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Supporting Information Text11

Supplementary Information A: Proof of Result 112

In defining Fn(p) for all j = k, k + 1, . . . , n we take j ≥ n
2 + 1 when n is even and j ≥ n+1

2 when n is odd. Therefore 2j > n,13

and so14

pj(1− p)n−j − pn−j(1− p)j = pn−j(1− p)n−j
[
p2j−n − (1− p)2j−n] . [A1]15

It is easily seen that for all k = 1, 2, . . .,
pk+1 − (1− p)k+1 = pk − (1− p)k − p(1− p)

[
pk−1 − (1− p)k−1] . [A2]

Also
p− (1− p) = p2 − (1− p)2 = (2p− 1). [A3]

Therefore, by induction, we deduce that
[
pk − (1− p)k

]
for all k = 1, 2, . . . is of the form (2p− 1) multiplied by a polynomial

in p(1− p). As

Fn(p) =
n∑
j=k

D(j)
n

(
n
j

)[
p(1− p)

]n−j[
p2j−n − (1− p)2j−n], [A4]

we conclude that Fn(p) = (2p − 1)Gn(p(1 − p)), and since Fn(0) = Fn(1) = 0 we have Gn(0) = 0. Note that since16

D(n) = D(0) = 0, p(1− p) is a factor of Fn(p).17

Supplementary Information B: Proof of Result 218

Since there is symmetry in the model between the two cultural variants A and B, we analyze only the stability of p∗ = 0,19

namely fixation in type B.20

Let p = ε. Then from eq. (6), as D(0) = D(n) = 0, we have

ε′ = ε+
n−1∑
j=1

D(j)
n

(
n
j

)
εj(1− ε)n−j . [B1]

Therefore the linear approximation of [B1] in terms of ε is

ε′ = ε+ D(1)
n

(
n
1

)
ε = ε

[
1 +D(1)

]
. [B2]

Hence if D(1) < 0, then p∗ = 0 is locally stable, whereas if D(1) > 0, p∗ = 0 is not locally stable.21

For the stability of p∗ = 1
2 , we use eq. [A4], written as

p′ = p+ p(1− p)
n−1∑
j=k

D(j)
n

(
n
j

)[
p(1− p)

]n−j−1 [
p2j−n − (1− p)2j−n] , [B3]

where k = n
2 + 1 when n is even and k = n+1

2 when n is odd.22

Let p = 1
2 + ε, 1− p = 1

2 − ε, p(1− p) = 1
4 − ε

2, and p′ = 1
2 + ε′. Then

ε′ = ε+
(

1
4 − ε

2) n−1∑
j=k

D(j)
n

(
n
j

)(
1
4 − ε

2)n−j−1
[(

1
2 + ε

)2j−n −
(

1
2 − ε

)2j−n
]
. [B4]

Expand
(

1
2 ± ε

)2j−n. Then since (2j − n) ≥ 1, up to non-linear terms in ε, we have(
1
2 ± ε

)2j−n '
(

1
2

)2j−n ± (2j − n)
(

1
2

)2j−n−1
ε. [B5]

So up to non-linear terms in ε, (
1
2 + ε

)2j−n −
(

1
2 − ε

)2j−n ' 2(2j − n)
(

1
2

)2j−n−1
ε. [B6]

Thus the linear approximation of [B4] is

ε′ = ε+ ε

4

n−1∑
j=k

D(j)
n

(
n
j

)(
1
4

)n−j−1 · 2(2j − n)
(

1
2

)2j−n−1
, [B7]

or

ε′ = ε

[
1 +

(
1
2

)n−2
n−1∑
j=k

D(j)
n

(nj) (2j − n)

]
. [B8]

Therefore, if

−2n−1 <

n−1∑
j=k

D(j)
n

(
n
j

)
(2j − n) < 0, [B9]

then p∗ = 1
2 is locally stable.23
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Supplementary Information C: Proof of Result 724

When µ = 0, L0 in (41) is the diagonal matrix whose N diagonal elements are (1 + si)
[
1 −Di(n − 1)

]
for i = 1, 2, . . . , N .25

Therefore, these are the N eigenvalues of M0, and ρ0(0), the largest positive eigenvalue, is max1≤i≤N

{
(1 + si)

[
1−Di(n− 1)

]}
.26

When µ = N−1
N

, we also have (1− µ) = µ
N−1 = 1

N
, and (41) reduces to

ε′i = 1
N

(1 + si)
[
1−Di(n− 1)

]
εi + 1

N

∑
j 6=i

(1 + sj)
[
1−Dj(n− 1)

]
εj . [C1]

Therefore, when µ = N−1
N

, if ε = (1, 1, . . . , 1) from [C1] we have

ε′i = 1
N

N∑
j=1

(1 + sj)
[
1−Dj(n− 1)

]
εj for i = 1, 2, . . . , N.

