

² Supplementary Information for

Cultural evolution of conformity and anti-conformity

4 Kaleda Krebs Denton, Yoav Ram, Uri Liberman, and Marcus W. Feldman

5 Marcus W. Feldman.

1

6 E-mail: mfeldman@stanford.edu

7 This PDF file includes:

8 Supplementary text

- 9 Figs. S1 to S4
- 10 Table S1

Supporting Information Text

¹² Supplementary Information A: Proof of Result 1

In defining $F_n(p)$ for all j = k, k+1, ..., n we take $j \ge \frac{n}{2} + 1$ when n is even and $j \ge \frac{n+1}{2}$ when n is odd. Therefore 2j > n, and so

$$p^{j}(1-p)^{n-j} - p^{n-j}(1-p)^{j} = p^{n-j}(1-p)^{n-j} \left[p^{2j-n} - (1-p)^{2j-n} \right].$$
[A1]

It is easily seen that for all $k = 1, 2, \ldots$,

$$p^{k+1} - (1-p)^{k+1} = p^k - (1-p)^k - p(1-p) \left[p^{k-1} - (1-p)^{k-1} \right].$$
 [A2]

Also

15

$$p - (1 - p) = p^{2} - (1 - p)^{2} = (2p - 1).$$
 [A3]

Therefore, by induction, we deduce that $[p^k - (1-p)^k]$ for all k = 1, 2, ... is of the form (2p-1) multiplied by a polynomial in p(1-p). As

$$F_n(p) = \sum_{j=k}^n \frac{D(j)}{n} \binom{n}{j} \left[p(1-p) \right]^{n-j} \left[p^{2j-n} - (1-p)^{2j-n} \right],$$
[A4]

¹⁶ we conclude that $F_n(p) = (2p-1)G_n(p(1-p))$, and since $F_n(0) = F_n(1) = 0$ we have $G_n(0) = 0$. Note that since ¹⁷ D(n) = D(0) = 0, p(1-p) is a factor of $F_n(p)$.

18 Supplementary Information B: Proof of Result 2

Since there is symmetry in the model between the two cultural variants A and B, we analyze only the stability of $p^* = 0$, namely fixation in type B.

Let $p = \varepsilon$. Then from eq. (6), as D(0) = D(n) = 0, we have

$$\varepsilon' = \varepsilon + \sum_{j=1}^{n-1} \frac{D(j)}{n} {n \choose j} \varepsilon^j (1-\varepsilon)^{n-j}.$$
[B1]

Therefore the linear approximation of [B1] in terms of ε is

$$\varepsilon' = \varepsilon + \frac{D(1)}{n} {n \choose 1} \varepsilon = \varepsilon [1 + D(1)].$$
 [B2]

Hence if D(1) < 0, then $p^* = 0$ is locally stable, whereas if D(1) > 0, $p^* = 0$ is not locally stable.

For the stability of $p^* = \frac{1}{2}$, we use eq. [A4], written as

$$p' = p + p(1-p) \sum_{j=k}^{n-1} \frac{D(j)}{n} \binom{n}{j} \left[p(1-p) \right]^{n-j-1} \left[p^{2j-n} - (1-p)^{2j-n} \right],$$
[B3]

where $k = \frac{n}{2} + 1$ when *n* is even and $k = \frac{n+1}{2}$ when *n* is odd. Let $p = \frac{1}{2} + \varepsilon$, $1 - p = \frac{1}{2} - \varepsilon$, $p(1 - p) = \frac{1}{4} - \varepsilon^2$, and $p' = \frac{1}{2} + \varepsilon'$. Then

$$\varepsilon' = \varepsilon + \left(\frac{1}{4} - \varepsilon^2\right) \sum_{j=k}^{n-1} \frac{D(j)}{n} \binom{n}{j} \left(\frac{1}{4} - \varepsilon^2\right)^{n-j-1} \left[\left(\frac{1}{2} + \varepsilon\right)^{2j-n} - \left(\frac{1}{2} - \varepsilon\right)^{2j-n} \right].$$
 [B4]

