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Supplementary Information Text 
 
Materials and Methods 
 
Animals  
All experimental procedures involving animals were conducted in accordance with the Guide for the Care 
and Use of Laboratory Animals by NIH and were approved by Northwestern University’s Institutional 
Animal Care and Use Committee. Camsap3tm1a (EUCOMM) Wtsi (referred to as Camsap3tm1a in this study) 

mouse model was purchased from the Wellcome Trust Sanger Institute. The Camsap3tm1a mice were 
designed to ablate gene function by insertion of RNA processing signals without deletion of any exons of 
Camsap3. As shown in Fig. 1A, the inserted cassette includes a splice acceptor site from engrailed-2 
(En-2 SA), and the internal ribosomal entry site (IRES) from the encephalomyocarditis virus (EMCV), and 
the SV40 polyadenylation signal (pA). Theoretically, CAMSAP3 proteins are not supposed to be made 
because Camsap3 mRNA is truncated after exon 6. The original Camsap3tm1a line on the C57B6N 
background was re-derived on FVB and CBA/CaJ murine backgrounds to increase their viability. 
Although we obtained viable Camsap3tm1a/tm1a mice on CBA/CaJ background, we failed to maintain this 
line due to their low reproduction rates. Most of the data were collected from FVB mice ranging from the 
F2 to the F7 generation unless specifically stated otherwise. All animals were maintained by heterotypic 
breeding, and genotypes were determined by Transnetyx (Cordova, TN). Both males and females were 
used in all experiments. Fertility rate was measured by pairing mice and monitoring the cages for births. 
Camsap3tm1a/tm1a was tested for both sexes by pairing Camsap3tm1a/tm1a with WT of the opposite sex. 
Homotypic breeding pairs for WTs were included as controls. For each breeding cage, expected numbers 
of litters were calculated by dividing the number of days in the breeding cage by 21. Average age of WT 
females having their first litter when paired with WT littermate males was determined to be at postnatal 
day 64. To obtain % fertility, observed numbers of litters for each cage were divided by expected litter 
numbers. 
 
Xenopus (embryo injection, plasmids, mRNA, and MOs) 
Xenopus embryos at the two- to four-cell stage were injected with mRNAs and MOs using standard 
protocols approved by the Northwestern University Institutional Animal Care and Use Committee (1). To 
synthesize mRNA, PCS2+ plasmids encoding Membrane-RFP, CLAMP-GFP, and Centrin4-RFP were 
linearized with Not1 and mRNA was generated by in vitro transcription using SP6 RNA polymerase (2). 
Morpholinos (Gene Tools, LLC) were used to target Camsap3 (5’-
GGCTTTAATCACAGGCACCATCATG-3’) or a standard control (5’-CCTCTTACCTCAGTTACAATTTA 
TA-3’). 
 
Antibodies 
A 96-aa peptide corresponding to amino acids of mouse CAMSAP3 (NM_001163749.1) at position 399-
491 (SI Fig. S1A) was used to immunize rabbits and to generate an affinity-purified anti-CAMSAP3-M 
antibody (SDIX, Newark, Delaware). Sequence of the peptide is: 
RPLSQAVSFSTPFGLDSDVDVVMGDPVLLRSVSSDSLGPPRPVSTSSRNSAQPAPESGDLPTIEEALQI
IHSAEPRLLPDGAADGSFLHSPEGLS. Information about other antibodies is listed in SI Appendix Table 
SII. 
 
Evaluation of Olfaction 
Mice were food restricted but provided water ad libitum for 16 hours prior to testing. Testing was 
performed during daylight, starting at 9 am. A Sterilite translucent storage box (cage) (47 cm (L) x 37.8 
cm (W) x 28.3 cm (H)) was lined with paper and the base covered to a depth of 1.5 cm with bedding. The 
paper lining and the bedding were white for dark colored mouse tests and black for white mouse tests. A 
digital camera was placed 1 m above the cage and connected to a computer. Mice were placed 
individually in the cage without food and images captured over 5 minutes at a rate of 1 frame per second. 
Mice were then transferred individually to an identical cage, except that 0.5 g of bacon bits (Retail Human 
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food) were hidden in the center of the cage under the bedding and again images were captured over 5 
minutes. Videos of mice in both cages were examined using custom Python software that determines 
how long the mouse was within the center of the cage. A visual identification of eating behavior was made 
to validate the method.  
 
