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Appendix Fig S1: tSNE plots of the Muraro et al. dataset from the human pancreas data collection: tSNE plots
are color-coded by their original label (panel (1,1)) or predicted cell types from 15 different methods, scClassify,
SingleR, moana, singlecellNet, ACTINN, CHETAH, scID, Garnett (marker), Garnett (DE), scmap-cell, scmap-
cluster, scPred, SVMreject, CatSLe, which all used the Wang et al. dataset as the reference dataset (see Supp
Table 1 for details). Under default settings, scClassify is able to correctly classify most cells with an accuracy
rate of greater than 95%. None of the methods were fine-tuned specific on the training or test datasets.
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Appendix Fig S2: Computation time and memory benchmarking results: A. The computation time of different
methods against the number of cells in reference, ranging from 100 to 30000, where the number of cells in query
data is fixed to be 2000. B. The computation time of different methods against the number of cells in query,
ranging from 100 to 30000, where the number of cells in reference data is fixed to be 2000. C. The computation
time of different methods against the number of cell types in the reference and query dataset, ranging from 4
to 12. D. The memory requirement of different methods against the number of cells in reference, ranging from
100 to 30000, where the number of cells in query data is fixed to be 2000.
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Appendix Fig S3: Sensitivity analysis results for the maximum number of children per branch node in HOPACH
tree: Each box indicates the classification accuracy with different maximum number of children per branch node,
ranging from 3 to 11, using 30 training and test data pairs from the Pancreas data collection, with 16 easy cases
(left panel) and 14 hard cases (right panel).

5



Figure S4.pdf

sigma = 0.8

sigma = 0.6

sigma = 0.4

sigma = 0.2

50 100 200 500 750 1000

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

N

alpha
0.001

0.005

0.01

0.02

0.05

0.1

A B

●
●

●

●

●
●

●

●●●●●●●●

●●●
●●

●●●●●●●
●●●●●●●●●

●
●
●●●

●
●●●
●●●

●
●
●●●●

●●●●

●●●●●●
●●●

●

●
●

●

●

●●

●

●

●
●
●

●

●●

●●●
●
●

●●●

●

●●●●●●
●●
●
●●

●●●
●

●

●●
●●●●

●●

●

●●●●●
●●●

●

●

●

●●

●

●
●●●

●

●●●●

●

●
●

●

●●●●●● ●

●

●●

●
●
●●●●●
●●●

●

●
●●●●●●
●●●●●●
●
●●●●●●●●●●●●

●●●●●

●●●

●

●

●●
●
●●
●
●
●●●●●●●●●●●●●●●●●

●●●●●

●

●

●

●

●
●●

●●●
● ●●●

●

●

●
●
●

●

●●●●
●●
●

●

●
●
●●

●

●●●●

●
●

●●
●●

●
● ●●

●
●●

●●

●
●

●●●●●
●
●●
●
●●
●
●
●

●
●

●●●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●
●

●
● ●

●●
●

●●●●

●●●

●●●●
● ●●●

●●

●
●●

●
●●
●
●
● ●●

●
●●
●

●

●
●

●
●●

●●

●●
●●

●

●

●

●●

●

●
●●
●
●

●●

●
●

●

●
●

●●●

●●
●

●●●●

●
●

●●
●

●●

●

●

●

●●●●

●

●
●●● ●

●●●●
●

●
●
●

●

●
●●● ●

sigma = 0.8

sigma = 0.6

sigma = 0.4

sigma = 0.2

0.001 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

alpha (Capture Efficiency)

