

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com).

If you have any questions on BMJ Open's open peer review process please email info.bmjopen@bmj.com

BMJ Open

Pathways to a Cancer-Free Future: a protocol for modelled evaluations to minimise the future burden of colorectal cancer in Australia.

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-036475
Article Type:	Protocol
Date Submitted by the Author:	17-Dec-2019
Complete List of Authors:	Feletto, E; Cancer Research Division, Cancer Council NSW; The University of Sydney, School of Public Health Lew, Jie Bin; Cancer Council New South Wales, Cancer Research Division; The University of Sydney, School of Public Health Worthington, Joachim; Cancer Council New South Wales, Cancer Research Division; The University of Sydney, School of Public Health He, Emily; Cancer Council New South Wales, Cancer Research Division; The University of Sydney, School of Public Health Caruana, Michael; Cancer Council New South Wales, Cancer Research Division; The University of Sydney, School of Public Health Butler, Katherine; Cancer Research Division, Cancer Council NSW Hui, Harriet; Cancer Research Division, Cancer Council NSW Taylor, Natalie; Cancer Council, Cancer Research Division; The University of Sydney, Faculty of Medicine and Health Banks, Emily; Australian National University, ANU College of Medicine, Biology and Environment Barclay, Karen; The University of Melbourne, Northern Clinical School, Melbourne Medical School Broun, Kate; The Cancer Council Victoria, Centre for Behavioural Research in Cancer Butt, Alison; University of New South Wales, Research Strategy Office Carter, Rob; Deakin University, Deakin Institute for Health Research Cuff, Jeff; University of New South Wales, Faculty of Science Biotech & Biomolecular Science; Consumer representative, Research and Consumer Advocate Dessaix, Anita; Cancer Council New South Wales, Cancer Prevention and Advocacy Ee, Hooi; Sir Charles Gairdner Hospital, Department of Gastroenterology Emery, Jon; University of Melbourne, General Practice and Primary Care Academic Centre Frayling, Ian; Cardiff University, General Practice and Primary Care Academic Centre Frayling, Ian; Cardiff University, School of Public Health Holden, Carol; South Australian Health and Medical Research Institute, No Australians Dying of Bowel Cancer Initiative Horn, Christopher; Cancer Institute New South Wales Jenkins, Mark; The University of Melbourne, Centre for Epidemiology and Biostatistics

Faculty of Medicine and Health Laaksonen, Maarit; University of New South Wales, Centre for Big Data Research in Health Leggett, Barbara; QIMR Berghofer Medical Research Institute Mitchell, Gillian; Peter MacCallum Cancer Institute, Parkville Familial Cancer Centre; University of Melbourne, The Sir Peter MacCallum Department of Oncology Morris, Susan; Consumer representative, Research and Consumer Advocate; Lynch Syndrome Australia Parkinson, B; Macquarie University, Macquarie University Centre for the Health Economy St John, D James; The Cancer Council Victoria; The University of Melbourne, Department of Medicine, The Royal Melbourne Hospital Taoube, Linda; The University of Sydney, School of Public Health Tucker, Katherine; Prince of Wales Hospital, Hereditary Cancer Centre; University of New South Wales, Prince of Wales Clinical School Wakefield, Melanie; Cancer Council Victoria, Centre for Behavioural Research in Cancer Ward, Robyn; University of Sydney, Faculty of Medicine and Health Win, Aung; The University of Melbourne, Centre for Epidemiology and Biostatistics; Victorian Comprehensive Cancer Centre, Precision Prevention and Early Detection, University of Melbourne Centre for Cancer Research Worthley, Dan; South Australian Health and Medical Research Institute, Gastrointestinal Cancer Biology Armstrong, Bruce; The University of Sydney, School of Public Health Macrae, Finlay; Royal Melbourne Hospital, Genetics; The University of Melbourne, Department of Medicine, The Royal Melbourne Hospital Canfell, Karen; Cancer Council New South Wales, Cancer Research Division; The University of Sydney, School of Public Health Gastrointestinal tumours < ONCOLOGY, PUBLIC HEALTH, HEALTH Keywords: **ECONOMICS**

> SCHOLARONE™ Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

Pathways to a Cancer-Free Future: a protocol for modelled evaluations to minimise the future burden of colorectal cancer in Australia.

Eleonora Feletto^{1,2}, Jie-Bin Lew^{1,2}, Joachim Worthington^{1,2}, Emily He^{1,2}, Michael Caruana¹, Katherine Butler ¹, Harriet Hui ¹, Natalie Taylor^{1,3}, Emily Banks⁴, Karen Barclay⁵, Kate Broun⁶, Alison Butt⁷, Rob Carter⁸, Jeff Cuff^{9,10}, Anita Dessaix¹, Hooi Ee¹¹, Jon Emery¹², Ian M. Frayling¹³, Paul Grogan^{1,2}, Carol Holden¹⁴, Christopher Horn¹⁵, Mark A. Jenkins¹⁶, James G Kench^{3,17}, Maarit A. Laaksonen¹⁸, Barbara Leggett¹⁹, Gillian Mitchell^{20,21}, Susan Morris^{9,22}, Bonny Parkinson²³, D James St John^{6,24}, Linda Taoube², Katherine Tucker^{25,26}, Melanie Wakefield⁶, Robyn L Ward², Aung Ko Win^{16,27,28}, Daniel Worthley¹⁴, Bruce K Armstrong², Finlay A Macrae^{24,28}, Karen Canfell ^{1,2,26}

Corresponding author: Eleonora Feletto, Cancer Council NSW, 153 Dowling St, Woolloomooloo, NSW 2015 Australia email: eleonoraf@nswcc.org.au

Keywords: colorectal cancer, prevention, early detection, screening

¹Cancer Council NSW, Sydney, NSW, Australia

² School of Public Health, Sydney Medical School, University of Sydney, NSW, Australia

³ Faculty of Medicine and Health, University of Sydney, Sydney, Australia

⁴ National Centre for Epidemiology and Population Health, Australian National University, Canberra, ACT, Australia

⁵Northern Clinical School, University of Melbourne, Melbourne Medical School, VIC, Australia

⁶Cancer Council Victoria, Melbourne, VIC, Australia

⁷Research Strategy Office, University of New South Wales, Australia

⁸Deakin Health Economics, Institute for Health Transformation, Faculty of Health, Deakin University, Victoria, Australia

⁹Consumer representative- Research and Consumer Advocate

¹⁰Faculty of Science Biotech & Biomolecular Science, University of New South Wales

¹¹Department of Gastroenterology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.

¹²Centre for Cancer Research and Department of General Practice, University of Melbourne.