Measurements of Ciliary Motion 
Euthanized animals were dissected to isolate either nasal tissue, the auditory bulla, or trachea. For nasal 
tissue isolation, coronal (frontal) sections were made with a double edge, thin razor blade, such that the 
primarily respiratory epithelium covering the anterior septum was represented, along with the motile cilia 
covering the anterior turbinates. Sections were ~1 mm thick. To isolate the ciliated respiratory regions of 
the auditory bulla, the tympanic ring was excised with Vannas type curved microscissors. Ventral neck 
tissues were removed to visualize the trachea, which was excised to cut ~1 mm tracheal rings. The 
medial wall of the bulla was cut open and the bulla cut in half to create two cup-like anterior and posterior 
halves. The posterior half had a region of ciliated epithelium, that when in situ, is located superior and 
medial in the bulla and close to the cochlea. This region was not used for cilia analysis because the area 
is not extensive and ciliated cells tend to be relatively sparse. The anterior part of the bulla contained the 
cut edge of the bulla lateral to the entrance to the Eustachian tube. This edge was used to microscopically 
visualize cilia. The extensive, ciliated epithelium in this area is “carpet-like,” as found in the nasal 
respiratory epithelium, and extends into the Eustachian tube. Tissues were briefly immersed in lactate 
buffered Ringer’s solution (Alfa Aesar, MA) to remove excess mucus and blood. For all tissues, a small 
amount of petroleum jelly (Vaseline) was placed just off center onto the surface of an optically clear 
plastic macrowell culture plate using a cotton-tipped swab. The tissue sample was then placed on the 
well culture surface close to the petroleum jelly. Forceps were used to drag some petroleum jelly to the 
edge of the tissue to anchor it. Care was taken to avoid touching any areas where cilia would be located, 
such that the jelly only contacted the bony exterior surface of the tissue. 3 ml of lactate-buffered Ringer’s 
solution (Alfa Aesar, MA) was carefully added to the well to avoid dislodging the tissue. Assay buffer 
temperature was measured using a non-contact laser thermometer and was consistently 25 ± 0.6 oC. 
Cilia were oriented such that they were approximately perpendicular to the transmitted light of a Leica 
DMLB microscope. The microscope condenser was adjusted to an offset position to create a shadow to 
improve cilia visualization. A standard 5x air lens was used to guide coarse tissue positioning, and the 
cilia were then observed using a 63x water-dipping lens. An Edmund Optics USB3 high-speed camera 
was mounted onto the microscope and linked to a 64 bit PC with an AMD FX(tm) 6300 six core 3.5 GHz 
processer with 32 GB RAM, running Windows 10. The camera was controlled by Eye Cockpit software 
(IDS, Obersulm, Germany). Video sequences of cilia motion, at least 512 frames in length, were captured 
at frame rates around 600 frames per second (fps) by cropping the field of view to a region of interest 
encompassing the motile cilia. Videos with 100% successful frame transfer to the computer hard drive 
were used for subsequent data analysis.  

The open source software CiliaFA plugin for imageJ (3) was used to analyze digital video files (.avi 
format) of cilia motion. The analysis was performed as described previously (4) and has been validated 
by the authors to give accurate cilia beat frequency (CBF) data using a minimum of 128 video frames 
taken at 120 frames per second to give a 0.94 Hz frequency resolution. In brief, the software divides the 
frame into a 40 x 40 grid and measures the pixel intensity at each cell over time. The data set is 
automatically exported to a Microsoft Excel spreadsheet (specific for respiratory cilia beat frequencies of 
3-20 Hz) and a visual basic macro routine performs a Fast Fourier Transform (FFT) on the data set. The 
mean median and modal cilia beat frequencies were reported and cilia beat frequencies of < 3 Hz were 
reported as 0 Hz.  

For imaging fluid flow on Xenopus embryos, control or Camsap3 MO-injected embryos were placed 
in a dish with a V-shaped barrier. 10 µm fluorescent microspheres (FluoSpheres, Thermo Fisher, F8836) 
were then applied on the surface of embryos and imaged using Leica M165 FC Fluorescence 
Stereomicroscope (Leica) controlled by LAS Core (Leica) at the frame rate of 1 Hz. Mean distance of 
each fluorescence bead traveled per second was determined by averaging the distance for three 
consecutive frames, and then grouped for experimental conditions. 
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Measurement of Cilia Orientation 
To measure the cilia orientation of Camsap3 morphant or control morphant embryos, embryos were 
injected with CLAMP-GFP and Centrin4-RFP to mark the rootlets and basal bodies, respectively. 
Embryos were grown until stage 26-28 and fixed in 3% paraformaldehyde in PBS. Embryos were imaged 
with a Nikon A1R confocal microscope using a 60X Plan/Apo, 1.4 NA oil objective lens, and then manually 
scored for rootlet orientation using ImageJ. Oriana2 was used for all circular statistics and graphing (1). 
 
Audio Recording and Analysis  
Aged-matched WT and Camsap3tm1a/tm1a mice were placed into a shoebox-sized cage in a sound-
attenuating chamber. A Knowles surface mount MEMS microphone was placed together with its 
preamplifier into the cage on one of the short sides. Animal wheezing was recorded at a sampling rate of 
250 kHz using a KPCI-3110 computer analog-to-digital PCI board (Keithley). The traces were analyzed 
subjectively by listening to the resulting sounds. Since the signals varied over time, short time Fourier 
transformations (STFT) were used to analyze the recordings. The plots shown in SI Appendix Fig. S4 
were calculated with a window size of 1024 points, a frame shift of 1 point and 1024 points for the STFT. 
The resulting spectrograms show on the x-axis the time of the recording and along the y-axis the 
frequencies. Since frequencies above 20 kHz are inaudible to humans, the same sound track was played 
at a fifth of the original sampling rate.  
 
