Algorithms

```
Algorithm 1: Patient pathway extraction: overview
   Data: records: an array of healthcare records of an individual
            TOR: Time-out of Related illness
            TOE: Time-out of Evaluation
            TOT: Time-out of Treatment
   Result: Patient pathways of a TB patient
 1 /* Initialise dimensions */;
 2 rel \leftarrow \text{New Related illness dimension;}
 \mathbf{3} \ eva \leftarrow \text{New Evaluation dimension};
 4 tre \leftarrow \text{New Treatment dimension};
 5 /* Read all records in each dimension */;
 6 rel.readRecords(TOR, records);
 7 eva.readRecords(TOE, records);
 s tre.readRecords(TOT, records);
 9 /* Collect dimensions and cut them into episodes */;
\textbf{10} \hspace{0.1cm} episodes \leftarrow \mathtt{cutEpisodes}(rel, \hspace{0.1cm} eva, \hspace{0.1cm} tre);
11 pathways \leftarrow \emptyset /* Initialise a empty set collecting pathways*/;
12 foreach episode \in episodes do
       pathway \leftarrow formulatePathway(episode);
13
14
       pathways.append(pathway)
15 end
16 return pathways;
See dim.{\rm readRecords}(\ldots) in Algorithm 2
See cutEpisodes(...) in Algorithm 3
```

See formulate Pathway(...) in Algorithm 4

Algorithm 2: Read records in each dimension (dim.readRecords(...))

```
Data: dim: dimension, rel, eva, or tre
            timeout: timeout for the selected dimension
            records: an array of healthcare records of an individual
   Result: the transition history in the dimension
   /* Initialise the dimension with a Null event */;
 2 time_{curr} \leftarrow 0;
 3 time_{wait} \leftarrow \infty /* the end of waiting time */;
 4 state \leftarrow Null;
 5 Initialise dim with state at time_{curr};
 6 foreach record \in records do
        time_{curr} \leftarrow time of record;
        if time_{curr} > time_{wait} then
            /* Reset state */;
            time_{wait} \leftarrow \infty / * the end of waiting time */;
10
            state \leftarrow Null;
11
           dim transits to Null at time_{wait};
12
13
       if record is relevant to dim then
14
            time_{wait} \leftarrow time_{curr} + timeout;
15
16
            if record can progress state then
                /* Progress */;
17
                state \leftarrow \text{the matched state of } record;
18
                dim transits to state at time_{curr};
19
           \mathbf{end}
20
21
        \mathbf{end}
22 end
^{23} /* Close record reading */;
24 dim transits to Null at time_{wait};
```

Algorithm 3: Collect dimensions and cut them by periods without events (cutEpisodes(...))

```
Data: rel: state history in related illness dimension
            eva: state history in evaluation dimension
            tre: state history in treatment dimension
    Result: A set of care seeking episodes
 1 ts \leftarrow \emptyset /* A collection storing state transition times */;
 2 foreach dim \in [rel, eva, tre] do
   forall State transition time t of dim do ts.add(t);
 4 end
 5 Remove duplicated time points in ts Sort ts (ascending);
 6 episodes = \emptyset /* A collection for storing episodes */;
 7 for<br/>each t \in ts do
        \mathbf{if} \ \mathit{all[rel, eva, tre]} \ \mathit{are} \ \mathit{Null} \ \mathit{at} \ t \ \mathbf{then}
 8
            /* Separate state-transition history*/;
 9
            x \leftarrow \text{state history before } t \text{ split from } rel;
10
            y \leftarrow state history before t split from eva;
11
            z \leftarrow state history before t split from tre;
12
            /* Join dimensions */;
13
            episode \leftarrow [x,y,z];
14
            episodes.append(episode);
15
        \mathbf{end}
16
17 end
18 return episode;
```

Algorithm 4: Patient pathway formulation (formulatePathway(...))

```
Data: episode: an episode with state transition history in rel, eva, and
            tre
   Result: A patient pathway
   /* Identify key information */;
 2 t_{eva} \leftarrow \text{time of first evaluation possibly for TB;}
 3 t_{det} \leftarrow \text{time of first evaluation probably for TB;}
 4 t_{tre} \leftarrow \text{time of the start of first regular TB treatment};
 5 /* Group state transition history */;
 6 history_{eva} \leftarrow history between <math>t_{eva} and t_{det};
 7 history_{det} \leftarrow history between t_{det} and t_{tre};
 8 history_{tre} \leftarrow \text{history after } t_{tre};
 9 /* Start to construct pathway */;
10 pathway \leftarrow \emptyset /* Initialise patient pathway */;
11 state \leftarrow initial state of episode;
12 put state into pathway;
13 ie \leftarrow False /* indicating had interrupted evaluation or not */;
   /* Read state series in Evaluating Stage */;
15 foreach dimensions \in history_{eva} do
       state \leftarrow \text{find an state in Evaluating Stage matched } dimensions \text{ and}
       if state is Interrupted Evaluation then ie \leftarrow True;
17
18
       put state into pathway;
19 end
   /* Read state series in TB Detecting Stage */;
21 foreach dimensions \in history_{det} do
       state \leftarrow \text{find an state in TB Detecting Stage} matched dimensions
       if state is Interrupted Evaluation then ie \leftarrow True;
23
^{24}
       put state into pathway;
25 end
26 /* Read state series in Treating Stage */;
27 state \leftarrow \text{find the initial treatment level in } history_{tre}[0];
28 put state into pathway;
   foreach dimensions \in history_{tre}[0:] do
       state \leftarrow \text{find the treatment level in } dimensions;
       {\bf if}\ treatment\ level\ increased\ {\bf then}
31
           put Treatment Change into pathway;
32
       end
33
       put state into pathway;
34
35 end
36 /* Finalise patient patient formulation*/;
37 state \leftarrow find the treatment outcome ;
38 put state with the time of treatment end into pathway;
зэ return pathway;
```