¹³Inherited Tumour Syndromes Research Group, Division of Cancer & Genetics, Cardiff University, UK

¹⁴South Australian Health and Medical Research Institute, Adelaide, Australia

¹⁵Cancer Institute NSW

 $^{^{16}}$ Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health

University of Melbourne, Australia

¹⁷ Department of Tissue Pathology & Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, Australia

¹⁸ Centre for Big Data Research in Health, University of New South Wales, Australia

¹⁹ QIMR Berghofer Medical Research Institute, Queensland, Australia

²⁰ Familial Cancer Centre, Peter MacCallum Cancer Centre, Melbourne VIC Australia

²¹ Sir Peter MacCallum Dept of Oncology, University of Melbourne, Melbourne, VIC Australia

²² Lynch Syndrome Australia, Queensland, Australia

²³ Macquarie University Centre for the Health Economy, Macquarie University, NSW, Australia

²⁴ Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC, Australia

²⁵ Hereditary Cancer Centre, Prince of Wales Hospital, Randwick, New South Wales, Australia

²⁶ Prince of Wales Clinical School, The University of New South Wales, Australia

²⁷ Precision Prevention and Early Detection, University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Victoria, Australia

²⁸ Genetic Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia

Abstract

Introduction

With almost 50% of cases preventable and the Australian National Bowel Cancer Screening Program in place, colorectal cancer (CRC) is a prime candidate for investment to reduce burden. The challenge is determining the most effective ways to reduce morbidity and mortality. *Pathways*-Bowel is a multi-stage program that aims to identify best-value investment in CRC control by integrating: expert and end-user engagement; relevant evidence; modelled interventions to guide future research investment; and policy-driven implementation of interventions.

Methods and analysis

Pathways-Bowel is an iterative work program that incorporates a calibrated and validated CRC natural history model for Australia (Policy1-Bowel) and assesses the health and cost outcomes and resource use of targeted interventions. Experts help identify and prioritise modelled evaluations of changing trends and interventions and critically assess results to advise on their real-world applicability. Where appropriate the results are used to support public policy change and make the case for optimal investment in specific CRC control interventions. Fourteen high priority evaluations have been modelled or planned, including evaluations of CRC outcomes from: changing the prevalence of modifiable exposures including smoking and body fatness; potential benefits of daily aspirin intake as a form of chemoprevention; increasing CRC incidence in people under 50 years; increasing screening participation in the general population and in Aboriginal and Torres Strait Islander peoples; alternative screening technologies and modalities; and changes to follow-up surveillance protocols. Pathways-Bowel is a unique, comprehensive approach to evaluating CRC control; no prior body of work has assessed the relative benefits of a wide variety of interventions across CRC development and progression to produce a list of best-value investments.

Ethics and dissemination

Ethics approval was not required as human subjects were not involved. Findings are reported in a series of papers in peer-reviewed journals and presented at fora to engage the community and policymakers.

Article summary

Strengths and limitations

 Pathways-Bowel leverages a fully calibrated natural history microsimulation model for CRC (Policy1-Bowel) to model evaluations of existing and hypothetical changing trends and interventions to improve CRC outcomes for Australians.

- This program aims to bridge the gap between end-user priorities, epidemiological and statistical research outputs and practical applicability from health, resource, and health system cost perspectives.
- Findings from the *Pathways*-Bowel program are applicable to Australia; however, the
 flexibility of *Policy1-Bowel* enables its future adaptation to other settings where locationspecific data are available.
- The predictive modelling used is limited by and dependent on the available data sources and assumptions made in the absence of real-world data.
- The overarching *Pathways* program generates evidence on the best-value investments or "best buys" in cancer control across multiple cancers, to inform future decision making.

Word count:

- Abstract: 300

- Body: 3898

Introduction

Background

In Australia, colorectal cancer (CRC) was the third most commonly diagnosed cancer in 2017, with estimated incidence of 63.4 per 100,000 and 45.8 per 100,000 in males and females, respectively (1,2). A small proportion of CRC cases are found in higher-risk patients and associated with strong family history of CRC or hereditary syndromes. Lynch syndrome and Familial Adenomatous Polyposis account for ~3% and less than 1% of new CRC cases, respectively (3-5). The Australian Burden of Disease Study found there were over 95,000 years of healthy life lost due to CRC in 2015 which accounted for 2% of the total disease burden in Australia (6). From 1982 to 2015, CRC incidence and mortality rates decreased (from 58.3 to 57.4 and 32.3 to 19.2 per 100,000, respectively) (7), with noted gender, socio-economic and geographic disparities (8-11). The 5-year overall survival for CRC in Australia has increased from 51% in 1985-1989 to 70% in 2010-2014 (12). However, a recent analysis highlighted increasing CRC incidence in people under 50 years of age, which could be partially attributed to the rising prevalence of harmful risk factors but certain causes are still unknown (13). Nearly half (49.8%) of new CRC cases in Australia are attributable to known modifiable risk factors (14) and therefore could be influenced by primary prevention interventions. Evidence on policies and interventions for preventing bowel cancer through lifestyle change varies widely between risk factors. On current evidence, the best buy in CRC control is increasing participation in Australia's National Bowel Cancer Screening Program (NBCSP) but fewer than half the eligible population choose to participate. By the 2020, all Australians aged 50-74 will be invited to participate in biennial screening using an immunochemical faecal occult blood test (iFOBT) (12). Further decreases in incidence and mortality of 23% and 36%, respectively, are anticipated by 2040 at current participation rates once full NBCSP implementation is in place (15).

Pathways

In view of the changing landscape of CRC control, "Pathways to a cancer-free future" ('Pathways') was developed to focus investment where the biggest impact can be made at a population level. First described in relation to cervical cancer, it has since grown (16). The Pathways model is being applied to five major cancers: cervical, lung, colorectal, prostate, and breast cancer, and to cancers relating to Lynch syndrome with early work commencing in cancers of the ovary, liver and melanoma. It aims to identify the best-value investments, or "best buys", in cancer control to inform future assessments by decision makers. Pathways-Bowel refers to the program of work focused on CRC, with a detailed assessment of high-risk individuals with Lynch syndrome and other Lynch-related cancers currently underway (17), as part of Pathways-Lynch. Pathways-Bowel will span the

CRC control continuum, from primary prevention to survivorship. It aims to model comparative evaluations of CRC interventions guided by the best available evidence. The results are intended to guide and underpin future research investment and policy implementation. The aim of the current article is to outline the design and objectives of *Pathways*-Bowel and summarise the protocol for ongoing and planned modelled evaluations of CRC interventions.

Methods and Analysis

Study design

Pathways as an overarching program has been previously described (16). Since that time, Pathways has transformed from a staged approach into a more iterative process. As evaluation results become available, they are immediately reviewed and disseminated as appropriate to support potential policy change.

Patient and Public Involvement Statement

Multisectoral stakeholder involvement in *Pathways*-Bowel is achieved via a multidisciplinary Scientific Advisory Committee (SAC) including academics, clinicians, consumers and advisers on policy. The SAC was formed to ensure that there was involvement from all relevant stakeholders outside the core research team and confirm the relevance of modelled evaluations and their translation. The SAC was first convened to discuss CRC in March 2018 and members are consulted based on their area of expertise to guide, critique and support the program and its recommendations. Following critical assessment of the evidence, the SAC and smaller working groups provide guidance on modelled evaluations, ensuring there is involvement from interested parties throughout the process.