Histochemistry 
Following euthanasia with Euthasol (200 mg/Kg, IP) or CO2 plus thoracotomy, mouse pups were fixed 
without perfusion with 4% paraformaldehyde in phosphate buffered saline (PBS, pH 7.4) and adult mice 
were fixed by cardiac perfusion with PBS pH 7.4 followed by 4% paraformaldehyde in PBS. Heads were 
then post-fixed in the same fixative overnight at 4˚C. Three washes of PBS were performed and heads 
decalcified for a week in 10% EDTA pH 7.0 at 4˚C. Heads were washed three times in PBS pH 7.4 and 
passed through 20 min baths of 50%, 70%, 80% and 95% ethanol in water followed by two more changes 
of 95% ethanol and three changes of 100% ethanol, followed by 3 changes of 10 minutes each of xylene 
until tissue cleared. A 50% xylene, 50% molten Paraplast-Xtra (Sigma-Aldrich, St. Louis, MO) wax bath 
was applied for 20 minutes followed by three changes of 100% wax for infiltration. Fresh wax was then 
used for the final embedding using a metal mold. Tissue blocks were sectioned on a rotary microtome at 
5-10 µm and sections adhered to glass microscope slides overnight at 56˚C. Tissues were dewaxed in 
three 5 min changes of xylene followed by three changes of 100% ethanol and two changes of 95% 
ethanol, each for 1 min and then two changes of distilled water to rehydrate the tissue. Tissues were then 
subjected to either Periodic Acid Schiff (PAS) or Hematoxylin & Eosin (H&E) staining. The PAS stain 
demonstrates glycoproteins such as those in mucins as shades of pink to magenta, while the H&E stain 
shows many structures and is a common pathology stain to identify cellular structures. The PAS stain 
was as per the manufacturer’s (American MasterTech, Lodi, CA., P.A.S. satin kit cat# KTPAS) 
instructions. In brief, a 5 min oxidation in 0.5% periodic acid, water rinse, followed by 15 min color 
development in Schiff reagent, 1 min counterstain in Mayer hematoxylin and fast green, ending with a 
tap water rinse (5). For H&E staining, tissue sections were incubated in Harris’s hematoxylin for 5 min, 
tap water wash 5 min, 30 s in 1% HCl, tap water 1 min, 1 min in 0.2% ammonia water, tap water 5 min, 
10 dips in 95% ethanol, 30 s in 1% Eosin with 0.1% Phloxine B in 95% ethanol, 4% glacial acetic acid 
(6). For both PAS and H&E stains dehydration was accomplished with two changes of 95% ethanol and 
three changes of 100% ethanol, 5 minutes each followed by dehydration in two changes of xylene, 5 min 
each followed by cover glass mounting with Permount (Electron Microscopy Sciences, Hatfield, PA). For 
OMP immunohistochemistry, non-specific antibody binding was blocked by a 5% v/v goat serum in pH 
7.4 PBS incubation for 30 min at room temperature in a humidified chamber. Next, sections were 
incubated at room temperature with 1:2000 goat anti-OMP. Sections were washed in pH 7.4 PBS and 
incubated with biotinylated ant-goat IgG for 30 min followed by a PBS wash for 5 min. Sections were then 
incubated for 30 min with avidin with biotinylated horseradish peroxidase (a rabbit anti-goat Vectastain 
Elite ABC kit) and washed with PBS again. A brown color was generated by incubation with 
diaminobenzidine (DAB) peroxidase substrate to localize OMP protein. Sections were counterstained 
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with hematoxylin, dehydrated through graded ethanol baths, then xylene and coverslips applied with 
Permount. A similar protocol was followed for CAMSAP3 immunohistochemistry, except that the antibody 
used was rabbit anti-CAMSAP3-M antibody (188 ng/ml), the Vectastain Elite ABC kit was Rabbit IgG, 
and the peroxidase substrate was Vector NovaRED. 
 
Transmission Electron Microscopy (TEM)  
Nasal septae and turbinates from WT and Camsap3tm1a/tm1a mice were fixed in 0.1 M sodium cacodylate 
buffer pH 7.3, containing 2% paraformaldehyde and 2.5% glutaraldehyde for at least 24 hours and post-
fixed with 2% osmium tetroxide then 3% uranyl acetate. Tissues were dehydrated in ascending grades 
of ethanol, transitioned with propylene oxide and embedded in resin mixture of Embed 812 kit, cured in 
a 60˚C oven. Samples were sectioned on a UCT ultramicrotome (Leica Microsystems). To identify 
regions of interest 1 µm thick sections were collected, stained with Toluidine Blue O and examined by 
light microscopy. 70 nm tissue sections were collected on 200 mesh copper grids and stained with uranyl 
acetate and Reynolds lead citrate, and examined using a FEI Tecnai Spirit G2 Transmission Electron 
Microscope.  
 
Scanning Electron Microscopy (SEM) 
Nasal septae and turbinates from WT and Camsap3tm1a/tm1a mice were dissected and then fixed in 2.5% 
glutaraldehyde in 0.1 M PBS (pH 7.4) overnight at 4oC and a post-fixed in 1% OsO4 in 0.1 M PBS (pH 
7.4) for 1 hour. Samples were washed in 0.1 M PBS (pH 7.4), followed by sequential dehydration with 
20%, 40%, 60%, 80%, 95%, and 3×100% ethanol for 10 min each. Dehydrated samples were sputter-
coated with gold using the Baltec coating system and imaged on the JEOL Neo Scope Benchtop SEM. 
 