Hence, in this case L0(1, . . . , 1) = 1
N

∑N

j=1(1 + sj)
[
1−Dj(n− 1)

]
(1, . . . , 1), and by the Perron-Frobenius theorem

ρ
(
N−1
N

)
= 1
N

N∑
j=1

(1 + sj)
[
1−Dj(n− 1)

]
. [C2]

A similar proof applies to ρ(0) and ρ(N−1
N

).27

Supplementary Information D: Two Populations, No Selection, D2 = −D128

We saw in eq. (63) that the recursions (57) had equilibria of the form (0, 0), (1, 1), and ( 1
2 ,

1
2 ). However, when p2 6= p1 at

equilibrium, we have to solve Q(p2) = 0 where Q(p2) is given by eq. (62). Solving Q(p2) = 0 gives

p2 = 1
4

[
(3− 2p1)±

√
12p1(1− p1) + 1

]
. [D1]

As we need 0 < p2 < 1, we actually have

0 < p1 <
1
2 =⇒ p2 = 1

4

[
(3− 2p1)−

√
12p1(1− p1) + 1

]
1
2 < p1 < 1 =⇒ p2 = 1

4

[
(3− 2p1) +

√
12p1(1− p1) + 1

]
.

[D2]

To classify these possible equilibria we have to use [D2] in (58a) and solve for p1 subject to 0 < p1 < 1. In fact, substituting
[D2] into (58a) and using D2 = −D1 with (60), we must solve the equation

F (p1) = D1p1(1− p1)(2p1 − 1)(1− 2µ)− µp1 + µ

4

[
3− 2p1 ±

√
12p1(1− p1) + 1

]
, [D3]

where 0 < p1 < 1. Observe that

F (0) = µ

4 [3± 1] > 0,

F
(

1
2

)
= −µ2 + µ

4 [2± 2],

F (1) = −µ+ µ

4 [1± 1].

[D4]

Hence, if p2 = 1
4

[
(3− 2p1)−

√
12p1(1− p1) + 1

]
as F (0) > 0 and F

(
1
2

)
< 0, and there exists p∗1 with 0 < p∗1 <

1
2 such29

that F (p∗1) = 0 in accordance with [D2], in which case also 0 < p∗2 <
1
2 . If p2 = 1

4

[
(3− 2p1) +

√
12p1(1− p1) + 1

]
, then30

as F
(

1
2

)
> 0 and F (1) < 0 we have a solution p∗1 of F (p1) = 0 satisfying 1

2 < p∗1 < 1 following [D2], and also 1
2 < p∗2 < 1.31

Therefore, in addition to (0, 0),
(

1
2 ,

1
2

)
, (1, 1) two more polymorphic equilibria exist: (p∗1, p∗2) with 0 < p∗1, p∗2 < 1

2 , and (p∗∗1 , p∗∗2 )32

with 1
2 < p∗∗1 , p∗∗2 < 1. Simulations have shown that these equilibria can be stable.33
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Supplementary Information E: Two Populations, No Selection, D2 = D134

If D2 = D1, then from (59),
p1(1− p1)(2p1 − 1) = −p2(1− p2)(2p2 − 1). [E1]

Let z = 1− p2, then [E1] becomes
p1(1− p1)(2p1 − 1) = z(1− z)(2z − 1). [E2]

Using the above analysis, we conclude that either 1− p2 = z = p1 or

(1− p2) = z = 1
4

[
(3− 2p1)±

√
12p1(1− p1) + 1

]
[E3]

with the same specification as in eq. [D2].35

Observe that if p1 = 0 then from (58) z = 1 and p2 = 0, and when p1 = 1 then z = 0 and p2 = 1. Thus (0, 0) and (1, 1) are
possible equilibria. If p2 = 1− p1 (z = p1), using (58a) and [E1], we have

D1p1(1− p1)(2p1 − 1)(1− 2µ) + µ(1− 2p1) = 0. [E4]

Hence, if p1 = 1
2 , then also p2 = 1

2 and we have the equilibrium point
(

1
2 ,

1
2

)
. Otherwise

D1p1(1− p1)(1− 2µ) = µ [E5]

and
p1(1− p1) = µ

D1(1− 2µ) . [E6]

We assume that 0 < µ < 1
2 . Solutions to (E5) exist if 0 < µ

D1(1−2µ) <
1
4 or if D1 >

4µ
1−2µ . Since we also require −2 < D1 < 1,36

we must have 4µ
1−2µ < 1 or µ < 1

6 . Thus we can have two polymorphic equilibria (p∗1, 1− p∗1) or (1− p∗1, p∗1), both satisfying [E6]37

and p∗2 = 1− p∗1, provided µ < 1
6 .38

To check the local stability of these equilibria, the linear approximation of our transformation (57a) and (57b) near (p∗1, 1−p∗1)
is given by [

ε′1
ε′2

]
=
[

(1− µ)A µA
µA (1− µ)A

][
ε1
ε2

]
, [E7]

where
A = 1 +D1

[
6p∗1 − 6 (p∗1)2 − 1

]
. [E8]

Using [E6], [E8] reduces to
A = 1−D1 + 6µ

1− 2µ. [E9]

The eigenvalues of the matrix in [E7] determining the stability of either (p∗1, 1− p∗1) or (1− p∗1, p∗1) are A and (1− 2µ)A.39

Since A > 0 and D1 < 1, the largest eigenvalue is A and it is smaller than 1 if D1 >
6µ