Processes and analysis for modelled evaluations of interventions

Modelling platform: Policy1-Bowel

We use a previously developed microsimulation model platform, *Policy-1 Bowel*, to perform predictive modelled evaluations of CRC interventions in Australia (18). The platform has, thus far, been developed to evaluate the NBCSP (15,19,20). The model platform is implemented in C++ and includes several interconnected elements to evaluate the NBCSP (see Figure 1):

a) a model of the development of CRC from adenoma (via the adenoma-carcinoma pathway) and sessile serrated lesions (via the serrated pathways) and survival from CRC;

- a model of screening for average-risk people, including post-screening diagnosis, treatment, and surveillance (Figure 2 summarises the current NBCSP screening delivery pathways incorporated in *Policy1-Bowel*);
- a multiple-cohort implementation model that simulates the development of polyps and CRC, screening, diagnosis and other downstream NBCSP processes in the target population over a time period of interest; and
- d) a population component that applies Australian-specific demographic, economic and health utilities data (including cost and quality-adjusted life-years) to the model outputs to estimate cross-sectional results in a population.

Policy1-Bowel validation

Extensive calibration of the model has been carried out against a wide range of current NBCSP outputs and other Australian data sources (15). The model has also been validated against the findings of other well-established microsimulation models and multiple large randomised-controlled trials with long-term follow-up (21). Further details of the model used in this work, and descriptions of its development, parameterisation, data sources, calibration, and validation outcomes, have been published previously and technical appendices are available (15,18–20).

Economic Analysis

The modelled evaluations are conducted and result in economic analyses to develop a business case for investment. *Pathways*-Bowel (and all *Pathways*) uses a common framework so "best buys" can be compared within and between groups. The framework is in development and will be based on similar initiatives internationally (22). The populations of interest are average-risk Australians and sub-groups relevant to the modelled evaluations. For each evaluation, several primary outcomes are considered, including:

- i) health benefits—e.g. reduction in lifetime risk of CRC incidence and mortality;
- ii) harms e.g. hospitalisations, adverse events of colonoscopy;
- iii) resource use e.g. communications strategies to promote interventions, workforce, screening and diagnostic tests; and
- iv) health-economic outcomes e.g. discounted and undiscounted lifetime cost, life-years, quality-adjusted-life years, disability-adjusted life years and incremental cost-effectiveness ratio (ICER).

For each intervention, the primary outcomes listed may be expanded or differ. The comparator for analyses is the general population or specific sub-group of interest without the influence of the

intervention being assessed. The potential harms associated with interventions are oftentimes minimal, but *Pathways* will enable their characterisation and quantification. For example, the health benefits and harms for screening would also include colonoscopy-related adverse events and number-needed-to colonoscope per CRC death prevented.

A health services perspective is applied, and efforts be made to expand to the societal perspective including characterisation of out-of-pocket expenses. From a health services perspective, costs incurred by governments and the health system over a person's lifetime (until the age of 89 years) are incorporated. For each evaluation, multiple time horizons may be chosen as appropriate to the specific intervention, but the common time horizon is to 2050 (as this timeline indicates a change within a generation). In terms of an indicative willingness-to-pay (WTP) threshold, \$30,000-50,000/life-year saved has previously been used for evaluations of interventions for CRC and cervical cancer (19,23,24). In *Pathways*, a 5% discount rate and the indicative WTP threshold of \$30,000-50,000/life-year saved, with alternative WTP thresholds included for comparability, are used. Our focus is to quantify and comparing ICERs in all our analyses. One-way and probabilistic sensitivity analyses and uncertainty analyses will be conducted as required to assess the impact of model parameter uncertainties on the key model findings.

Rationale for modelled evaluations of CRC interventions

Under the guidance of the SAC, a list of priority modelled evaluations for CRC interventions was compiled. Evaluations were preceded by exploratory scoping reviews of the literature to identify potential interventions and were escalated to a full systematic review as required and determined by the SAC. The ongoing and planned interventions are listed in Table 1 and vary based on the CRC control continuum and the evidence available. These represent the first series of evaluations. Broadly, these evaluations cover interventions to reduce CRC risk, interventions in light of changing incidence trends, modifications to the NBCSP via target age groups, increased participation and alternative screening methods, and improved surveillance management. Findings from these analyses have been and will continue to be reviewed by the SAC as required. At a later date, these evaluations will grow and could include topics of growing public interest, for example the promotion of healthy diet, and extend to the later stages of CRC control as evidence becomes available.

While *Policy1-Bowel* has been developed to run modelled evaluations of the NBCSP, it is a flexible and dynamic model that can be adapted to incorporate both alternative screening interventions as well as interventions addressing other stages of the CRC continuum. Policy1-Bowel proves a critical

tool for assessing the "best buys" for CRC. The section below outlines how *Pathways*-Bowel is being used in the contexts of primary prevention, screening and early detection and treatment for CRC.

Primary Prevention: Reducing risk

Promoting healthy behaviours and reducing risk through primary prevention can play an important role in CRC control (14). Targeted primary prevention interventions to reduce CRC risk could address any or all of the following: tobacco use, alcohol use, body fatness, insufficient physical activity, insufficient dietary fibre intake, and excess red and processed meat intake (25-27). The prevalence of most of these risk factors, except tobacco use, has increased in Australians in recent decades but for some key risk factors, such as overweight and obesity, prevalence in children is rising and calls for action are increasing (28). Although evidence is less robust, the use of calcium supplements, consumption of dairy products and wholegrains, and use of hormone therapy by postmenopausal women have been identified as potentially reducing CRC risk (25,29,30). Notably, the 2017 Australian clinical practice guidelines for CRC recommend low-dose daily aspirin use for all people aged 50-70 as evidence suggests its potential effectiveness in CRC primary prevention (29,30). More recent studies have begun exploring the role of the gut microbiota in the development of CRC, which can be indirectly affected by diet (31). In practice, evidence-based interventions addressing these risk factors are challenging to evaluate without information on medium to long term CRC outcomes. Pathways-Bowel will synthesise the existing evidence to determine the likely impact on CRC outcomes in the future. Initially, the priorities in this area (Table 1) are: (1) changing smoking prevalence, (2) changing body fatness prevalence and distribution, and (3) impact of daily aspirin prophylaxis. Other behaviours, such as alcohol consumption and diet, will potentially be added at a later stage.

Screening and Early Detection: NBCSP outcomes

Identification and removal of precancerous adenomas can prevent CRC development, and early detection of existing malignancies improves survival, making CRC an ideal candidate for an organised population screening program (32). The NBCSP participation rate over the 2016-2017 biennial period was about 40% nationally (12). Current reported rates of colonoscopy for assessment of individuals with a positive NBCSP-iFOBT test are approximately 66%, with known underreporting (12). Recommended screening for people at intermediate or high CRC risk due to family history of CRC and/or hereditary syndromes is more intense, beginning at a younger age, and might include iFOBT and colonoscopy screening depending on level of risk, informed by evidence (33). In addition, ongoing surveillance of individuals with either a positive iFOBT or polyps removed at colonoscopy

follow varying management recommendations based on level of risk and subsequent colonoscopy results (34).