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

depth 30000 80000 160000 300000 500000

C
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

Appendix Fig S4: Simulation results for sample size calculation. A. A 4 by 1 panel indicating the accuracy
rate of the simulation results using SymSim [19] by estimating parameters from PBMC10k dataset. Each of
four plots indicates accuracy rate with different degrees of within cell type heterogeneity (0.2, 0.4, 0.6, and 0.8),
colored coded by five different sequencing depth (30000, 80000, 160000, 300000, 500000). The horizontal axis
shows capture efficiencies ranged from 0.001 to 0.1, and y-axis indicates the accuracy rate. B. A 4 by 1 panel
of fitted learning curves of the simulation results, where each plot indicates accuracy rate of different degrees
of within cell type heterogeneity (0.2, 0.4, 0.6, and 0.8), colored coded by different capture efficiency (0.001,
0.005, 0.01, 0.2, 0.05, and 0.1). X-axis indicates the sample size (N) of the reference set, and y-axis indicates
the accuracy rate.
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Appendix Fig S5: Downsampling of the PBMC10k data using DECENT’s beta-binomial capture model [18].
Sample size calculation of down sampling. The left panel indicates the accuracy rate generated by repeating
the training and testing procedure 50 times with varying size of the reference data and probabilities for down-
sampling. The right panel displays the fitted learning curves based on the mean accuracy rate of the left panel.
Both boxplots and lines are colored by probability of down-sampling (0.2, 0.5, 0.8 and 1). The top panel shows
the results from the cell type predictions at the top level of the cell type tree, and the bottom
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Appendix Fig S7: A. A 1 by 3 panel of tSNE plots of the Tasic et al. dataset (2016) from the neuronal data
collection, where data points are color coded by original cell types given in Tasic et al, 2016 (left panel) [15],
the scClassify predicted cell types generated using Tasic et al. (2018) as the reference dataset (middle panel)
and the scClassify predicted cell types generated using Hrvatin et al. as the reference dataset (right panel). B. A
1 by 3 panel of tSNE plots of Tasic et al. (2018) from the neuronal data collection color coded by the original
cell types given in Tasic et al, 2018 (left panel) [16], the scClassify predicted cell types generated using Tasic
et al. (2016) as the reference dataset (middle panel) and the scClassify predicted cell types generated using
Hrvatin et al. as the reference dataset (right panel). C. A 1 by 3 panel of tSNE plots of Hrvatin et al. from
the neuronal data collection color coded by the original label (left panel) [5], the scClassify predicted cell types
generated using Tasic et al. (2016) as the reference dataset (middle panel) and the scClassify predicted cell
types generated using Tasic et al. (2018) as the reference dataset (right panel). The accuracy rate of common
cell types in reference and query data are 92.3% (Tasic 2016) and 97.3% (Tasic 2018) when the Hrvatin data
was used as reference; 95.8% (Tasic 2018) and 90.6% (Hrvatin) when the Tasic 2016 data was used; and 95.6%
(Tasic 2016) and 95.3% (Hrvatin) when the Tasic 2018 data was used.
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Appendix Fig S8: A. A 1 by 2 panel heatmaps of data in Appendix Fig S7 a comparing the cell types from
the original cell types given in Tasic (2016) (rows) against scClassify predicted cell types (columns) generated
using either the Tasic (2018) (left panel) or the Hrvatin et al. (right panel) as reference dataset. The squares are
colored by the percentage of cells of a certain Tasic (2016) cell type. (B-C) as above Appendix Fig S7 B and C
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Appendix Table S1: Current supervised learning methods for cell-type identification.

Method Version Unassigned Intermediate Method Prior
Knowledge

Input Allow
multiple
reference

Quantify
uncertainty

Reference

ACTINN c3dd085
(Github)

⇥ ⇥ Neural
Network

⇥ raw count ⇥ Proability [9]

CHETAH 1.1.2 X X Correlation to
training set,
Hierachical

classifciation

⇥ normalised
count

⇥ Confidence
score

[4]

CaSTLe 258b278
(Github)

⇥ ⇥ XGBoost ⇥ normalised
count

⇥ Probability [7]

Garnett 0.1.4 X ⇥ Generalized
linear model

X raw count ⇥ ⇥ [12]

SingleR 1.0.1 ⇥ ⇥ Correlation to
training set

⇥ input: raw or
normalised;
reference :
normalised

X Correlation [2]

Moana 0.1.1 ⇥ ⇥ SVM with
linear kernel

X Did not
specify

⇥ ⇥ [17]

scID 0.0.0.9000 X ⇥ LDA ⇥ raw or
library-depth
normalization

⇥ Probability [3]

scPred 0.0.0.9000 X ⇥ SVM with a
radial kernel

⇥ raw count or
normalised

count

⇥ Probability [1]

scVI 0.3.0 ⇥ ⇥ Neural
Network

⇥ raw count ⇥ Probability [8]

scmap 1.1.6 X ⇥ correlation
based kNN

⇥ normalised
count

X Probability [6]

SingleCellNet 0.1.0 ⇥ ⇥ Random forest ⇥ raw count ⇥ Correlation [14]

SVMreject 0.22.2 X ⇥ SVM with a
linear kernel

⇥ Did not
specify

X Probability [11]

scClassify 0.2.0 X X Ensemble
hierachical

classifciation,
correlation
based kNN

⇥ log normalised
count

X Correlation
and

weighted
score

this
study
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Appendix Table S2: Similarity metrics we considered in this study to measure dissimilarity between these two
cells. For simplicity in what follows, we identify cells with their (cell-type specific) gene expression vectors.
Let x,y 2 Rm be cells with m gene expression values selected from the reference and query/test datasets,
respectively. Note that the cosine and Jaccard distances are calculated using the proxy package [10]. scClassify
uses Pearson’s correlation by default.

Similarity metrics Formula

1 Pearson correlation

d = 1�
Pm

i=1(xi � x̄)(yi � ȳ)pPm
i=1(xi � x̄)2

pPm
i=1(yi � ȳ)2

.

2 Spearman correlation

d = 1�
Pm

i=1(r
x
i � r̄x)(ryi � r̄y)pPm

i=1(r
x
i � r̄x)2

pPm
i=1(r

y
i � r̄y)2

,

where rxi , ryi denote the rank of the expression value of gene i in cell x,
y respectively; and r̄ indicates the the mean rank of expression of the
cell.

3 Kendall rank correlation
d = 1� 2

n(n� 1)

X

i<j

sign(xi � xj)sign(yi � yj).

4 Cosine distance

d = 1�
Pm

i=1 xiyipPm
i=1 x

2
i

pPm
i=1 y

2
i

.

5 Jaccard distance
d = 1� |Ai \Aj |

|Ai [Aj |
,

where Ai, Aj indicate the set of genes that with expression greater than
zero in cell i and cell j.

6 Weighted ranked correlation

Si =
mX

j=i

1

j
,

where i is the rank assigned to the i-th largest of the m gene expres-
sion values. Here, we are giving higher weight to agreement on the top
rankings.
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