Non-canonical function of CENPA as a regulator of gene expression in prostate cancer

Anjan K. Saha, Rafael Contreras-Galindo, Yashar S. Niknafs, Matthew Iyer, Tingting Qin, Karthik Padmanabhan, Javed Siddiqui, Monica Palande, Claire Wang, Brian Qian, Elizabeth Ward, Tara Tang, Scott Tomlins, Scott Gitlin, Maureen Sartor, Gil S. Omenn, Arul M. Chinnaiyan, and David M. Markovitz

This PDF file includes:

Supplemental Figures 1 to 6 Captions for Supplemental Figures 1 to 6 Tables S1 to S3

Other supplementary materials for this manuscript include the following:

Datasets S1 to S4 Plasmid Specifications

Supplementary Figure 1. Characterization of CENPA in cellular proliferation, and cancer. (A) Cancer vs. normal analysis conducted across a curated RNA-seq catalogue querying tissue CENPA levels by SSEA. (B) Receiver operator characteristic (ROC) separating metastatic castration resistant prostate cancer (mCRPC) from localized disease by CENPA staining in a tissue microarray. (C) Proliferation rates of a panel of prostate cancer (LnCaP, VCaP, 22rv1, DU145, and PC3) and benign prostatic epithelial (RWPE-1, 957E-hTERT, and PNT2) cell lines.

Supplementary Figure 2. Transcriptome-wide correlation against CENPA mRNA levels in prostate cancer. (A-D) Individual scatterplots depicting correlation strength between CENPA expression, previously characterized prostate cancer pathogenesis factors (AMACR, CENPF, and EZH2) and a housekeeping control gene (ACTB).

Supplementary Figure 3. Association between CENPA mRNA levels and cell division in prostate cancer. (A) VCaP prostate cancer cell lines treated with the androgen agonist R1881 and evaluated for CENPA and TMPRSS2 (androgen-responsive positive control) expression by qRT-PCR. *P<0.05, **P<0.01, comparing to DMSO for each condition and time point via Student's t-test. (B) Additional biological concepts identified as associated with CENPA expression through functional annotation analysis using DAVID, highlighting enrichments in concepts important for centromeric and kinetochore integrity. (C) Representative enrichment plots from GSEA of "Cell Division" (left) and "Mitotic Nuclear Division" (right) gene signatures conducted on transcriptome-wide correlation values pre-ranked by the strength of correlation.

Supplementary Figure 4. Panel of prostate cancer cell lines subjected to CENPA depletion. (A, B) Immunoblot for CENPA and GAPDH in LnCaP and DU145 cells expressing a doxycycline inducible vector encoding a non-targeted and two independent CENPA-targeted shRNAs. (C, D) Growth curve depicting proliferation over 7 days following doxycycline induction in CENPA knockdown cell lines (left – LnCaP, right – DU145). Error bars represent the standard error of three biologic replicates. *P<0.05, **P<0.01, comparing to shNT for each condition via Student's t-test. (E, F) Cell cycle analysis with DAPI in CENPA shRNA-depleted LnCaP and DU145 cells compared to shNT.

Supplementary Figure 5. CENPA N-ChIP-seq validation. (A) Validation of native chromatin immunoprecipitation (N-ChIP) efficiency of CENPA, through PCR targeting individual centromeric repeats. (B) N-ChIP-PCR conducted in benign prostatic epithelial cell line 957E-hTERT. (C) Principal Component Analysis (PCA) to determine variation in N-ChIP-seq replicates. (D) Heatmap depicting correlation strength between each individual N-ChIP-seq sample. Bottom left and top right indicate near perfect consistency between ChIP and input replicates, further validated by the unsupervised hierarchical clustering (see dendrogram along the vertical component). (E) Matrix depicting the degree of overlap of CENPA occupancy between different genomic regions. Abbreviations: CDS – coding sequence, UTR – untranslated region, CGI – CpG Island.

Supplementary Figure 6. CENPA-depletion RNA-seq quality control. (A) Scatterplot comparing the directionality of differentially expressed genes from the two independent CENPA-targeted shRNAs. (B) Volcano plot depicting significance against fold change (FC) between shNT and two independent CENPA-targeted shRNAs. Genes that satisfied the absolute FC > 1.5 (blue lines) and p-value < 0.01 (top right and top left) criteria were considered differentially expressed. (C) Venn diagrams illustrating the overlap in differential gene expression by comparison of analysis pairs for all differentially expressed genes (DEGs), upregulated DEGs and downregulated DEGs.

Table S1. Cancer vs. normal sample set enrichment analysis performed across tissue types for tissue CENPA expression

Tissue Type	Enrichment Score (ES)	Normalized ES (NES)	FDR	Percentile
Uterus: Endometrial	0.824	4.45	<<<0.00001	0.993
Prostate	0.620	4.76	<<<0.00001	0.987
Kidney: CH*	0.544	2.61	0.00126	0.882
Colon	0.827	5.88	<<<0.00001	0.982
Bladder	0.754	3.98	<<<0.00001	0.995
Thyroid	0.277	2.61	0.000383	0.655
Lung: Squamous	0.986	7.85	<<<0.00001	0.999
Esophagus	0.865	3.59	<<<0.00001	0.997
Head/Neck	0.829	6.20	<<<0.00001	0.999
Stomach	0.770	5.35	<<<0.00001	0.992
Breast	0.796	9.42	<<<0.00001	0.996
Rectum	0.689	2.52	0.00277	0.906
Kidney: Renal Cell	0.758	6.88	<<<0.00001	0.975
Cholangiocarcinoma	1.00	3.38	<<<0.00001	0.867
Kidney: Renal Papillary	0.758	4.51	<<<0.00001	0.984
Lung: Adenocarcinoma	0.864	7.15	<<<0.00001	0.993
Liver	0.905	6.73	<<<0.00001	0.995
Brain: GBM*	1.00	2.66	3.06E-06	0.967