National reports issued by the Australian Institute of Health and Welfare, along with other studies, have drawn attention to NBCSP participation disparities by gender, geographic location, Indigenous status, place of birth and language spoken at home (12,35–37). Interventions to promote CRC screening, used internationally, revolve largely around general population awareness and health organisation or practitioner endorsement of participation and follow-up (38–40). Efforts are now being made by government and not-for-profit organisations to improve NBCSP participation both in the general population and in targeted population subgroups (41–43). Interventions to improve NBCSP participation are likely to be effective and cost-effective investments to improve NBCSP and health outcomes (41,42). Evaluations of interventions to support compliance with recommendations for screening, follow-up and surveillance and to assess the best use of existing health resources could also be conducted, when data on the performance of these interventions are available.

Australia has a national organised screening program (federally funded and near full implementation) that should be taken into account in any modelled evaluation. The priority areas cover predictive modelling of the NBCSP outcomes under a range of conditions or changes in the external environment or program (Table 1). These scenarios are: (1) changing temporal incidence trends, (2) targeting NBCSP participation in population subgroups, (3) targeting NBCSP participation to a broader age range, (4) long-term NBCSP participation at varying rates, (5) long-term NBCSP participation increased by simulated mass-media campaigns, (6) using alternative technologies, and (7) modifying surveillance management.

Treatment

Once diagnosed, surgery is generally considered as initial treatment, with or without adjuvant chemotherapy or radiation therapy (44,45). The goal of surgery is to remove any tumour as well as surrounding tissue either laparoscopically or via traditional open surgery (46). Variations in treatment pathways more often relate to adjuvant chemotherapy where there are differences in guidelines and outcomes based on stage, location and genetic mutations, where relevant.

Additionally, post-operative complications can occur and impact individuals (47). Metastatic disease is treated with systemic chemotherapy and biological therapies. Bevacizumab, added to the Pharmaceutical Benefit Schedule (PBS) for Australian Government supported subsidies in 2009, can be used in addition to chemotherapy in metastatic CRC cases and has been found to prolong both

progression-free survival (from 7.1 to 9.7 months) as well as overall survival (from 17.7 to 20.5 months) in first- and second-line therapy (48). Cetuximab and panitumumab are also PBS-subsidised for use in patients with RAS wild-type CRC (49). Besides these, there have been few modifications to the PBS related directly to therapies for CRC. For CRC, immunotherapy has proven effective in early and advanced microsatellite unstable CRC tumours, which can comprise 15% of all CRC and greater for those under 50 years. Research continues in this area with an active interest in the concept of personalised medicine with therapies for specific CRC subtypes (50). There have been calls for further research into several new immune agents and other therapies for CRC treatment that could potentially change patient outcomes. In future, evaluations of treatment options and their associated outcomes (including post-operative complications) can be conducted as part of *Pathways*-Bowel to determine both the therapeutic- and cost-effectiveness of existing and novel therapies as further evidence becomes available in Australia.

Survivorship

With a 5-year overall survival (2010–2014) of 70% and decline in mortality predicted to continue (12), survivorship issues are growing in relevance and importance. The majority of evidence is focused on patient surveillance for recurrence with differences across available guidelines on the frequency and timing of follow-up tests (51). Survivorship issues for CRC patients include physical, psychological and social challenges as well as ongoing healthcare needs (51–54). Australian evidence has suggested care is highly variable in CRC survivors and disparities by socio-economic group are apparent (53). American guidelines for CRC survivorship have highlighted the role of risk-based health care and there has been a shift in focus to improving patient outcomes through survivorship care plans and coordinated care (51,52). In future, evaluations of survivorship issues and interventions to improve outcomes will be integrated into *Pathways*-Bowel.

Ethics and dissemination

The *Pathways*-Bowel protocol for modelled evaluations has been reviewed and approved by the SAC. No human subjects are involved to perform modelled evaluations and therefore Human Research Ethics Committee was not required. Where epidemiological analyses are planned and require ethics approval, it will be sought. No deviations from the protocol will be conducted without prior review and approval of the relevant working party leads from the SAC.

Preliminary Results

This program formalises an existing ongoing body of research which has already produced outputs. *Pathways*-Bowel officially commenced in early 2017 and is an ongoing collaboration with the SAC and other CRC-specialist researchers. As results become available, they are reviewed and prepared for peer-reviewed publication. Work has initially focused on evaluating the NBCSP from various perspectives using both predictive modelling and epidemiological research (15,19,20,37,41). An evaluation of NBCSP effectiveness and cost-effectiveness at various participation levels showed that increasing participation from 40% to 60% would prevent 83,800 deaths from 2015-2040 and reduce annual expenditure on CRC control within a decade of full NBCSP rollout (15). We also explored the impact of optimistic NBCSP adherence rates, possibly beyond those achievable in practice, to determine whether the impact of such an intervention is substantial and worth pursuing further.

Alternative screening methods using different screening modalities or targeting NBCSP screening age groups have also been evaluated (19,20). The alternative technologies evaluated were plasma DNA testing, faecal DNA testing, computed tomography colonography, flexible sigmoidoscopy, and colonoscopy (20). Extensions to the target age range for the general population were also assessed, including people in their 40s and/or people in their 80s (19). Considering the health outcomes and cost-effectiveness, the studies concluded that the planned NBCSP using biennial iFOBT and targeting people aged 50-74 years is currently the optimal option for CRC screening in Australia, and achieving higher screening participation within that age range will save more lives and improve the long-term cost-effectiveness (19,20). These results had a direct impact on clinical practice and policy as they were used to inform the 2017 "Clinical practice guidelines for the prevention, early detection and management of colorectal cancer", approved by the National Health and Medical Research Council, and guided recommendations for the NBCSP (30).

In addition to the planned modelled evaluations, epidemiological data will also be assessed to quantify and characterise screening occurring outside the NBCSP, which is anecdotally thought to be considerable and may impact the estimates of the benefits of increasing participation in NBCSP if these individuals are already being screened (55). Further work has been undertaken and continues to inform guidelines and policy in areas of CRC management, such as the updated national surveillance colonoscopy guidelines (34). As additional evidence accumulates for potential interventions, these will be explored in future modelled evaluations and used to inform guidelines and policy change discussions. Notably, the *Policy1-Bowel* platform was used to evaluate a recent pilot mass-media campaign aimed at increasing NBCSP participation which resulted in a \$10 million government investment in a national mass-media campaign (43). This provides a clear

demonstration on the usefulness of *Pathways*-Bowel in guiding investment and policy implementation (41–43).