Expand $\left(\frac{1}{2} \pm \varepsilon\right)^{2j-n}$. Then since $(2j-n) \ge 1$, up to non-linear terms in ε , we have

$$\left(\frac{1}{2} \pm \varepsilon\right)^{2j-n} \simeq \left(\frac{1}{2}\right)^{2j-n} \pm (2j-n) \left(\frac{1}{2}\right)^{2j-n-1} \varepsilon.$$
[B5]

So up to non-linear terms in ε ,

$$\left(\frac{1}{2} + \varepsilon\right)^{2j-n} - \left(\frac{1}{2} - \varepsilon\right)^{2j-n} \simeq 2(2j-n) \left(\frac{1}{2}\right)^{2j-n-1} \varepsilon.$$
[B6]
4] is

Thus the linear approximation of [B4]

$$\varepsilon' = \varepsilon + \frac{\varepsilon}{4} \sum_{j=k}^{n-1} \frac{D(j)}{n} {\binom{n}{j}} \left(\frac{1}{4}\right)^{n-j-1} \cdot 2(2j-n) \left(\frac{1}{2}\right)^{2j-n-1},$$
[B7]

or

$$\varepsilon' = \varepsilon \left[1 + \left(\frac{1}{2}\right)^{n-2} \sum_{j=k}^{n-1} \frac{D(j)}{n} \left(nj\right) \left(2j-n\right) \right].$$
[B8]

Therefore, if

$$-2^{n-1} < \sum_{j=k}^{n-1} \frac{D(j)}{n} \binom{n}{j} (2j-n) < 0,$$
[B9]

then $p^* = \frac{1}{2}$ is locally stable.

24 Supplementary Information C: Proof of Result 7

²⁵ When $\mu = 0$, \mathbf{L}_0 in (41) is the diagonal matrix whose N diagonal elements are $(1 + s_i) \left[1 - D_i(n-1) \right]$ for i = 1, 2, ..., N.

Therefore, these are the N eigenvalues of $\mathbf{M}_{\mathbf{0}}$, and $\rho_{\mathbf{0}}(0)$, the largest positive eigenvalue, is $\max_{1 \le i \le N} \left\{ (1+s_i) \left[1 - D_i(n-1) \right] \right\}$. When $\mu = \frac{N-1}{N}$, we also have $(1-\mu) = \frac{\mu}{N-1} = \frac{1}{N}$, and (41) reduces to

$$\varepsilon_{i}' = \frac{1}{N} (1+s_{i}) \left[1 - D_{i}(n-1) \right] \varepsilon_{i} + \frac{1}{N} \sum_{j \neq i} (1+s_{j}) \left[1 - D_{j}(n-1) \right] \varepsilon_{j}.$$
 [C1]

Therefore, when $\mu = \frac{N-1}{N}$, if $\underline{\varepsilon} = (1, 1, \dots, 1)$ from [C1] we have

$$\varepsilon_i' = \frac{1}{N} \sum_{j=1}^N (1+s_j) [1 - D_j(n-1)] \varepsilon_j \text{ for } i = 1, 2, \dots, N.$$

Hence, in this case $\mathbf{L}_0(1,\ldots,1) = \frac{1}{N} \sum_{j=1}^N (1+s_j) \left[1 - D_j(n-1)\right] (1,\ldots,1)$, and by the Perron-Frobenius theorem

$$\rho\left(\frac{N-1}{N}\right) = \frac{1}{N} \sum_{j=1}^{N} (1+s_j) \left[1 - D_j(n-1)\right].$$
 [C2]

²⁷ A similar proof applies to $\rho(0)$ and $\rho(\frac{N-1}{N})$.

$_{\scriptscriptstyle 28}$ Supplementary Information D: Two Populations, No Selection, $D_2=-D_1$

We saw in eq. (63) that the recursions (57) had equilibria of the form (0,0), (1,1), and $(\frac{1}{2}, \frac{1}{2})$. However, when $p_2 \neq p_1$ at equilibrium, we have to solve $Q(p_2) = 0$ where $Q(p_2)$ is given by eq. (62). Solving $Q(p_2) = 0$ gives

$$p_2 = \frac{1}{4} \left[(3 - 2p_1) \pm \sqrt{12p_1(1 - p_1) + 1} \right].$$
 [D1]

