5), 500 μM oleic acid, 1% DMSO, 5 h, 30 °C.

Figure S32: UV-visible absorption spectrum of purified RpOhy in the range from 300 – 600 nm (blue, solid line) with oxidised FAD as a reference (red, dashed line).

Nucleotide sequence RpOhy

CCGGGCTCACCTCGATGGCCTCGGCGGTGTTCATGATCCGCGACGGGCAACTCTCCGGCGACAAGATCACAATCCTCGAGCGCCTGGA TGCCTCTGGGATCTGTTCCGCACCATCCCGTCGCTCGAGGTCGACGGATCCGTCCTCGACGAGTTCTACTGGCTCAACAAAGACGACC CCAACTACTCACCCGGGTCACACACCCGGCAGGGCGAGGAGTTCGTCACCAACAATGAGTTCGGCCTGAGCGAGAAAGCTCAGAA AACTTCTGGCTCTACTGGCGGACGATGTTCGCGTTCGAGAACTGGCACTCCGAGCTCGAGCTCGAGCTCTACCTGCACCGGTTCGTGC ${\tt ACCACATCGGCGGGCTCCCCGACCTTTCGGCGCTGAAGTTCACAAAGTACAACCAGTACGAATCGCTCGTGCTGCCCATGTACCGCTG$ GCTCCTGGACCAGGGCGTGAGATTCGAGTTCTCCACCGAGGTCACCGACATCGACTTCGTTTTCGACGGCGACCGTAAACAGGCCACC CAAGCACCCCTCTTTCGGACGCCCCGAGGTGTTCTGCGGCGACATCTCGAAGACGAAGTGGGAGTCAGCGACGGTCACCACCATCGGC CCTGAGATCCCGAGGTACATCAAGAAGATCGCCAAGCGCGACCCGTTCTCCGGCAACATCGTCACCGGCGGCATCGTCACCGCGAAAG ACTCGTCCTGGCTGGCTGGACAGTCAACCGCCAGCCGCACTTCAAAGCGCAAGCACCCGACGAGATCGTCGTGGGGTCTACGG CCTGTTCGTAGACGTGCCCGGCGACTTCACCGGCAAGACAATGCAGGAGTCGACCGGCGAAGAGATCACCCAAGAATGGCTCTATCAC TTGGGTGTGCCCGTCGAGGACATCCCCGGAGCTCGCGGCAAACGGCGCGAAGACCGTGCTGTGATGATGCCCTACGTCACCTCGTTCT ${\tt TCATGCCCCGCACCGCCGGTGACCCCCGACGTGGTGCCCCGAGGGCGCAGTGAACTTCGCGTTCATCGGCCCAGTTCGCCCGAAACCAC}$ CGAAGTTCGTCGGCAACCGCATCATCAAGCACCTCGACCACACTCAGATCGGACAACTCCTCACCGACTTCGGAGTCATCCCCCGAGCT CGACGGCACGACGAAACGAGTCCGTGCCGATGACGCCGGAGCCTGA

Amino-acid sequence RpOhy

MYYSSGNYEAFARPRKPEGVENKTAWFVGAGLTSMASAVFMIRDGQLSGDKITILERLDLPGGALDGIKKPDKGFVIRGGREMEDHME CLWDLFRTIPSLEVDGSVLDEFYWLNKDDPNYSLNRVTHRQGEEFVTNNEFGLSEKAQKELVKVFLASREEMEDKRIDEIFGEEFLSS NFWLYWRTMFAFENWHSALELKLYLHRFVHHIGGLPDLSALKFTKYNQYESLVLPMYRWLLDQGVRFEFSTEVTDIDFVFDGDRKQAT RIHWTKGGVPGGVDLGPDDLVLATIGSLTENSDDGTHHNAARLDEGPAPAWDLWRRIAAKHPSFGRPEVFCGDISKTKWESATVTTIG PEIPRYIKKIAKRDPFSGNIVTGGIVTAKDSSWLLSWTVNRQPHFKAQAPDEIVVWVYGLFVDVPGDFTGKTMQESTGEEITQEWLYH LGVPVEDIPELAANGAKTVPVMMPYVTSFFMPRTAGDRPDVVPEGAVNFAFIGQFAETTRDTIFTTEYSVRTAMEAAYQLLGIDRGVP EVFNSTYDLRFLLEATARLRDGEEVELPGPKFVGNRIIKHLDHTQIGQLLTDFGVIPELDGTTKRVRADDAGA

Nucleotide sequence synthetic RpOhy construct codon optimized for E. coli including his-tag