Discussion

The proven ability and future capacity of the *Pathways* program to identify the best-value investments in cancer control is critical in public health decision making. Internationally it has been recognised that demonstrating the cost-effectiveness of public health interventions helps to underpin commitment from policymakers and funders (56). However, the varying methods by which interventions are evaluated makes them difficult to compare and subject to methodological confounding (56). *Pathways*-Bowel is leading by example. *Pathways*-Bowel is a unique, evidence-based, comprehensive approach to CRC control initially focused on screening interventions and their effectiveness in relation to the evolving knowledge of the natural history of CRC. Relevant evidence exists in CRC, but no prior body of work has assessed the relative benefits of interventions across the CRC spectrum in a systematic way using a health economics framework, producing "best buys" for the nation. By providing uniformly obtained, high quality evidence guided by a standardised framework which is in development, *Pathways*-Bowel has the capacity to drive CRC control change and improve outcomes for Australians across the entire spectrum of risk. *Pathways* is a way to assess the impact of many more interventions than could be subject to clinical trials; the interventions can even be complementary, provided they are anchored in the real world.

Pathways-Bowel engages and involves researchers, clinicians, consumers, policymakers and other key stakeholders from its outset and throughout the process. Findings are presented in such a way that stakeholders can use the information to guide policy change priorities, funding recommendations and evidence-based advocacy for improved outcomes. Early results are integrated with policy and advocacy efforts through local independent cancer control agencies with a track record in changing policy. The findings may also identify areas where further research could facilitate evaluations and guide research priority setting by funders.

The type of predictive modelling used in the *Pathways* program is not without its limitations. It is dependent on the available data sources and assumptions made in the absence of robust data. In Australia we are fortunate to have high quality data available on CRC incidence and mortality and regular monitoring reports made publicly available on the performance of the NBCSP. These data have been used to develop a robust and sound *Policy1-Bowel* platform. Nevertheless, the modelled results remain predictions. It is through extensive validation with trial outcomes (21),continual

improvement of the model, and input of updated real world information as it becomes available, that the outputs are strengthened.

In terms of health economics, the health services perspective is used which limits the interpretation of results. Economic modelling, by itself, does not explicitly aid policymakers to maximise equity. However, more broadly, the *Pathways*-Bowel program of research embeds equity as a pillar. Through *Pathways*, standard economic analyses are complemented by systematic predictive modelling for specific groups and issues. Although applicable to the Australian general population, the outcomes can be evaluated for other contexts where data are available. Aboriginal and Torres Strait Islander peoples, for example, have seen varying trends in CRC incidence and mortality over time when compared to the Australian population, with significant increase in incidence, no statistically significant trend in mortality, and a lower 5-year relative survival (58%) (57). Evaluations are being conducted for this population group to assess the impact of screening through the NBCSP from age 40 to 74, and modelling of sub-groups can be extended to culturally and linguistically diverse populations living in Australia as required. Overall, the flexibility of the modelling platform used in *Pathways*-Bowel allows for its application to other settings in the future, both for developed and developing countries, and this has already begun for China.

While the current focus is on prevention and screening, *Pathways*-Bowel and the *Policy1-Bowel* platform have the flexibility to evaluate diagnosis, treatment and survivorship interventions as evidence is gathered. The capacity of the model is continually being extended and strengthened with each new modelled evaluation performed. There is much promise in current research to identify optimal approaches to population-based screening for CRC in Australia. The *Pathways* program has already been established based on sophisticated analysis of the associated benefits, harms, and cost factors. The next step, implementation of interventions and policies into practice, is crucial for ensuring the benefits of optimal approaches are realised by those who need it: the Australian population. Evidence-based approaches to inform "best buys" in policy reform, accounting for context, system complexity and stakeholder perspectives, is a fundamental prerequisite for successful and sustained translation of discoveries into real world settings. The *Pathways* program presents the opportunity to continually optimise evidence-based support for cancer control interventions.

List of figures:

Figure 1: Schematic diagram of the *Policy1-Bowel* microsimulation model platform.

Figure 2: Modelled screening delivery pathway (based on NBCSP) modelled in the *Policy1-Bowel* microsimulation model platform.

Table 1: Priority modelled evaluations for CRC interventions

Evaluation	Focus Area	Status
Impact* of changing smoking prevalence on CRC	Reducing risk of CRC	Ongoing
Impact* of changing body fatness prevalence and distribution on CRC	Reducing risk of CRC	Ongoing
Impact* of daily aspirin prophylaxis on CRC	Reducing risk of CRC	Ongoing
Impact* of NBCSP in the long term due to the increasing CRC incidence in younger cohorts	NBCSP outcomes: Changing temporal trends	Ongoing
Impact* of extending the NBCSP to younger ages for birth cohorts with increasing CRC rate	NBCSP outcomes: Changing temporal trends	Ongoing
Impact* of extending the NBCSP to people aged 40-49 years for the Aboriginal and Torres Strait Islander peoples	NBCSP outcomes: Targeting population subgroups with different CRC risk profiles	Ongoing
Impact* of extending the NBCSP to younger (40-49 years) and/or older (75-84 years) ages of average-risk Australians	NBCSP outcomes: Targeting NBCSP participation to a broader age range	Published
Impact* of the NBCSP at currently observed rates in the long term	NBCSP outcomes: Long-term NBCSP participation	Published
Impact* of increasing NBCSP participation to 60 and 70%	NBCSP outcomes: Increasing NBCSP participation rates	Published
Impact* of optimising NBCSP adherence (iFOBT screening and diagnostic assessment) to 90% and quantifying a maximum threshold for cost-effective investment towards improving NBCSP adherence	NBCSP outcomes: Increasing NBCSP participation rates	Complete
Impact* of mass media campaigns aimed at increasing participation in NBCSP	NBCSP outcomes: Increasing NBCSP participation rates	Complete
Impact* of including twice-off screening colonoscopies at age 40 and 60 in addition to the current NBCSP	NBCSP outcomes: Alternative screening methods	Complete
Impact* of 13 alternative screening approaches involving use of iFOBT, colonoscopy, sigmoidoscopy, computed tomographic colonography, faecal DNA, and plasma DNA for the NBCSP	NBCSP outcomes: Alternative screening methods	Published
Impact* of modifications to colonoscopic surveillance protocols, especially the newly ratified Australian colonoscopy surveillance guidelines to the previous guidelines	NBCSP outcomes: Modifying colonoscopic surveillance management	Ongoing

^{*}The impact of listed evaluations assessed in terms of health outcomes, resource use and costs.

