
SUPPLEMENTARY TEXT 3 

COMPLETE DESCRIPTION OF METHODS USED FOR THE BIOINFORMATIC 

STATISTICAL ANALYSIS OF THE MICROBIOME DATA 

 

Pre-processing of amplicon reads 

The FLASH program was used to join the paired-end reads (25). The data was barcode-

corrected and quality filtered using the QIIME package; followed by clustering of reads into 

Operational Taxonomic Units (OTUs) (97% identity threshold) using USEARCH Clustering 

algorithm; followed by chimeric removal (26, 27). The taxonomic classification of the 

representative sequences for each OTU was performed using both the RDP classifier (genus 

level: 0.8 confidence threshold) and the SPINGO classifier (species level: 0.7 confidence 

threshold) (28, 29).  

 

Multi-variate analysis of dietary profiles and taxonomic profiles 

Multivariate analyses using Principal Coordinate Analysis (PCoA) were performed using the 

ade4 package of the R programming interface, using Spearman distances of the individual 

sample profiles as well as the across time point changes (final-baseline).To test the significance 

of the between-country variation of the baseline dietary and microbiome profiles, 

Permutational Analysis of Variance (PERMANOVA) was performed on the PCoA objects 

using the adonis function of the vegan R package. Procrustes analysis was performed to 

quantify the relationships between the baseline diet and microbiome profiles using the 

procrustes function of the vegan package. The Shannon diversities of the samples were 

obtained using the diversity function of the vegan R package.  

 

Machine Learning-based identification of microbiome taxa associated with the dietary 

intervention 

The Machine learning based Random Forest (RF) approach (implemented in the randomForest 

package of R) was used to identify microbiome taxa significantly associated with NU-AGE 

FBDG adherence scores. We first divided individuals into three equal tertiles, namely ‘High 

Adherence’, ‘Medium Adherence’ and ‘Low Adherence’ in decreasing order of the change in 

adherence across time-points and the samples from each into two cohorts corresponding to the 

baseline and final time-points. Two separate models were created for the baseline and the final 

time points. The performance of the models was measured by calculating the correlation 
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between the actual and the predicted food scores obtained using the models. The RF approach 

provided the feature score importance scores for each microbiome component (OTUs) 

(indicating the extent of association of these with the dietary adherence scores). For identifying 

the most-predictive features, iterative random forest models (n=100, sample subset-size=100) 

with varying number of features (selected in decreasing order of their feature importance 

scores) were obtained using the randomForest package (two-fold cross validation) and their 

performances compared. Finally, to identify the OTUs associated with dietary adherence, a 

Reboot approach (using Spearman correlations) was used to identify OTUs that were 

significantly associated with adherence scores with an FDR corrected P-value < 1e-5 (30). 

OTUs positively and negatively associated with diet were classified as DietPositive and 

DietNegative, respectively. A pictorial representation of the workflow adopted for this entire 

step is provided in Supplementary figure 1. 

 

Overview: iBBiG is based on the detection profile of the taxonomic units (in this case, the 

Operational Taxonomic Units (OTUs)). It then utilizes an iterative, heuristic, genetic-algorithm 

based methodology to identify modules of taxa within a microbial community that tend to show 

strong co-occurrence relationships across a given population of microbiomes. The primary 

advantage of this strategy is its flexibility, as it allows identification of over-lapping modules 

such that certain taxonomic units can be part of multiple modules. Such a partitioning strategy 

makes more biological sense as certain taxa (or species) can be part of multiple guilds because 

of their functional versatility or may be functionally specialized (i.e. belonging to specific 

guilds).  

 

Method: For identifying modules within the gut microbiome, we used the iterative Binary Bi-

clustering of Gene-sets (iBBiG) approach (38). Rather than profiling abundances or 

proportions, iBBiG investigates the detection profile of the taxonomic units or OTUs. 

Subsequently, an iterative, heuristic, genetic-algorithm based methodology is used to identify 

taxonomic modules that tend to show strong co-occurrence relationships across a given 

population of microbiomes. For performing the iBBiG based clustering, we used the iBBig 

function available within the Bioconductor package of R. While OTUs belonging to the 

different modules were then classified based on their clustering patterns, samples were 

classified based on the occurrence of the different iBBiG modules within them. The taxonomic 

compositional pattern of each module was then obtained by collating the RDP-based genus 

classification of each OTU and subsequently rank-normalizing these based on the abundance 
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of each genus (in terms of the number of OTUs) across a module. To associate the modules 

with frailty, we first obtained the frailty status of each individual at each time-point (0: Non 

Frail; 1: Pre Frail; 2: Frail). Subsequently based on the changes across time-points, individuals 

across the cohorts were classified as ‘Reduced Frailty’, ‘No Change’ and ‘Increased Frailty’. 