ATGGGGGGGTTCTCATCATCATCATCATCGTGGGTATGGCTAGCATGACTGGTGGACAGCAAATGGGTCGGGATCTGTACGACGATGACG ATAAGGATCGATGGGGATCCGAGGTCGGAGATCTGCAGCTACTATTCTTCGGGCAATTATGAGGCGTTCGCGCGCCTCCCCGCAAACCCGA GGGCGTAGAGAACAAGACGGCCTGGTTTGTGGGTGCAGGCTTGACGTCGATGGCCAGTGCGGTGTTCATGATCCGCGATGGACAACTG ${\tt CTTGGATGAATTCTATTGGTTAAACAAGGACGACCCTAACTATTCGTTAAATCGCGTGACACACCGCCCAAGGCGAAGAGTTCGTTACC$ AATAATGAGTTTGGACTTTCCGAAAAAGGCACAAAAAGAGTTGGTCAAAGTTTTCTTGGCGTCTCGTGAAGAAATGGAGGATAAACGTA ${\tt TCGACGAGATTTTCGGGGAAGAATTTTTATCATCAAACTTTTGGCTGTACTGGCGTACCATGTTCGCTTTTGAAAACTGGCATAGTGC$ ACTGGAGTTGAAACTGTACCTGCATCGTTCCGTGCATCACATCGGCGGATTGCCTGATCTTTCCGCCTTGAAATTTACAAAGTACAAT ATTTTGTGTTCGATGGTGACCGCAAGCAGGCCACGCGTATCCATTGGACAAAAGGAGGTGTGCCAGGCGGAGTTGATTTAGGCCCCGA TGATTTAGTCCTGGCAACAATCGGTAGCCTGACCGAGAATTCTGACGACGGAACACACCATAATGCCGCGCGTTTAGACGAAGGACCG GCGCCCGCTTGGGACCTGTGGCGTCGTATTGCCGCGAAACATCCGAGCTTCGGACGCCCCGAGGTTTTCTGTGGAGATATCTCAAAAA CAAAGTGGGAATCGGCTACCGTTACGACGACGGACCCGAAATCCCGCGCTATATTAAAAAGATCGCGAAGCGTGATCCCTTTTCGGG AAACATTGTCACTGGGGGTATCGTGACGGCGAAAGACAGCAGCTGGTTACTTTCATGGACGGTCAACCGTCAACCACATTTCAAGGCA CAAGCGCCAGATGAGATTGTTGTGTGGGGGGGTGTATGGTCTGTTCGTAGATGTACCAGGGGGATTTTACTGGTAAGACAATGCAGGAGAGAG ${\tt CCGGGGAAGAGATCACTCAGGAGTGGTTATACCATCTGGGAGTGCCTGTAGAAGATATCCCCGAGTTAGCGGCAAACGGCGCAAAAAC$ GGTACCCGTCATGATGCCTTACGTCACGTCATTCTTTATGCCTCGTACAGCTGGGGATCGCCCCGACGTGGTGCCAGAAGGTGCCGTT AACTTTGCCTTCATTGGTCAGTTCGCTGAGACAACGCGCGATACTATCTTCACGACAGAATACTCAGTGCGTACAGCCATGGAGGCAG ${\tt CTTACCAATTGCTGGGCATCGATCGTGGCGTGCCCGAAGTGTTTAACTCTACTTATGATTTACGCTTCTTGCTGGAGGCTACCGCTCG$ TTTGCGCGATGGCGAAGAGGTGGAGCTGCCCGGGCCTAAATTTGTAGGCAACCGCATCATTAAACACCTTGATCATACACAAATTGGT CAATTATTGACTGACTTTGGCGTCATTCCGGAACTGGACGGTACTACTAAACGTGTCCGTGCTGATGACGCCGGAGCATGA

Amino-acid sequence synthetic RpOhy contstruct including His-tag

MGGSHHHHHHGMASMTGGQQMGRDLYDDDDKDRWGSELEICSYYSSGNYEAFARPRKPEGVENKTAWFVGAGLTSMASAVFMIRDGQL SGDKITILERLDLPGGALDGIKKPDKGFVIRGGREMEDHMECLWDLFRTIPSLEVDGSVLDEFYWLNKDDPNYSLNRVTHRQGEEFVT NNEFGLSEKAQKELVKVFLASREEMEDKRIDEIFGEEFLSSNFWLYWRTMFAFENWHSALELKLYLHRFVHHIGGLPDLSALKFTKYN QYESLVLPMYRWLLDQGVRFEFSTEVTDIDFVFDGDRKQATRIHWTKGGVPGGVDLGPDDLVLATIGSLTENSDDGTHHNAARLDEGP APAWDLWRRIAAKHPSFGRPEVFCGDISKTKWESATVTTIGPEIPRYIKKIAKRDPFSGNIVTGGIVTAKDSSWLLSWTVNRQPHFKA QAPDEIVVWVYGLFVDVPGDFTGKTMQESTGEEITQEWLYHLGVPVEDIPELAANGAKTVPVMMPYVTSFFMPRTAGDRPDVVPEGAV NFAFIGQFAETTRDTIFTTEYSVRTAMEAAYQLLGIDRGVPEVFNSTYDLRFLLEATARLRDGEEVELPGPKFVGNRIIKHLDHTQIG QLLTDFGVIPELDGTTKRVRADDAGA References

- Aziz RK, Bartels D, Best A, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST Server: Rapid annotations using subsystems technology. BMC Genomics 9. https://doi.org/10.1186/1471-2164-9-75
- Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340
- Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 33:1870–4. https://doi.org/10.1093/molbev/msw054
- Madeira F, Park Y mi, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey ARN, Potter SC, Finn RD, Lopez R (2019) The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 47:W636–W641. https://doi.org/10.1093/nar/gkz268
- Price MN, Dehal PS, Arkin AP (2010) FastTree 2 Approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490. https://doi.org/10.1371/journal.pone.0009490
- Schmid J, Steiner L, Fademrecht S, Pleiss J, Otte KB, Hauer B (2016) Biocatalytic study of novel oleate hydratases. J Mol Catal B Enzym 133:S243–S249. https://doi.org/10.1016/j.molcatb.2017.01.010