Abbreviations: NBCSP: National Bowel Cancer Screening Program; CRC: Colorectal Cancer; iFOBT: immunochemical faecal occult blood test

References

- 1. Australian Institute of Health and Welfare. Cancer in Australia 2019. Canberra: AIHW; 2019. Report No.: Cancer series no.119. Cat. no. CAN 123.
- 2. Australian Institute of Health and Welfare. Cancer in Australia: Actual incidence data from 1982 to 2013 and mortality data from 1982 to 2014 with projections to 2017. Asia Pac J Clin Oncol. 2018;14(1):5–15.
- 3. Lynch HT, Lynch PM, Lanspa SJ, Snyder CL, Lynch JF, Boland CR. Review of the Lynch syndrome: history, molecular genetics, screening, differential diagnosis, and medicolegal ramifications. Clin Genet. 2009 Jul;76(1):1–18.
- 4. Karstensen JG, Burisch J, Pommergaard H-C, Aalling L, Højen H, Jespersen N, et al. Colorectal Cancer in Individuals With Familial Adenomatous Polyposis, Based on Analysis of the Danish Polyposis Registry. Clin Gastroenterol Hepatol. 2019 Oct 1;17(11):2294-2300.e1.
- 5. Hampel H, Frankel WL, Martin E, Arnold M, Khanduja K, Kuebler P, et al. Feasibility of screening for Lynch syndrome among patients with colorectal cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2008 Dec 10;26(35):5783–8.
- 6. Australian Institute of Health and Welfare. Australian Burden of Disease Study: impact and causes of illness and death in Australia 2015. Canberra: AIHW; 2019. Report No.: Australian Burden of Disease Study series no. 19. Cat. no. BOD 22.
- 7. Australian Institute of Health and Welfare. Australian Cancer Incidence and Mortality (ACIM) books [Internet]. 2019 [cited 2019 Jan 31]. Available from: http://www.aihw.gov.au/acim-books/
- 8. Yu XQ, O'Connell DL, Gibberd RW, Armstrong BK. A population-based study from New South Wales, Australia 1996-2001: area variation in survival from colorectal cancer. Eur J Cancer Oxf Engl 1990. 2005 Nov;41(17):2715–21.
- 9. Jong KE, Smith DP, Yu XQ, O'Connell DL, Goldstein D, Armstrong BK. Remoteness of residence and survival from cancer in New South Wales. Med J Aust. 2004 Jun 21;180(12):618–22.
- 10. Yu XQ, O'Connell DL, Gibberd RW, Armstrong BK. Assessing the impact of socio-economic status on cancer survival in New South Wales, Australia 1996-2001. Cancer Causes Control CCC. 2008 Dec;19(10):1383–90.
- 11. Stanbury JF, Baade PD, Yu Y, Yu XQ. Cancer survival in New South Wales, Australia: socioeconomic disparities remain despite overall improvements. BMC Cancer. 2016 Feb 1;16.
- 12. Australian Institute of Health and Welfare. National Bowel Cancer Screening Program: monitoring report 2019. Canberra: AIHW; 2019. Report No.: Cancer series no. 125. Cat. no. CAN 125.
- 13. Feletto E, Yu XQ, Lew J-B, St John DJB, Jenkins MA, Macrae FA, et al. Trends in colon and rectal cancer incidence in Australia from 1982 to 2014: Analysis of data on over 375,000 cases. Cancer Epidemiol Biomarkers Prev. 2019;28(1):83–90.
- 14. Whiteman DC, Webb PM, Green AC, Neale RE, Fritschi L, Bain CJ, et al. Cancers in Australia in 2010 attributable to modifiable factors: summary and conclusions. Aust N Z J Public Health. 2015 Oct 1;39(5):477–84.

- 15. Lew J-B, St John DJB, Xu X-M, Greuter MJE, Caruana M, Cenin DR, et al. Long-term evaluation of benefits, harms, and cost-effectiveness of the National Bowel Cancer Screening Program in Australia: a modelling study. Lancet Public Health. 2017 Jul 1;2(7):e331–40.
- 16. Velentzis LS, Smith MA, Simms KT, Lew J-B, Hall M, Hughes S, et al. Pathways to a cancer-free future: A protocol for modelled evaluations to maximize the future impact of interventions on cervical cancer in Australia. Gynecol Oncol. 2019 Jan 1;152(3):465–71.
- 17. Kang Y-J, Killen J, Caruana M, Simms K, Taylor N, Frayling IM, et al. The predicted impact and cost-effectiveness of systematic testing of people with incident colorectal cancer for Lynch syndrome. Med J Aust [Internet]. [cited 2019 Nov 21];n/a(n/a). Available from: https://onlinelibrary.wiley.com/doi/abs/10.5694/mja2.50356
- 18. Cancer Council NSW. Policy1 [Internet]. 2019 [cited 2019 Aug 21]. Available from: http://www.policy1.org/models/bowel
- 19. Lew J-B, St John DJB, Macrae FA, Emery JD, Ee HC, Jenkins MA, et al. Benefits, harms and costs of potential age-extensions to the National Bowel Cancer Screening Program in Australia. Cancer Epidemiol Biomarkers Prev. 2018;27(12):1450–61.
- 20. Lew J-B, St John DJB, Macrae FA, Emery JD, Ee HC, Jenkins MA, et al. Evaluation of the benefits, harms and cost-effectiveness of potential alternatives to iFOBT testing for colorectal cancer screening in Australia. Int J Cancer. 2018 Jul 15;143(2):269–82.
- 21. Lew J-B, Greuter MJE, Caruana M, He E, Worthington J, St John DJB, et al. Validation of microsimulation models against alternative model predictions and long-term colorectal cancer incidence and mortality outcomes of randomised-controlled trials. 2019;In Preparation.
- 22. Emerson J, Panzer A, Cohen JT, Chalkidou K, Teerawattananon Y, Sculpher M, et al. Adherence to the iDSI reference case among published cost-per-DALY averted studies. PLOS ONE. 2019 May 1;14(5):e0205633.
- 23. Simms KT, Laprise J-F, Smith MA, Lew J-B, Caruana M, Brisson M, et al. Cost-effectiveness of the next generation nonavalent human papillomavirus vaccine in the context of primary human papillomavirus screening in Australia: a comparative modelling analysis. Lancet Public Health. 2016 Dec 1;1(2):e66–75.
- 24. Lew J-B, Simms KT, Smith MA, Hall M, Kang Y-J, Xu XM, et al. Primary HPV testing versus cytology-based cervical screening in women in Australia vaccinated for HPV and unvaccinated: effectiveness and economic assessment for the National Cervical Screening Program. Lancet Public Health. 2017 Feb 1;2(2):e96–107.
- 25. World Cancer Research Fund / American Institute for Cancer Research. Continuous Update Project Report. Diet, Nutrition, Physical Activity, and Colorectal Cancer. World Cancer Research Fund; 2017.
- 26. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. IARC Monographs: Personal habits and indoor combustions. Vol. Volume 100E. A review of human carcinogens. Lyon: International Agency for Research on Cancer; 2012.
- 27. Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F, Straif K. Body Fatness and Cancer Viewpoint of the IARC Working Group. N Engl J Med. 2016 Aug 25;375(8):794–8.