1−2µ . Thus we need µ < 1
8 for these40

equilibria to be stable.41

To sum up, when µ < 1
8 we have two polymorphic equilibria both of which are stable when D1 >

6µ
1−2µ and unstable if42

4µ
1−2µ < D1 <

6µ
1−2µ . An example with two such stable equilbria is shown in Figure S4. When 0 < D1 <

4µ
1−2µ these equilibria43

do not exist.44

Supplementary Information F: Two Populations: interaction of migration, selection, and conformity45

Consider the case s = 0.25, D1 = 0.21, D2 = 0.18 with three role models. Here s/(1 + s) = 0.2 so that in the absence of46

migration, in subpopulation 1, p1 = 0 and p1 = 1 are both stable, while in subpopulation 2, only p2 = 1 is stable. Including47

migration entails that (p1, p2) = (0, 0) becomes unstable and (p1, p2) = (1, 1) is locally stable.48

Another interesting example of the effect of migration sets s = 0.25, D1 = −0.3, and D2 = 0.05. In this case, population49

1 would maintain a polymorphism in the absence of population 2 while population 2 would fix on p2 = 1 in the absence of50

population 1. The fixation of B, namely (p1, p2) = (0, 0) is unstable for all µ ∈
[
0, 1

2

]
, but fixation of A, namely (p1, p2) = (1, 1),51

is stable for µ > 0.0438. This suggests that if 0 < µ < 0.0438, the two-population system is able to maintain a polymorphism,52

but greater migration (larger µ) results in the loss of type B from both populations. The delicacy of the interaction between s,53

D1, and D2 in determining the evolutionary dynamics is exemplified by changing D1 = −0.3 to D1 = −0.5, in which case the54

threshold for stability of (p1, p2) = (1, 1) changes from µ > 0.0438 to µ > 0.3529. If D1 and D2 are kept at −0.3 and 0.05,55

respectively, but s is reduced from 0.25 to 0.1, then fixation in A, (p1, p2) = (1, 1), is unstable for all µ ∈
[
0, 1

2

]
, and fixation in56

B, (p1, p2) = (0, 0), is also unstable for all µ ∈
[
0, 1

2

]
, suggesting that the polymorphism is stable for all legitimate values of µ.57
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Fig. S1. Frequency-dependent bias with n = 3. The top row (a–c) shows the shape of Q3(p) = in eq. (25) for three values of v = D(2), the conformity coefficient: (a)
conformity bias with D(2) = 2s > s/(1 + s), which gives p∗ < 1

2 , (b) unbiased transmission with D(2) = 0, (c) anti-conformity bias with D(2) = −2s, which gives
p∗ > 1

2 . The circles mark the value of the polymorphic equilibrium p∗ (which solves Q3(p) = 0), if it exists. The bottom row (d–f) shows the frequency of variant A over
time, with the dashed line denoting p∗. Different lines are for different initial frequencies of A. It can be seen that either type A or type B goes to fixation, with a larger domain
of attraction for the favorable variant A when D(2) = 2s; that A goes to fixation when D(2) = 0 regardless of initial conditions; and that p∗ > 1

2 is globally stable when
D(2) = −2s, such that a polymorphism is maintained over the long term. Here phenotype A has a selective advantage of s = 0.1.

Kaleda Krebs Denton, Yoav Ram, Uri Liberman, and Marcus W. Feldman 5 of 9



Fig. S2. The frequency of A, p from Eq. [7], is plotted over time. The parameters are n = 14 and D(j) = −j + 0.00001.
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Fig. S3. Mean fitness increases with frequency-dependent bias. The figure shows the population mean fitness W (eq. 24) at the protected polymorphism p∗ (the solution to
eq. 25, if it exists) as a function of the coefficients of conformity v. In the shaded area s < v < s/(1 + s) and p∗ does not exist. Here, s = 0.1.
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Fig. S4. There are two populations with equal conformity parameters D1 = D2 = 0.4 and n = 3. There is no selection (s1 = s2 = 0). Migration occurs between the two
populations at rate µ = 0.05. The x-axis is the initial frequency of variant A in population 1 and the y-axis is the initial frequency of variant A in population 2. The colors
correspond to the frequency of variant A at equilibrium given the initial conditions. Red corresponds to fixation of A, dark blue corresponds to loss of A, and orange and light
blue correspond to the polymorphic solutions of eq. (64).
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Table S1. Supplementary Table S1: Properties of φφφn

n Lower Bound for φφφn Dynamics Near Lower Bound

3 0 Converges to p = 1
2

4 −0.5 Converges to p = 1
2

5 −1.25 2-generation cycles
6 −1.5 2-generation cycles
7 −1.968750 2-generation cycles
8 −2.062500 2-generation cycles
9 −2.390625 4-generation cycles

10 −2.421875 Chaos
11 −2.685547 Chaos
12 −2.695312 10-generation cycles
13 −2.926270 Chaos
14 −2.929199 Chaos
15 −3.140259 Chaos
16 −3.141113 Chaos
17 −3.337952 70-generation cycles
18 −3.338196 Chaos
19 −3.523796 Chaos
20 −3.523865 Chaos
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