Micro-computed Tomography (micro-CT) and Magnetic Resonance Imaging (MRI) 
Micro-CT was conducted on anesthetized mice (isofluorane + 100% O2) using a nanoScan8 PETCT 
system (Mediso, Budapest, HU). The 3D images were obtained from 740 projections acquired at 75 KeV 
with exposure time of 150 msec for each projection. The final resolution was 60 microns isotropic. MRI 
was conducted on anesthetized mice (isofluorane + 100% O2) using a Bruker CLinscan 7T.  MR  3D 
images at 150 micron resolution were acquired using a gradient echo sequence with TR=100 msec and 
TE=3 msec. A dedicated 4 channel receive-only surface coil was placed on the mouse head and centered 
over the nasal region to optimize signal reception with a quadrature volume coil used for transmission. 
During CT and MRI scans the animals were maintained at physiological temperature using built in heating 
units and respiration was monitored throughout the experiments.   
 
Immunofluorescence Microscopy  
Neonatal samples of cochleae, nasal septae, and turbinates from WT and Camsap3tm1a mice were fixed 
with 2% formaldehyde/PBS for 1 hour at room temperature. Adult mice were first cardiac perfused with 
PBS and then with 2% formaldehyde/PBS for 1 hour at room temperature for fixation. Adult samples were 
decalcified in 10% EDTA/PBS at 4oC 1-2 days. Decalcified samples were placed in a series of sucrose 
solutions in 1X PBS (10%-30%) then two changes of OCT and embedded in fresh OCT. Nasal samples 
were cut into 5-10 micron sections, placed on glass slides, fixed in 2% formaldehyde for 10 minutes and 
blocked at room temperature for 1 hour in blocking solution: 5% goat serum, 2% Triton X-100 in 1X TBS 
(Tris-buffered saline). Samples were then incubated with anti-CAMSAP3-M (56.5 ng-282 ng/ml), anti-
acetylated-a-tubulin (1:500), anti-g-tubulin (1:200) at 4 oC overnight, followed by incubation with goat anti-
rabbit-IgG (1:500) and anti-mouse IgG2b (1:1000) or anti-mouse IgG1 (1:500) conjugated with 
AlexaFluor-488, AlexaFluor-568, and AlexaFluor-647. Hoechst 33342 was also included to stain nuclei 
(7). Stained sections were mounted using Fluoromount Aqueous Mounting Medium (Sigma) for imaging. 
To visualize cilia on MCCs of Xenopus embryo skin, a previously described protocol was used (1). Briefly, 
fertilized Xenopus eggs at 2-4 cell stage were injected with control or Camsap3 morpholinos (Gene Tools, 
LLC) with membrane marker (mem-RFP), developed until stage 24-28, fixed in 3%PFA in PBS for 2 
hours at room temperature. Anti-acetylated-a-tubulin followed by Cy2-conjugated anti-mouse antibodies 
for cilia, and Cy-7 conjugated phalloidin for actin were used. Images were captured using A1R+ confocal 
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microscope (Nikon) and N-SIM Structured Illumination Super-resolution Microscope (Nikon), and 
analyzed using Image J and Nikon NIS Element software.  
 
RT-PCR Analysis of Camsap3 Transcripts  
After animals were euthanized with an overdose of anesthetic (Euthasol 200 mg/kg), cochlear samples 
from WT and Camsap3tm1a/tm1a mice were dissected and immediately put into lysis buffer and processed 
using the Absolutely RNA Miniprep Kit (Agilent). cDNA synthesis was carried out with 0.5 µg of total RNA 
and random primers using M-MLV-RT (Promega). PCR reactions were performed using GoTaq Flexi 
DNA polymerase and 2 µl of cDNA and a specific primer set annealing to downstream of Camsap3 Exon 
7 (Kiaa A RT 2: 3’- GGCACAACTGAAACTGATGG -5’; Kiaa B RT 2: 3’- CATTGCTTCCATTCTCCCAG 
-5’) and a house keeping gene Cyclophilin: (CycloA: 3’-TGGCACAGGAGGAAAGAGCATC-5’; CycloB: 
3’- AAAGGGCTTCTCCACCTCGATC -5’) (8). The following PCR program was used: initial denaturation, 
95 ºC 2 min; 35 cycles 95 ºC 30 sec, 55 ºC 45 sec, 72 ºC 30 sec; final extension at 72 ºC, 5 min. PCR 
products were analyzed on 1.5% agarose gel with 100bp ladder (Thermo 15628-019).  
 
Protein Analysis using Western Blotting  
Brain tissues were dissected from Camsap3tm1a WT, Camsap3tm1a/+, and Camsap3tm1a/tm1a mice at P10-
11. Tissues from the same litter were lysed in RIPA buffer (10 mM Tris-Cl pH 8, 1 mM EDTA, 0.5 mM 
EGTA, 1% TritonX-100, 0.1% SDS, 140 mM NaCl) supplemented with 1X protease inhibitor cocktail 
(Sigma), 1 mM PMSF, and 10 µg/ml DNase I. Protein concentrations in the lysates were measured using 
the Thermo 660 nm protein assay reagent. 50 µg of total lysates were loaded per lane of a 4-20% gradient 
gel, transferred to nitrocellulose membrane with CAPS buffer (pH 11), and CAMSAP3 detected by anti-
CAMSAP3-M (22.6-113 ng/ml), followed by goat anti-rabbit IgG-HRP (1:5000). For the loading control, 
Tubulin was detected by anti-a-Tubulin (1:2000) and goat anti-mouse HPR (1:5000). Signals were 
detected using Amersham ECL Prime Western Blotting Detection Reagent (GE). A Kodak Imaging 
System was used to capture the images. Band intensities of CAMSAP3 and Tubulin were measured 
using ImageJ and plotted using Prism 7 (GraphPad).  
 