As we need $0 < p_2 < 1$, we actually have

$$0 < p_1 < \frac{1}{2} \implies p_2 = \frac{1}{4} \left[(3 - 2p_1) - \sqrt{12p_1(1 - p_1) + 1} \right]$$

$$\frac{1}{2} < p_1 < 1 \implies p_2 = \frac{1}{4} \left[(3 - 2p_1) + \sqrt{12p_1(1 - p_1) + 1} \right].$$

[D2]

To classify these possible equilibria we have to use [D2] in (58a) and solve for p_1 subject to $0 < p_1 < 1$. In fact, substituting [D2] into (58a) and using $D_2 = -D_1$ with (60), we must solve the equation

$$F(p_1) = D_1 p_1 (1 - p_1) (2p_1 - 1)(1 - 2\mu) - \mu p_1 + \frac{\mu}{4} \left[3 - 2p_1 \pm \sqrt{12p_1(1 - p_1) + 1} \right],$$
 [D3]

where $0 < p_1 < 1$. Observe that

$$F(0) = \frac{\mu}{4}[3 \pm 1] > 0,$$

$$F\left(\frac{1}{2}\right) = -\frac{\mu}{2} + \frac{\mu}{4}[2 \pm 2],$$

$$F(1) = -\mu + \frac{\mu}{4}[1 \pm 1].$$

[D4]

Hence, if $p_2 = \frac{1}{4} \left[(3 - 2p_1) - \sqrt{12p_1(1 - p_1) + 1} \right]$ as F(0) > 0 and $F\left(\frac{1}{2}\right) < 0$, and there exists p_1^* with $0 < p_1^* < \frac{1}{2}$ such that $F(p_1^*) = 0$ in accordance with [D2], in which case also $0 < p_2^* < \frac{1}{2}$. If $p_2 = \frac{1}{4} \left[(3 - 2p_1) + \sqrt{12p_1(1 - p_1) + 1} \right]$, then as $F\left(\frac{1}{2}\right) > 0$ and F(1) < 0 we have a solution p_1^* of $F(p_1) = 0$ satisfying $\frac{1}{2} < p_1^* < 1$ following [D2], and also $\frac{1}{2} < p_2^* < 1$. Therefore, in addition to $(0,0), \left(\frac{1}{2}, \frac{1}{2}\right), (1,1)$ two more polymorphic equilibria exist: (p_1^*, p_2^*) with $0 < p_1^*, p_2^* < \frac{1}{2}$, and (p_1^{**}, p_2^{**}) with $\frac{1}{2} < p_1^{**}, p_2^{**} < 1$. Simulations have shown that these equilibria can be stable.

Supplementary Information E: Two Populations, No Selection, $D_2 = D_1$ 34

If $D_2 = D_1$, then from (59),

$$p_1(1-p_1)(2p_1-1) = -p_2(1-p_2)(2p_2-1).$$
[E1]

Let $z = 1 - p_2$, then [E1] becomes

$$p_1(1-p_1)(2p_1-1) = z(1-z)(2z-1).$$
 [E2]

Using the above analysis, we conclude that either $1 - p_2 = z = p_1$ or

$$(1-p_2) = z = \frac{1}{4} \left[(3-2p_1) \pm \sqrt{12p_1(1-p_1)+1} \right]$$
 [E3]

with the same specification as in eq. [D2].

Observe that if $p_1 = 0$ then from (58) z = 1 and $p_2 = 0$, and when $p_1 = 1$ then z = 0 and $p_2 = 1$. Thus (0,0) and (1,1) are possible equilibria. If $p_2 = 1 - p_1$ ($z = p_1$), using (58a) and [E1], we have

$$D_1 p_1 (1 - p_1)(2p_1 - 1)(1 - 2\mu) + \mu (1 - 2p_1) = 0.$$
 [E4]

Hence, if $p_1 = \frac{1}{2}$, then also $p_2 = \frac{1}{2}$ and we have the equilibrium point $(\frac{1}{2}, \frac{1}{2})$. Otherwise

$$D_1 p_1 (1 - p_1) (1 - 2\mu) = \mu$$
[E5]

and

$$p_1(1-p_1) = \frac{\mu}{D_1(1-2\mu)}.$$
 [E6]