- 28. Australian Institute of Health and Welfare. Risk factors contributing to chronic disease. Canberra: AIHW; 2012. Report No.: Cat No. PHE 157.
- 29. Algra AM, Rothwell PM. Effects of regular aspirin on long-term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials. Lancet Oncol. 2012 May;13(5):518–27.
- 30. Cancer Council Australia Colorectal Cancer Guidelines Working Party. Clinical practice guidelines for the prevention, early detection and management of colorectal cancer [Internet]. Sydney: Cancer Council Australia; 2017 [cited 2018 Jan 3]. Available from: https://wiki.cancer.org.au/australia/Guidelines:Colorectal_cancer
- 31. Hullar MAJ, Burnett-Hartman AN, Lampe JW. Gut Microbes, Diet, and Cancer. Cancer Treat Res. 2014;159:377–99.
- 32. Keum N, Giovannucci EL. Epidemiology of Colorectal Cancer. In: Loda M, Mucci L, Mittelstadt M, Van Hemelrijck M, Cotter M, editors. Pathology and Epidemiology of Cancer. Springer, Cham; 2017. p. 391–407.
- 33. Jenkins MA, Ait Ouakrim D, Boussioutas A, Hopper JL, Ee HC, Emery JD, et al. Revised Australian national guidelines for colorectal cancer screening: family history. Med J Aust. 2018 Oct 29;209(10):455–60.
- 34. Cancer Council Australia Surveillance Colonoscopy Guidelines Working Party. Clinical Practice Guidelines for Surveillance Colonoscopy. [Internet]. Sydney: Cancer Council Australia; 2019 [cited 2019 Mar 29]. Available from: https://wiki.cancer.org.au/australiawiki/index.php?oldid=200728
- 35. Weber MF, Chiew M, Feletto E, Kahn C, Sitas F, Webster L. Cancer Screening among Immigrants Living in Urban and Regional Australia: Results from the 45 and Up Study. Int J Environ Res Public Health. 2014 Aug 14;11(8):8251–66.
- 36. Weber MF, Banks E, Smith DP, O'Connell D, Sitas F. Cancer screening among migrants in an Australian cohort; cross-sectional analyses from the 45 and Up Study. BMC Public Health. 2009 May 15;9:144.
- 37. He E, Lew J-B, Egger S, Banks E, Ward RL, Beral V, et al. Factors associated with participation in colorectal cancer screening in Australia: Results from the 45 and Up Study cohort. Prev Med. 2018 Jan;106:185–93.
- 38. White B, Power E, Ciurej M, Lo SH, Nash K, Ormiston-Smith N. Piloting the Impact of Three Interventions on Guaiac Faecal Occult Blood Test Uptake within the NHS Bowel Cancer Screening Programme. BioMed Res Int. 2015;928251.
- 39. Jonah L, Pefoyo AK, Lee A, Hader J, Strasberg S, Kupets R, et al. Evaluation of the effect of an audit and feedback reporting tool on screening participation: The Primary Care Screening Activity Report (PCSAR). Prev Med. 2017 Mar 1;96:135–43.
- 40. ACE Bowel Screening Cluster. Interventions to increase bowel screening uptake: Final Report [Internet]. London: Cancer Research UK; 2017. Available from: http://www.cancerresearchuk.org/sites/default/files/interventions_to_increase_bowel_screening_uptake_v1.0.pdf

- 41. Worthington J, Lew J-B, Feletto E, Broun K, Durkin SJ, Wakefield MA, et al. Evaluating health benefits and cost-effectiveness of a mass-media campaign for improving participation in the National Bowel Cancer Screening Program in Australia. Public Health. 2020;179:90–9.
- 42. Durkin SJ, Broun K, Wakefield MA. Mass media campaign impact on overall and subgroup participation rates in the Australian national bowel cancer screening program: a field experiment. 2019;In Preparation.
- 43. Australian Government Department of Health. \$10 million to boost bowel cancer screening participation [Internet]. Australian Government Department of Health; 2019 [cited 2019 Mar 29]. Available from: https://www.health.gov.au/ministers/the-hon-greg-hunt-mp/media/10-million-to-boost-bowel-cancer-screening-participation
- 44. Aran V, Victorino AP, Thuler LC, Ferreira CG. Colorectal Cancer: Epidemiology, Disease Mechanisms and Interventions to Reduce Onset and Mortality. Clin Colorectal Cancer. 2016 Sep;15(3):195–203.
- 45. Young JM, Leong DC, Armstrong K, O'Connell D, Armstrong BK, Spigelman AD, et al. Concordance with national guidelines for colorectal cancer care in New South Wales: a population-based patterns of care study. Med J Aust. 2007 Mar 19;186(6):292–5.
- 46. Kuhry E, Schwenk WF, Gaupset R, Romild U, Bonjer HJ. Long-term results of laparoscopic colorectal cancer resection. Cochrane Database Syst Rev. 2008 Apr 16;(2):CD003432.
- 47. Fleisher LA, Linde-Zwirble WT. Incidence, outcome, and attributable resource use associated with pulmonary and cardiac complications after major small and large bowel procedures. Perioper Med Lond Engl. 2014;3:7.
- 48. Wagner ADADW, Arnold D, Grothey AAG, Haerting J, Unverzagt S. Anti-angiogenic therapies for metastatic colorectal cancer. Cochrane Database Syst Rev. 2009 Jul 8;(3):CD005392.
- 49. Australian Government Department of Health. Pharmaceutical Benefits Scheme (PBS) | Cetuximab, panitumumab and bevacizumab for metastatic colorectal cancer [Internet]. The Pharmaceutical Benefits Scheme. 2018 [cited 2019 Aug 15]. Available from: http://www.pbs.gov.au/info/industry/listing/participants/public-release-docs/2018-02/metastatic-colorectal-cancer-february-2018
- 50. Kalyan A, Kircher S, Shah H, Mulcahy M, Benson A. Updates on immunotherapy for colorectal cancer. J Gastrointest Oncol. 2018 Feb;9(1):160–9.
- 51. Jorgensen ML, Young JM, Solomon MJ. Optimal delivery of colorectal cancer follow-up care: improving patient outcomes. Patient Relat Outcome Meas. 2015 May 18;6:127–38.
- 52. El-Shami K, Oeffinger KC, Erb NL, Willis A, Bretsch JK, Pratt-Chapman ML, et al. American Cancer Society Colorectal Cancer Survivorship Care Guidelines. CA Cancer J Clin. 2015;65(6):427–55.
- 53. Young JM, Durcinoska I, DeLoyde K, Solomon MJ. Patterns of follow up and survivorship care for people with colorectal cancer in new South Wales, Australia: a population-based survey. BMC Cancer. 2018 Mar 27;18(1):339.
- 54. Drury A, Payne S, Brady A-M. Cancer survivorship: Advancing the concept in the context of colorectal cancer. Eur J Oncol Nurs. 2017 Aug 1;29:135–47.

- 55. Grogan PB, Olver IN. A bowel cancer screening plan at last. Med J Aust. 2014 Oct 20;201(8):435–6.
- 56. Owen L, Morgan A, Fischer A, Ellis S, Hoy A, Kelly MP. The cost-effectiveness of public health interventions. J Public Health Oxf Engl. 2012 Mar;34(1):37–45.
- 57. Australian Institute of Health and Welfare. Cancer in Aboriginal & Torres Strait Islander people of Australia [Internet]. Australian Institute of Health and Welfare. 2018 [cited 2018 May 15]. Available from: https://www.aihw.gov.au/reports/cancer/cancer-in-indigenous-australians/contents/table-of-contents

Acknowledgements

Not applicable

Author statement

KC conceived Pathways and developed the scope of evaluations with EF, JBL, JW, EH, MC and input from the SAC. EF authored the manuscript with input from all co-authors. All authors critically reviewed and contributed to the final manuscript.