Cell Culture and Transfection  
Plasmids encoding V5 or GFP tagged mouse Camsap3 (9) and GFP-tagged human CAMSAP2 (obtained 
from Anna Akhmanova ) (10) were transiently transfected into OK (opossum kidney) and HEK293 cells 
as previously described (9). 24-45 hours post transfection, cells were collected and lysed for Western 
blot or were fixed with 2% formaldehyde for immunofluorescence (IF). For immunofluorescent 
experiments, cells were incubated with monoclonal anti-V5 and rabbit polyclonal anti-CMSAP3-M for 1 
hour, followed by incubation with secondary antibodies, goat anti-mouse IgG-Alexa Fluor 546 and goat 
anti-rabbit IgG-Alexa Fluor 488. Samples were imaged using A1R+ confocal microscope (Nikon). In 
SDS/PAGE Western blot experiments, cells were lysed in cold lysis buffer (50 mM Tris-HCl, pH 7.6, 150 
mM NaCl, 1% Triton X-100) supplemented with a protease inhibitor cocktail (1:100) and 100 µg/ml PMSF. 
Insoluble material was removed by centrifugation at 10,000 xg for 15 minutes. Proteins were resolved 
using 4-20% SDS-PAGE, transferred to nitrocellulose membrane with CAPS buffer (pH 11), followed by 
immunoblotting using anti-CAMSAP3-M, anti-GFP, or anti-a-tubulin followed by anti-rabbit IgG-HRP or 
anti-mouse IgG-HRP. Signals were detected using SuperSignal West Pico Chemiluminescent Substrate 
(Thermo). A Kodak Imaging System was used to capture the images. 
 
Statistical Analyses 
Any changes in anatomy, protein quantity, and/or physiology were statistically analyzed (Chi-square test, 
ANOVA, t-tests, Tukey-Kramer test, Dunnett’s multiple comparison test, circular statistics) to determine 
significance as described before (7, 11, 12). Values of p < 0.05 were considered to indicate statistical 
significance.  
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TABLES 

 
Table SI. Mendelian inheritance in the offspring of Camsap3tm1a mice lines 
Strain 

 
Genotype Total 

# 
% Observed 
(%Expected) 

Significance 

C57B6N WT 41 39.42 (25) c2=32.37 
 Camsap3tm1a/+ 61 58.65 (50) p<0.0001 
 Camsap3tm1a/tm1a 2 1.92 (25) Yes 

CBA/CaJ WT 13 35.14 (25) c2=2.676 
 Camsap3tm1a/+ 18 48.65 (50) p = 0.2624 
 Camsap3tm1a/tm1a 6 16.22 (25) No 

FVB WT 45 22.17 (25) c2=1.266 
 Camsap3tm1a/+ 109 53.69 (50) p = 0.5310 
 Camsap3tm1a/tm1a 49 24.14 (25) No 
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Table SII. Antibodies and Chemicals 
 

Antibodies SOURCE IDENTIFIER 
Rabbit anti-CAMSAP3-M Zheng Lab  
Rabbit anti-CAMSAP2 Proteintech 17780-1-AP RRID: AB_2068826 
Mouse anti-a-tubulin  Sigma T6199 RRID: AB_477583 
Mouse anti-acetylated-a- 
tubulin (IgG2b) 

Thermo Fisher 32-2700 RRID: AB_2533073 

Mouse anti-V5 Thermo Fisher R960-25  RRID: AB_2556564 
Mouse anti-g-tubulin (IgG1) Santa Cruz sc-51715 RRID: AB_630410 
Mouse anti-GFP (Living 
Colors® A. v. monoclonal 
antibody, JL-8) 

Takara Bio USA 632380 RRID AB_10013427 

Goat anti-OMP FUJIFILM Wako-Chemicals 
U.S.A. Corp. 

 

Goat anti-rabbit Alexa 488 
conjugated 

Thermo Fisher RRID: AB_143165 

Goat anti-mouse IgG1 
Alexa 568 conjugated 

Thermo Fisher RRID: AB_141611 

Goat anti-mouse IgG2b 
Alexa 647 conjugated 

Thermo Fisher RRID: AB_1500900 

Peroxidase-AffiniPure goat 
anti-mouse IgG (H+L)  

Jackson ImmunoResearch 
Lab 115-035-146 

RRID: AB_2307392 

Goat anti-rabbit IgG-HPR 
conjugated 

Thermo Fisher 14-9965-80 RRID: AB_1548836 

Dylite 650 conjugated 
phalloidin 

Thermo Fisher 21838 RRID: AB_2532159 

Cy2-AffiniPure Donkey anti-
mouse antibodies IgG 
(H+L)  

Jackson ImmunoResearch 
Lab 715-225-150 

RRID: AB_2340826 

Rabbit anti-goat Vectastain 
Elite ABC kit 

Vector Laboratories, Inc., 
Burlingame, CA 

PK-6101 LOT ZF0607 

 
Chemicals 
Hoechst 33342  Thermo, H3570  
NovaRED Substrate kit, 
Peroxidase 

Vector Laboratories, Inc., 
Burlingame, CA 

SK-4800 LOT ZF0710 

DAB Substrate kit, 
Peroxidase 

Vector Laboratories, Inc., 
Burlingame, CA 

SK-4105 
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FIGURES 
 

 
 