*CH: Chromophobe Renal Cell Carcinoma; GBM: Glioblastoma multiforme

			Normalized		
Transcript ID	Comparison Name	Enrichment Score (ES)	Enrichment Score	FDR	Percentile
			(NES)		
	Metastasis vs.				
ENSG00000115163.13	Primary	0.677	7.64	<<<0.00001	0.982
	Metastasis vs.				
ENSG00000115163.13	Normal	0.831	5.60	<<<0.00001	0.984
	Cancer vs.				
ENSG00000115163.13	Normal	0.620	4.76	<<<0.00001	0.987
	Metastasis vs.				
ENSG00000129810.13	Primary	0.734	8.11	<<<0.00001	0.988
	Metastasis vs.				
ENSG00000129810.13	Normal	0.855	5.90	<<<0.00001	0.989
	Cancer vs.				
ENSG00000129810.13	Normal	0.474	3.71	4.43E-07	0.946
	Metastasis vs.	o			.
ENSG00000117724.11	Primary	0.674	7.85	<<<0.00001	0.985
	Metastasis vs.				
ENSG00000117724.11	Normal	0.832	5.96	<<<0.00001	0.990
	Cancer vs.		4.25	0.00001	0.076
ENSG00000117724.11	Normal	0.552	4.37	<<<0.00001	0.976
	Metastasıs vs.	0.656		0.00001	0.00 0
ENSG00000123485.10	Primary	0.656	7.61	<<<0.00001	0.982
ENIC COORDON 100 405 10	Metastasıs vs.	0.045		0.00001	0.000
ENSG00000123485.10	Normal	0.845	5.73	<<<0.00001	0.986
ENICO0000122405 10	Cancer vs.	0 (12	5.05	< < <0.00001	0.002
ENSG00000123485.10	Normal	0.643	5.05	<<<0.00001	0.992
ENGC00000120770 10	Metastasis vs.	0.704	0.10	< < <0.00001	0.000
ENSG00000138778.10	Primary Matagtagia au	0.704	8.10	<<<0.00001	0.988
ENSC0000129779 10	Measure 1	0.975	6.12	<<<0.00001	0.002
ENSG0000138//8.10	Normal	0.8/3	0.13	<<<0.00001	0.993
ENSC0000132778 10	Vormal	0.450	3.64	4 43E 07	0.041
ENS00000138778.10	Meteorogic ve	0.430	5.04	4.431-07	0.941
ENSG00000151725 10	Primary	0.605	7.06	<<<0.00001	0.975
LINSCO000151725.10	Metastasis vs	0.005	7.00	<<0.00001	0.975
ENSG00000151725 10	Normal	0.803	5 75	<<<0.00001	0.987
LINS00000131723.10	Cancer vs	0.005	5.75	<<0.00001	0.707
ENSG00000151725 10	Normal	0 469	3 76	443E-07	0 948
2110300000131723.10	Metastasis vs	0.109	5.70	1.151 07	0.910
ENSG00000102384 12	Primarv	0.682	7 74	<<<0.00001	0.983
21,5550000102501,12	Metastasis vs	0.002	/./ 1		0.205
ENSG00000102384.12	Normal	0.849	5.84	<<<0.00001	0.988
	Cancer vs.	31017	2.01	0.00001	0.000
ENSG00000102384.12	Normal	0.309	2.42	0.00349	0.829

Table S2. Sample set enrichment analyses comparing expression levels of centromere and kinetochore genes in normal prostate tissues, primary prostate cancers, and metastatic prostate cancers.

	Metastasis vs.				
ENSG00000123219.11	Primary	0.655	7.49	<<<0.00001	0.981
	Metastasis vs.				
ENSG00000123219.11	Normal	0.759	5.22	<<<0.00001	0.975
	Cancer vs.				
ENSG00000123219.11	Normal	0.214	1.68	0.121	0.708

Direction	Target	Method	Sequence
GAPDH F	GAPDH	qRT- PCR	ACATCGCTCAGACACCATG
GAPDH R	GAPDH	qRT- PCR	TGTAGTTGAGGTCAATGAAGGG
CENPA F	CENPA	qRT- PCR	GTGTGGACTTCAATTGGCAAG
CENPA R	CENPA	qRT- PCR	TGCACATCCTTTGGGAAGAG
TMPRSS2 F	TMPRSS2	qRT- PCR	CCTGCAGGGACATGGGCTATA
TMPRSS2 R	TMPRSS2	qRT- PCR	CCGGCACTTGTGTTCAGTTTC
D2Z1 F	D2Z1	ChIP- PCR	TCGTTGGAAACGGGATTGT
D2Z1 R	D2Z1	ChIP- PCR	CTGCTCTATGAAAGGGACTGTT
D11Z1 F	D11Z1	ChIP- PCR	CTTCCTTCGAAACGGGTATATCT
D11Z1 R	D11Z1	ChIP- PCR	GCTCCATCAGCAGGATTGT
DXZ1 F	DXZ1	ChIP- PCR	CGGGATCACCTTCCCATAAC
DXZ1 R	DXZ1	ChIP- PCR	GGTGTTGCAAACCTGAACTATC
D20Z2 F	D20Z2	ChIP- PCR	TGCTTGGAAACGGGAATGT
D20Z2 R	D20Z2	ChIP- PCR	CCTGCTCTATGAAAGGGAATGT

Table S3. Primers used in this study