
Algorithms

Algorithm 1: Patient pathway extraction: overview

Data: records: an array of healthcare records of an individual
TOR: Time-out of Related illness
TOE: Time-out of Evaluation
TOT : Time-out of Treatment

Result: Patient pathways of a TB patient
1 /* Initialise dimensions */;
2 rel← New Related illness dimension;
3 eva← New Evaluation dimension;
4 tre← New Treatment dimension;
5 /* Read all records in each dimension */;
6 rel.readRecords(TOR, records);
7 eva.readRecords(TOE, records);
8 tre.readRecords(TOT , records);
9 /* Collect dimensions and cut them into episodes */;

10 episodes← cutEpisodes(rel, eva, tre);
11 pathways← ∅ /* Initialise a empty set collecting pathways*/;
12 foreach episode ∈ episodes do

13 pathway ← formulatePathway(episode);
14 pathways.append(pathway)

15 end

16 return pathways;

See dim.readRecords(...) in Algorithm 2
See cutEpisodes(...) in Algorithm 3
See formulatePathway(...) in Algorithm 4

1

Supplementary material BMJ Global Health

 doi: 10.1136/bmjgh-2019-002187:e002187. 5 2020;BMJ Global Health, et al. Ku C-C



Algorithm 2: Read records in each dimension (dim.readRecords(...))

Data: dim: dimension, rel, eva, or tre
timeout: timeout for the selected dimension
records: an array of healthcare records of an individual

Result: the transition history in the dimension
1 /* Initialise the dimension with a Null event */;
2 timecurr ← 0;
3 timewait ←∞ /* the end of waiting time */;
4 state← Null;
5 Initialise dim with state at timecurr;
6 foreach record ∈ records do

7 timecurr ← time of record;
8 if timecurr > timewait then

9 /* Reset state */;
10 timewait ←∞ /* the end of waiting time */;
11 state← Null;
12 dim transits to Null at timewait;

13 end

14 if record is relevant to dim then

15 timewait ← timecurr + timeout;
16 if record can progress state then

17 /* Progress */;
18 state← the matched state of record;
19 dim transits to state at timecurr;

20 end

21 end

22 end

23 /* Close record reading */;
24 dim transits to Null at timewait;

2

Supplementary material BMJ Global Health

 doi: 10.1136/bmjgh-2019-002187:e002187. 5 2020;BMJ Global Health, et al. Ku C-C



Algorithm 3: Collect dimensions and cut them by periods without events
(cutEpisodes(...))

Data: rel: state history in related illness dimension
eva: state history in evaluation dimension
tre: state history in treatment dimension

Result: A set of care seeking episodes
1 ts← ∅ /* A collection storing state transition times */;
2 foreach dim ∈ [rel, eva, tre] do
3 forall State transition time t of dim do ts.add(t);
4 end

5 Remove duplicated time points in ts Sort ts (ascending);
6 episodes = ∅ /* A collection for storing episodes */;
7 foreach t ∈ ts do

8 if all[rel, eva, tre] are Null at t then
9 /* Separate state-transition history*/;

10 x← state history before t split from rel;
11 y ← state history before t split from eva;
12 z ← state history before t split from tre;
13 /* Join dimensions */;
14 episode← [x, y, z];
15 episodes.append(episode);

16 end

17 end

18 return episode;

3

Supplementary material BMJ Global Health

 doi: 10.1136/bmjgh-2019-002187:e002187. 5 2020;BMJ Global Health, et al. Ku C-C



Algorithm 4: Patient pathway formulation (formulatePathway(...))

Data: episode: an episode with state transition history in rel, eva, and
tre

Result: A patient pathway
1 /* Identify key information */;
2 teva ← time of first evaluation possibly for TB;
3 tdet ← time of first evaluation probably for TB;
4 ttre ← time of the start of first regular TB treatment;
5 /* Group state transition history */;
6 historyeva ← history between teva and tdet;
7 historydet ← history between tdet and ttre;
8 historytre ← history after ttre;
9 /* Start to construct pathway */;

10 pathway ← ∅ /* Initialise patient pathway */;
11 state← initial state of episode;
12 put state into pathway ;
13 ie← False /* indicating had interrupted evaluation or not */;
14 /* Read state series in Evaluating Stage */;
15 foreach dimensions ∈ historyeva do

16 state← find an state in Evaluating Stage matched dimensions and
ie;

17 if state is Interrupted Evaluation then ie← True;
18 put state into pathway ;

19 end

20 /* Read state series in TB Detecting Stage */;
21 foreach dimensions ∈ historydet do

22 state← find an state in TB Detecting Stage matched dimensions

and ie;
23 if state is Interrupted Evaluation then ie← True;
24 put state into pathway ;

25 end

26 /* Read state series in Treating Stage */;
27 state← find the initial treatment level in historytre[0];
28 put state into pathway ;
29 foreach dimensions ∈ historytre[0 :] do
30 state← find the treatment level in dimensions;
31 if treatment level increased then

32 put Treatment Change into pathway ;
33 end

34 put state into pathway ;

35 end

36 /* Finalise patient patient formulation*/;
37 state← find the treatment outcome ;
38 put state with the time of treatment end into pathway;
39 return pathway;

4

Supplementary material BMJ Global Health

 doi: 10.1136/bmjgh-2019-002187:e002187. 5 2020;BMJ Global Health, et al. Ku C-C