36

We assume that $0 < \mu < \frac{1}{2}$. Solutions to (E5) exist if $0 < \frac{\mu}{D_1(1-2\mu)} < \frac{1}{4}$ or if $D_1 > \frac{4\mu}{1-2\mu}$. Since we also require $-2 < D_1 < 1$, we must have $\frac{4\mu}{1-2\mu} < 1$ or $\mu < \frac{1}{6}$. Thus we can have two polymorphic equilibria $(p_1^*, 1-p_1^*)$ or $(1-p_1^*, p_1^*)$, both satisfying [E6] 37 and $p_2^* = 1 - p_1^*$, provided $\mu < \frac{1}{6}$.

To check the local stability of these equilibria, the linear approximation of our transformation (57a) and (57b) near $(p_1^*, 1-p_1^*)$ is given by

$$\begin{bmatrix} \varepsilon_1' \\ \varepsilon_2' \end{bmatrix} = \begin{bmatrix} (1-\mu)A & \mu A \\ \mu A & (1-\mu)A \end{bmatrix} \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \end{bmatrix},$$
[E7]

where

$$A = 1 + D_1 \left[6p_1^* - 6\left(p_1^*\right)^2 - 1 \right].$$
 [E8]

Using [E6], [E8] reduces to

$$A = 1 - D_1 + \frac{6\mu}{1 - 2\mu}.$$
 [E9]

The eigenvalues of the matrix in [E7] determining the stability of either $(p_1^*, 1 - p_1^*)$ or $(1 - p_1^*, p_1^*)$ are A and $(1 - 2\mu)A$. Since A > 0 and $D_1 < 1$, the largest eigenvalue is A and it is smaller than 1 if $D_1 > \frac{6\mu}{1-2\mu}$. Thus we need $\mu < \frac{1}{8}$ for these 39 40 equilibria to be stable. 41

To sum up, when $\mu < \frac{1}{8}$ we have two polymorphic equilibria both of which are stable when $D_1 > \frac{6\mu}{1-2\mu}$ and unstable if $\frac{4\mu}{1-2\mu} < D_1 < \frac{6\mu}{1-2\mu}$. An example with two such stable equilbria is shown in Figure S4. When $0 < D_1 < \frac{4\mu}{1-2\mu}$ these equilibria 42 43 do not exist. 44

Supplementary Information F: Two Populations: interaction of migration, selection, and conformity 45

Consider the case s = 0.25, $D_1 = 0.21$, $D_2 = 0.18$ with three role models. Here s/(1+s) = 0.2 so that in the absence of 46 migration, in subpopulation 1, $p_1 = 0$ and $p_1 = 1$ are both stable, while in subpopulation 2, only $p_2 = 1$ is stable. Including 47 48 migration entails that $(p_1, p_2) = (0, 0)$ becomes unstable and $(p_1, p_2) = (1, 1)$ is locally stable.

Another interesting example of the effect of migration sets s = 0.25, $D_1 = -0.3$, and $D_2 = 0.05$. In this case, population 49 1 would maintain a polymorphism in the absence of population 2 while population 2 would fix on $p_2 = 1$ in the absence of 50

population 1. The fixation of B, namely $(p_1, p_2) = (0, 0)$ is unstable for all $\mu \in \left[0, \frac{1}{2}\right]$, but fixation of A, namely $(p_1, p_2) = (1, 1)$, 51 is stable for $\mu > 0.0438$. This suggests that if $0 < \mu < 0.0438$, the two-population system is able to maintain a polymorphism, 52

but greater migration (larger μ) results in the loss of type B from both populations. The delicacy of the interaction between s, 53

 D_1 , and D_2 in determining the evolutionary dynamics is exemplified by changing $D_1 = -0.3$ to $D_1 = -0.5$, in which case the 54

threshold for stability of $(p_1, p_2) = (1, 1)$ changes from $\mu > 0.0438$ to $\mu > 0.3529$. If D_1 and D_2 are kept at -0.3 and 0.05, 55

respectively, but s is reduced from 0.25 to 0.1, then fixation in A, $(p_1, p_2) = (1, 1)$, is unstable for all $\mu \in [0, \frac{1}{2}]$, and fixation in 56

 $B, (p_1, p_2) = (0, 0)$, is also unstable for all $\mu \in [0, \frac{1}{2}]$, suggesting that the polymorphism is stable for all legitimate values of μ .