 
SI Figure S1. Specificity validation of the anti-CAMSAP3-M antibody. A. The structure of CAMSAP3. The 
orange line indicates the antigen location for anti-CAMSAP3-M. Protein-Protein interaction domains: CH, 
calponin homology; CC, coiled coil; M, microtubule-binding domain; H, helical domain; CKK, carboxy-
terminal tubulin-binding domain. B. Validation of anti-CAMSAP3-M immunofluorescence. Opossum 
kidney (OK) cells were transfected with plasmids encoding mouse CAMSAP3-V5-His. The expression of 
CAMSAP3 with C-terminal V5-His tags in OK cells was detected by anti-CAMSAP3-M (middle, green) 
and anti-V5 (left, red) antibodies. The left image superimposes green and red images to indicate that the 
staining for V5 and CAMSAP3 overlaps. Similar staining patterns for both antibodies indicate that anti-
CAMSAP3-M recognizes CAMSAP3 protein (n=6). Scale bars, 10 µm. C. Validation of anti-CAMSAP3-
M in Western blot. HEK293T cells transfected with control, human CAMSAP2-GFP, and mouse 
CAMSAP3-GFP constructs were collected for Western blot analysis. Livingcolors JL-8 (GFP) antibody 
was used to detect GFP that was attached to the C-terminus of CAMSAP2 and CAMSAP3 proteins, and 
anti-a-tubulin was used to detect tubulin, the loading control. Expression of CAMSAP3-GFP was detected 
by both anti-GFP and anti-CAMSAP3-M antibody (56.5 ng/ml). The same molecular weight bands were 
recognized by both anti-GFP and anti-CAMSAP3-M: the full-length CAMSAP3-GFP protein (red arrow) 
and a smaller band (back arrow). The small band is likely a degraded fragment from CAMSAP3-GFP as 
the same size band was also recognized by anti-GFP. In addition, a faint band in the hCAMSAP2-GFP 
lane was also detected by anti-CAMSAP3 (*). Judging from the intensities of signals detected by anti-
GFP, a significant amount of hCAMSAP2-GFP was present in the sample. These data suggest that anti-
CAMSAP3-M has much higher affinity for CAMSAP3 than for CAMSAP2 (n=3).  
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SI Figure S2. Camsap3 expression is reduced, but not eliminated, in Camsap3tm1a/tm1a. A-C. Semi-
quantitative RT-PCR showing Camsap3 mRNA expression in cochleae of Camsap3tm1a/tm1a (Ho). The 
expected 338 bp products for Camsap3 (A) and 301 bp for Cyclophilin (B) were observed in both WT 
and Camsap3tm1a/tm1a samples. Reaction without RT (no RT) was included as negative control. C. 
Quantitation showing the relative band intensities from reaction A normalized to that of B, and plotted 
using one of the WT samples (*) as the reference. Camsap3tm1a/tm1a showed reduced levels of Camsap3 
mRNA compared to WT. D-E. Representative images of Western blot showing expression of CAMSAP3 
proteins in Camsap3tm1a mice. Brain lysates from P10 WT, Camsap3tm1a/+, and Camsap3tm1a/tm1a 
littermates were detected using anti-CAMSAP3-M (D), anti-CAMSAP2 (E), and anti-a-Tubulin (F) 
antibodies. Anti-CAMSAP3-M recognized two bands. The red arrow (D) indicates the expected band for 
CMASAP3, which is absent or reduced signal intensity in the lanes of Camsap3tm1a/tm1a samples. Because 
anti-CAMSAP3-M also recognized CAMSAP2 with much lower affinity (SI Appendix Fig. S1C), the D blot 
was stripped and re-probed with anti-CAMSAP2 (1:20,000). The upper band was recognized by anti-
CAMSAP2 (E). Because CAMSAP2 is highly expressed in neurons/brain (13, 14), it is not surprising that 
anti-CAMSAP3-M detected CAMSAP2 signal in brain lysates. The bands lower than CAMSAP3 were 
likely fragments degraded from the full-length CAMSAP3 or potential isoforms (9) as they were not visible 
in lanes of Camsap3tm1a/tm1a samples. The signal intensities of CAMSAP3 (indicated by red arrow) and 
tubulin were measured, and tubulin was used as loading control. Quantitation from three independent 
experiments are shown in Fig. 1B. 
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SI Figure S3. A. Abnormal upturned snout and domed head in an adult Camsap3tm1a/tm1a (Homo) in 
CBA/CaJ strain background (lower, P194) as compared to a WT littermate (Top). B. Snout asymmetry 
observed in a Camsap3tm1a/tm1a in CBA/CaJ strain background, showing deviation to the right. 
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SI Figure S4. Audio recordings from WT and Camsap3tm1a/tm1a mice. A. A trace of microphone voltage 
(top) and a spectrogram (bottom) of the sound recordings from a group of WT mice. The frequency 
components above and below 20 kHz (arrow) are small. B. Microphone voltage (top) and the companion 
spectrogram (bottom) from a group of Camsap3tm1a/tm1a mice showing higher amplitudes and additional 
frequency components. The recordings in Camsap3tm1a/tm1a are much noisier than in controls. C. Another 
shorter recording (10 seconds) from the same group of Camsap3tm1a/tm1a mice. Multiple frequency 
components, including those above 20 kHz (C, arrow), are clearly shown. The corresponding sound file 
for (C) is provided in SI Appendix Audio S1.  
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SI Figure S5. Older Camsap3tm1a/tm1a showing mucin accumulation in nasal cavity including sinus. WT 
(A, C) frontal section of P204 CBA/CaJ mouse head stained with PAS showing a patent maxillary sinus 
(x) and airway (a). The septum (Sep) is vertical and the turbinates are of normal appearance (*t), while 
the Camsap3tm1a/tm1a littermate (B, D) shows mucin secretions (m, stained magenta/purple) filling the 
maxillary sinus (x) and obstructing the airway (a). Scale bars, 500 µm. 
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SI Figure S6. Airway blockage and structural abnormality in young adult Camsap3tm1a/tm1a. Micro-CT (A-
B) and MRI (C-D) images of young adult Camsap3tm1a/+ (A), WT (C) and Camsap3tm1a/tm1a (B, D), showing 
deviated septum (B, arrow) and airway blockage (D, *) in the posterior nasal cavity. Scale bar, 2 mm. 
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SI Figure S7. Infection in the nasal cavity of Camsap3tm1a/tm1a mice. High magnification of a non-infected 