The representation of each of the modules were obtained at both the time-points for each of 

three groups of individuals. The occurrence changes of each module (the number of samples 

in which a module is present at follow-up divided by the number of samples the module is 

present in at the baseline) were computed for each group. The log fold changes in these ratios 

in the Reduced Frailty with respect to the Increased frailty groups would provide the 

enrichment or depletion of the modules in individuals with reduced frailty as compared to those 

showing an increase in frailty across time-points. A positive change would indicate enrichment, 

and a negative value would indicate depletion. To compare the patterns across modules X and 

Y, Chi-square tests (using the chisq.test function of R) were then performed on the contingency 

tables containing four values, namely occurrence at baseline and follow-up of reduced frailty 

and occurrence at baseline and follow-up of increased frailty, corresponding to the two 

modules. To check for the significance of the differences of the occurrences across modules in 

terms of their diet association, we obtained number of times a module was present in the list of 

DietPositive and the DietNegative OTUs, and subsequently compared them using the Fishers’ 

Exact test (fisher.test function of R).  

 

Associating dietary adherence and microbiome changes with frailty and inflammation 

For associating the abundances of the adherence associated marker OTUs with the different 

measures of frailty, cognitive function and cytokine profiles, we computed Spearman 

correlations using the corr.test function of the psych package in R (along with the Benjamini-

Hochberg corrected p-values).  

To account for various confounders, we used Partial Correlations (partial.r and the 

corr.p functions of the psych R package). Partial correlations measure the strength and the 

direction of the association between two variables considering the effect of confounding 

variable (s). Partial Correlations are like multiple regressions with confounders but not limited 

to specific distributions of the response and predictor variables. Further, one can compute rank-

based non-parametric measures of association like the Spearman rho (which we have used in 

this study), after considering the confounding effect of other factors like adherence scores or 

age/BMI/gender.  
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Computation of Microbiome Indices 

A pictorial representation of the methodology for this purpose is described in Supplementary 

figure 2. This scoring scheme ‘rewards’ samples with higher abundances of Marker OTUs 

with increasingly positive association with adherence scores and taxes those which have higher 

abundances of Marker OTUs with negative associations with adherence scores. 

For each sample, the diet-modulated microbiome score was computed using the 

following formula: 

∑across all marker OTUs (OTU correlation with Diet adherence scores) * Abundance of the OTU 

To avoid over-fitting, leave-one out strategy was applied where for computing the microbiome 

index for a given sample, the sample was not considered while calculating the OTU correlations 

(with Diet Adherence scores).  

 

Obtaining Inferred Microbial Metabolite Profiles based on Species Abundance Profiles 

Literature annotated Species-to-Metabolite consumption/production associations were already 

available as part of the Virtual Metabolic Human database as well as those obtained in a recent 

meta-analysis by Sung et al (32, 33). These were parsed to create a present/absence information 

map of around 300 metabolite production and consumption profiles in greater than 900 species 

in a 0 (absent) and 1 (present) notation. Given the SPINGO-based species abundance profile, 

from the 16S amplicon data, the inferred metabolite profile was then obtained as an inner 

product of the species abundance profile and the species-to-metabolite map.  

 

Generation of co-occurrence networks and computation of centrality measures 

We used the Reboot Approach for generating the inter-microbial co-occurrence/co-inhibition 

networks (30) (described in Supplementary text 4). The co-occurrence networks obtained 

were visualized using Cytoscape (34). For any network, two different centrality measures were 

calculated for the nodes, namely degree centrality and betweenness centrality using the igraph 

R package. The relative co-occurrence propensities between any two groups of taxa were 

calculated as the log of the number of positive edges divided by the number of negative edges.  

Given any two features (in this case, the OTUs), the Reboot approach computes the 

association between the two features using two different distributions of association measures 

obtained using repeated iterations as described below(52). The association measure can be any 

score, like the Pearson correlation, Spearman correlation, the Regression coefficients, or even 

the effect size measures. The first distribution (bootstrap distribution) was obtained by taking 

the repeated sub-samples of randomly selected observations and then computing the 
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association between the two features. This profiled the association values across an entire 

observation landscape, thereby removing biases which could be present because of specific 

samples. The second distribution (null distribution) was obtained by performing an equal 

number of iterations, where in each iteration, a fixed set of values (which in this case was 50%) 

are swapped across samples for both the features. The profiles were then re-normalized and the 

associations computed for the two features. The distribution of the values obtained in the two 

distributions were then compared using any comparative tests (which in this case was Mann-

Whitney). The p-values thus obtained were then False Discovery Rate (FDR) corrected 

(Benjamini-Hochberg) and those pairs of features having FDR-corrected associations of less 

than 1e-5 (threshold used in this study) were inferred to be significant and an edge drawn 

between them in the network. The directionality of the association was taken as the sign of the 

median value of the bootstrap distribution. While pairs of features with significant positive 

associations were used to create the co-occurrence network, those with negative associations 

were used to create the co-inhibition network. 

 

*Please refer to the main document for the corresponding reference numbers. 
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