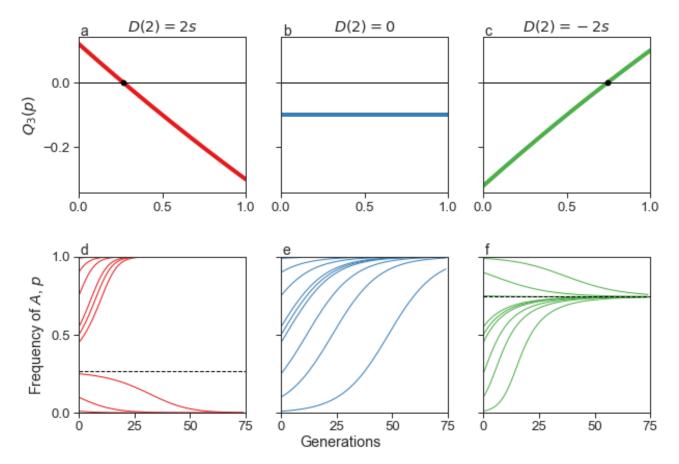


Fig. S1. Frequency-dependent bias with n = 3. The top row ($\mathbf{a}-\mathbf{c}$) shows the shape of $Q_3(p) = \text{in eq.}$ (25) for three values of v = D(2), the conformity coefficient: (**a**) conformity bias with D(2) = 2s > s/(1+s), which gives $p^* < \frac{1}{2}$, (**b**) unbiased transmission with D(2) = 0, (**c**) anti-conformity bias with D(2) = -2s, which gives $p^* > \frac{1}{2}$. The circles mark the value of the polymorphic equilibrium p^* (which solves $Q_3(p) = 0$), if it exists. The bottom row ($\mathbf{d}-\mathbf{f}$) shows the frequency of variant A over time, with the dashed line denoting p^* . Different lines are for different initial frequencies of A. It can be seen that either type A or type B goes to fixation, with a larger domain of attraction for the favorable variant A when D(2) = 2s; that A goes to fixation when D(2) = 0 regardless of initial conditions; and that $p^* > \frac{1}{2}$ is globally stable when D(2) = -2s, such that a polymorphism is maintained over the long term. Here phenotype A has a selective advantage of s = 0.1.

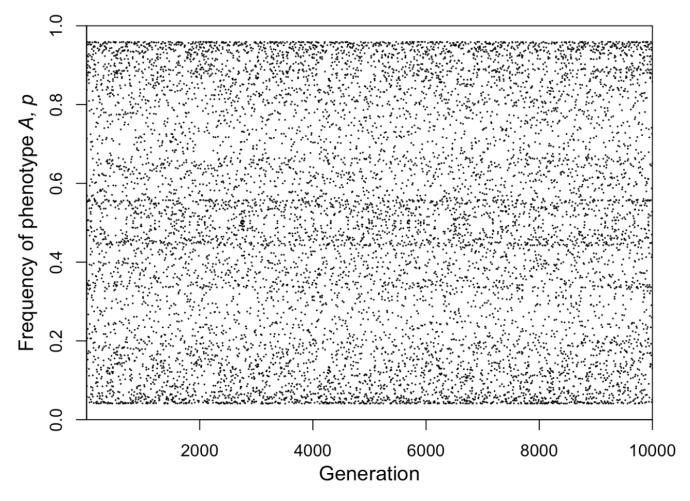


Fig. S2. The frequency of A, p from Eq. [7], is plotted over time. The parameters are n = 14 and D(j) = -j + 0.00001.