WT (A) turbinate stained with H&E showing a thick olfactory epithelium on the superior surface (arrow). 
In contrast, the Camsap3tm1a/tm1a (B) shows a much thinner olfactory epithelium (arrow) bathed in a sea 
of mucus (m) with leukocyte infiltrate (blue arrowhead), which are shown at higher magnification in panel 
C. Scale bars: 40 μm  (A-B), 20 μm (C). 
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SI Figure S8. Anti-OMP staining showing OSN distribution at three ages: neonatal (P1, A-D), young adult 
(P67, E-F), and older adult mice (P204, G-H). A-D: Fewer mature OSNs (brown, NovaRED stain) in P1 
Camsap3tm1a/tm1a (B, D) than WT (A, C). C-D are enlarged images of the boxed regions in A-B. The 
olfactory epithelium (OE) layer lies above the yellow line. E-H: Progressive nasal blockage and loss of 
OSNs in Camsap3tm1a/tm1a  mice. A two-month-old WT (E) shows a thick layer of mature OSNs (arrow) 
compared to a thin epithelium populated with only a few mature OSNs (arrow) in an age-matched 
Camsap3tm1a/tm1a  (F), which also exhibits mucus and debris build-up (b). At ~7 months (G), the typical 
mature olfactory epithelium is evident in WT (arrow), however, mature OSNs are largely absent in the 
epithelium of the age-matched Camsap3tm1a/tm1a  (H) and the mucus and debris build-up is extensive (b).  
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SI Figure S9. Scanning electron micrographs (SEM) of nasal respiratory epithlium. (A) P20 wild type 
(WT) compared to (C) P20 Camsap3tm1a/tm1a. (B) P3 WT compared to (D) P3 Camsap3tm1a/tm1a. Arrows 
show long cilia. Yellow boxes shown in higher magnification in Fig. 3. Bars = 10 μm. 
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SI Figure S10. Periodic Acid Schiff’s (PAS) staining for glycoproteins in mucus (pink/purple).  (A) WT 
section of P1 septal respiratory epithelium compared to (B) the septum respiratory epithelium from a 
Camsap3tm1a/tm1a. Scale bars, 40 μm. (C) P204 WT respiratory epithelium compared to (D) P204 
Camsap3tm1a/tm1a, which showed goblet cell hyperplasia. Scale bars, 50 μm. (E) P204 WT nasal olfactory 
epithlium compared to (F) P204 Camsap3tm1a/tm1a. Scale bars, 40 μm.  
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SI Figure S11. Reduction of CAMSAP3 in MCCs of Xenopus embryos affects the morphology of cilia on 
MCCs. Xenopus embryo injected with control and Camsap3-MOs were stained with anti-acetylated-
tubulin (Ac-Tub, green) for cilia, and with phalloidin-cy7 (Phalloidin, violet) for actin (marks cell boundary). 
Membrane-RFP marker was also co-injected with control or Camsap3-MOs and serves as injection 
control (mem-RFP, red). Control-MO-injected embryos exhibited robust cilia on MCCs (top), while 
Camsap3-MO-injected embryos tend to have MCCs with shorter and/or sparse cilia (bottom). 
Representative images from seven independent experiments are shown. Scale bars, 20 µm. 
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SI Figure S12. CAMSAP3 is located at the apical surface of respiratory epithelia and the epithelial cells 
of submucosal glands. Immunofluorescent images of septum epithelia from WT (A) and Camsap3tm1a/tm1a 
(B) at age of P30. Anti-CAMSAP3-M (Green), anti-g-tubulin (Red), anti-acetylated-a-tubulin (Violet), and 
Hoechst 33342 (Blue, nuclei). Scale bars, 10 µm. C. CAMSAP3 signals (anti-CAMSAP3-M antibody, 
brown NovaRED stain) are mostly located at the apical cortex of epithelial cells in the acini of submucosal 
glands in young adult WT. The inset shows an enlarged image of a submucosal gland. Similar expression 
patterns are found in small intestinal epithelial cells (15), suggesting that CAMSAP3 may be involved in 
organizing MT polarity. 
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SI Figure S13. CAMSAP3 distribution in MCCs. Immunofluorescent images of nasal MCCs on turbinates 
from Camsap3tm1a/+ (A) and Camsap3tm1a/tm1a (B) mice at P11. Labeling in the Camsap3tm1a/+ shows two 
CAMSAP3 lines or simply the upper green line (arrow in A). Most MCCs from the Camsap3tm1a/tm1a have 
no CAMSAP3 staining or, if present, it is associated with only the lower green line, i.e., with the basal 
bodies  (arrow in B). Merged and individual channels of the boxed regions in the left panels are shown 
on the right. Anti-CAMSAP3-M (CAMSAP3, Green), anti-g-Tubulin (g-Tub, Red), anti-acetylated-a-
Tubulin (Ac-Tub, Violet), and Hoechst 33342 (Blue, nuclei). Scale bars as indicated. 
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SI Figure S14.  CAMSAP2 expression patterns in MCCs are different from CAMSAP3. 
Immunofluorescent images of nasal MCCs from WT (A, C, E) and Camsap3tm1a/tm1a (B, D, F) at P3 (A-B) 
and P30 (C-F). There are no differences in CAMSAP2 staining patterns between WT and 
Camsap3tm1a/tm1a littermates at both P3 and P30. Antibodies include: anti-CAMSAP2 (Green), anti-g-
Tubulin (g-Tub, Red), anti-acetylated-a-Tubulin (Ac-Tub, Violet), and Hoechst 33342 (Blue, nuclei). Scale 
Bars: 10 µm. (A-B) MCCs from P3 WT (A) and Camsap3tm1a/tm1a littermates (B). CAMSAP2 (green A’, 
B’) staining is found throughout the cytoplasm of MCCs. In contrast to the two lines of CAMSAP3-staining 
(Fig. 5C-C’), no obvious CAMSAP2-green lines are found near basal bodies (g-Tub, red line). (C-D) 
MCCs from P30: WT (C) and Camsap3tm1a/tm1a littermates (D). CAMSAP2 staining (green, C’, D’) co-
localizes with basal bodies (g-Tub, red line C”, D”), while CAMSAP3 staining is observed above the basal 
bodies (Fig. 5E-E’, G).  (E-F) MCCs are imaged at lower magnification at P30, showing co-localization 
of CAMSAP2 staining (green) with the basal body marker (g-Tub, red). 
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SI Figure 15. A representative TEM image showing basal feet in a WT-MCC in the nasal cavity (P30). 
Yellow arrows indicate basal feet with aligned orientations. Scale bar, 200 nm.  
 
  



	
	

24 
 

 
 
SI Figure 16. The primary cilia of cochlear epithelial cells of Camsap3tm1a/tm1a appear normal. 
Immunofluorescent images of cochlear epithelial cells within the organ of Corti of WT (A) 
and Camsap3tm1a/tm1a (B) at P3 are shown. Antibodies: anti-CAMSAP3-M (Green), anti-g-Tubulin (g-Tub, 
red, the basal body marker), anti-acetylated-a-Tubulin (Ac-Tub, violet, the cilium marker), and Hoechst 
33342 (Blue, nuclei). Scale Bars: 10 µm. The epithelial cells of Camsap3tm1a/tm1a (B), with minimal 
CAMSAP3 signals, have normal primary cilia (violet) and basal bodies (red), and their staining patterns 
are similar to those of WT. CAMSAP3 signals (A) seldom co-localize with basal body signals, but are 
found around the cellular boundary at the apical cortex, similar to a previous report (15) 
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Movies and Audio 
 
Movie S1: Audio recordings of 5 Camsap3tm1a/tm1a mice. Camsap3tm1a/tm1a mice make wheezing sounds, 
as shown in SI Appendix Fig. S4. Pay attention to sound. 
 
Movie S2. Live imaging of multiciliary synchronized motion and directional flow (moving particles) on the 
surface of MCCs from a WT nasal cavity. Related to Fig. 4A. 
 
Movie S3. Live imaging of multiciliary beating on the surface of MCCs from the nasal cavity of a 
Camsap3tm1a/tm1a. Reduced directional flow is observed. Related to Fig. 4A. 
 
Movie S4. Live imaging of multiciliary synchronized motion and directional flow (moving particles) on the 
surface of MCCs from a WT tympanic cavity. Related to Fig. 4A. 
 
Movie S5. Live imaging of multiciliary beating on the surface of MCCs from the tympanic cavity of a 
Camsap3tm1a/tm1a, showing no motion or slow rotational motion. Related to Fig. 4A 
 
Movie S6. Live imaging of multiciliary synchronized motion and directional flow (moving particles) on the 
surface of MCCs from a WT trachea. Related to Fig. 4A. 
 
Movie S7. Live imaging of multiciliary beating on the surface of MCCs from the trachea of a 
Camsap3tm1a/tm1a, showing no motion or slow rotational motion. Related to Fig. 4A. 
 
Movie S8. Live imaging of directional flow tracked by fluorescent-beads moving across the surface of 
MCCs from a Xenopus embryo injected with control-MO. Related to Fig. 4B. 
 
Movie S9. Live imaging of fluorescent beads drifting on the surface of MCCs from a Xenopus embryo 
injected with Camsap3-MO. Related to Fig. 4B. 
 
 
Audio S1. Wheezing sounds produced by a Camsap3tm1a/tm1a.  The original sampling rate does not allow 
humans to perceive the high-frequency components (>20 kHz). However, when the same sound track 
was played at a fifth of the original sampling rate, the high frequency components become audible to 
human ear. 
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