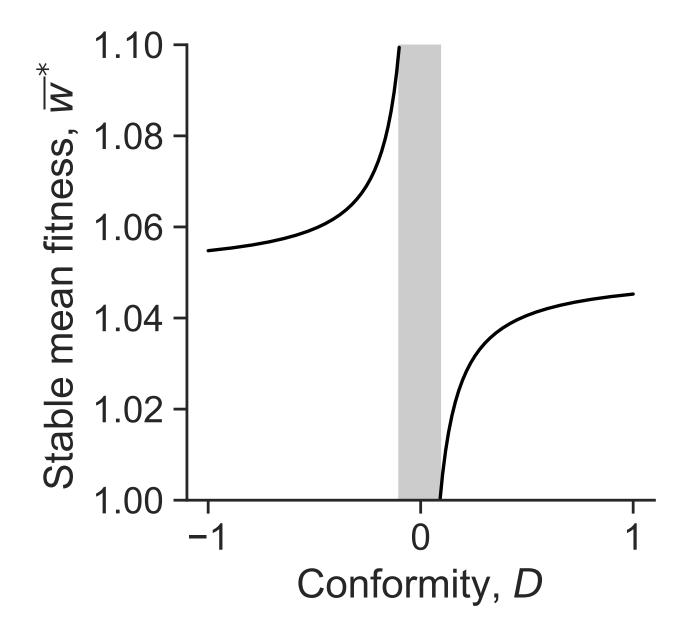


Fig. S3. Mean fitness increases with frequency-dependent bias. The figure shows the population mean fitness W (eq. 24) at the protected polymorphism p^* (the solution to eq. 25, if it exists) as a function of the coefficients of conformity v. In the shaded area s < v < s/(1 + s) and p^* does not exist. Here, s = 0.1.

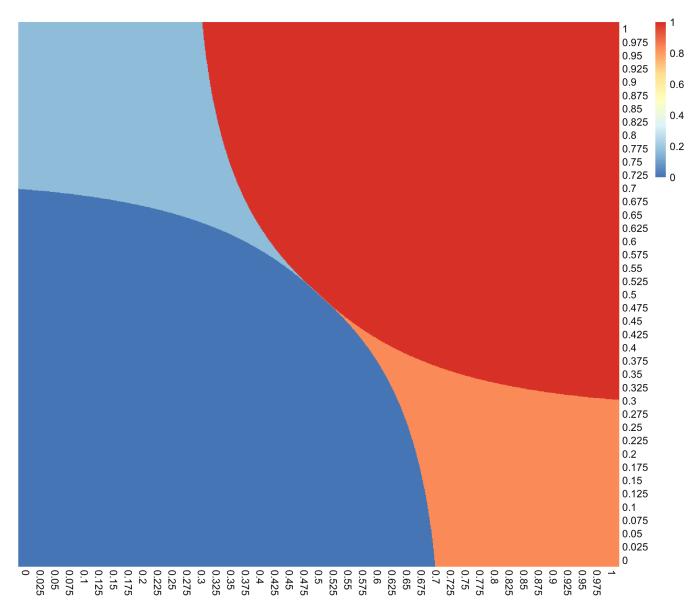


Fig. S4. There are two populations with equal conformity parameters $D_1 = D_2 = 0.4$ and n = 3. There is no selection ($s_1 = s_2 = 0$). Migration occurs between the two populations at rate $\mu = 0.05$. The *x*-axis is the initial frequency of variant *A* in population 1 and the *y*-axis is the initial frequency of variant *A* in population 2. The colors correspond to the frequency of variant *A* at equilibrium given the initial conditions. Red corresponds to fixation of *A*, dark blue corresponds to loss of *A*, and orange and light blue correspond to the polymorphic solutions of eq. (64).

n	Lower Bound for $oldsymbol{\phi}_{\mathbf{n}}$	Dynamics Near Lower Bound
3	0	Converges to $p = \frac{1}{2}$
4	-0.5	Converges to $p=rac{1}{2}$
5	-1.25	2-generation cycles
6	-1.5	2-generation cycles
7	-1.968750	2-generation cycles
8	-2.062500	2-generation cycles
9	-2.390625	4-generation cycles
10	-2.421875	Chaos
11	-2.685547	Chaos
12	-2.695312	10-generation cycles
13	-2.926270	Chaos
14	-2.929199	Chaos
15	-3.140259	Chaos
16	-3.141113	Chaos
17	-3.337952	70-generation cycles
18	-3.338196	Chaos
19	-3.523796	Chaos
20	-3.523865	Chaos

Table S1. Supplementary Table S1: Properties of ϕ_n