Funding

This work was supported by Cancer Council New South Wales (CCNSW).

Conflicts of Interest

KC, EF, JW, JBL, EH, MC, NT, KB and HH receive salary support from CCNSW. KC is co-PI of unrelated investigator-initiated trial of cervical screening in Australia ('Compass') conducted by the Victorian Cytology Service, which has received a funding contribution from Roche Molecular Systems and Ventana Inc., USA. All other co-authors have no conflicts of interest to disclose.

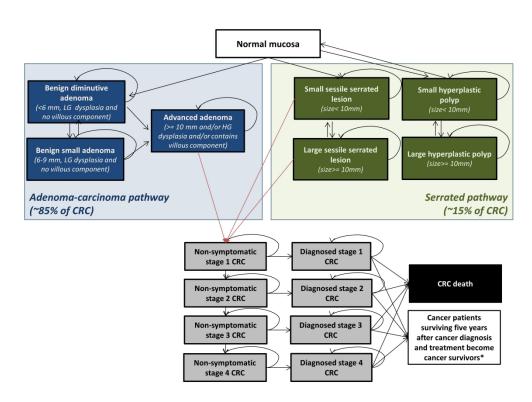


Figure 1: Schematic diagram of the Policy1-Bowel microsimulation model platform. 254x190mm~(300~x~300~DPI)

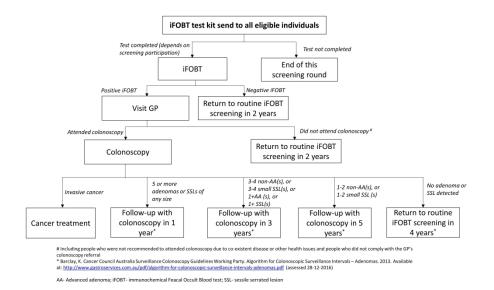


Figure 2: Modelled screening delivery pathway (based on NBCSP) modelled in the Policy1-Bowel microsimulation model platform.

338x190mm (300 x 300 DPI)

BMJ Open

Pathways to a Cancer-Free Future: a protocol for modelled evaluations to minimise the future burden of colorectal cancer in Australia.

Journal:	BMJ Open
Manuscript ID	bmjopen-2019-036475.R1
Article Type:	Protocol
Date Submitted by the Author:	08-Mar-2020
Complete List of Authors:	Feletto, E; Cancer Research Division, Cancer Council NSW; The University of Sydney, School of Public Health Lew, Jie Bin; Cancer Council New South Wales, Cancer Research Division; The University of Sydney, School of Public Health Worthington, Joachim; Cancer Council New South Wales, Cancer Research Division; The University of Sydney, School of Public Health He, Emily; Cancer Council New South Wales, Cancer Research Division; The University of Sydney, School of Public Health Caruana, Michael; Cancer Council New South Wales, Cancer Research Division; The University of Sydney, School of Public Health Butler, Katherine; Cancer Research Division, Cancer Council NSW Hui, Harriet; Cancer Research Division, Cancer Council NSW Taylor, Natalie; Cancer Council, Cancer Research Division; The University of Sydney, Faculty of Medicine and Health Banks, Emily; Australian National University, ANU College of Medicine, Biology and Environment Barclay, Karen; The University of Melbourne, Northern Clinical School, Melbourne Medical School Broun, Kate; The Cancer Council Victoria, Centre for Behavioural Research in Cancer Butt, Alison; University of New South Wales, Research Strategy Office Carter, Rob; Deakin University, Deakin Institute for Health Research Cuff, Jeff; University of New South Wales, Faculty of Science Biotech & Biomolecular Science; Research Advocate Dessaix, Anita; Cancer Council New South Wales, Cancer Prevention and Advocacy Ee, Hooi; Sir Charles Gairdner Hospital, Department of Gastroenterology Emery, Jon; University of Melbourne, General Practice and Primary Care Academic Centre Frayling, Ian; Cardiff University, Grogan, Paul; Cancer Council New South Wales, Cancer Research Division; The University of Sydney, School of Public Health Holden, Carol; South Australian Health and Medical Research Institute, No Australians Dying of Bowel Cancer Initiative Horn, Christopher; Cancer Institute New South Wales Jenkins, Mark; The University of Melbourne, Centre for Epidemiology and Biostatistics Kench, James; Royal Prin

	Laaksonen, Maarit; University of New South Wales, Centre for Big Data Research in Health Leggett, Barbara; QIMR Berghofer Medical Research Institute Mitchell, Gillian; Peter MacCallum Cancer Institute, Parkville Familial Cancer Centre; University of Melbourne, The Sir Peter MacCallum Department of Oncology Morris, Susan; Research Advocate; Lynch Syndrome Australia Parkinson, B; Macquarie University, Macquarie University Centre for the Health Economy St John, D James; The Cancer Council Victoria; The University of Melbourne, Department of Medicine, The Royal Melbourne Hospital Taoube, Linda; The University of Sydney, School of Public Health Tucker, Katherine; Prince of Wales Hospital, Hereditary Cancer Centre; University of New South Wales, Prince of Wales Clinical School Wakefield, Melanie; Cancer Council Victoria, Centre for Behavioural Research in Cancer Ward, Robyn; University of Sydney, Faculty of Medicine and Health Win, Aung; The University of Melbourne, Centre for Epidemiology and Biostatistics; Victorian Comprehensive Cancer Centre, Precision Prevention and Early Detection, University of Melbourne Centre for Cancer Research Worthley, Dan; South Australian Health and Medical Research Institute, Gastrointestinal Cancer Biology Armstrong, Bruce; The University of Sydney, School of Public Health Macrae, Finlay; Royal Melbourne Hospital, Genetics; The University of Melbourne, Department of Medicine, The Royal Melbourne Hospital Canfell, Karen; Cancer Council New South Wales, Cancer Research Division; The University of Sydney, School of Public Health
Primary Subject Heading :	Public health
Secondary Subject Heading:	Oncology, Epidemiology, Evidence based practice, Health economics
Keywords:	Gastrointestinal tumours < ONCOLOGY, PUBLIC HEALTH, HEALTH ECONOMICS

SCHOLARONE™ Manuscripts

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

Pathways to a Cancer-Free Future: a protocol for modelled evaluations to minimise the future burden of colorectal cancer in Australia.

Eleonora Feletto^{1,2}, Jie-Bin Lew^{1,2}, Joachim Worthington^{1,2}, Emily He^{1,2}, Michael Caruana¹, Katherine Butler ¹, Harriet Hui ¹, Natalie Taylor^{1,3}, Emily Banks⁴, Karen Barclay⁵, Kate Broun⁶, Alison Butt⁷, Rob Carter⁸, Jeff Cuff^{9,10}, Anita Dessaix¹, Hooi Ee¹¹, Jon Emery¹², Ian M. Frayling¹³, Paul Grogan^{1,2}, Carol Holden¹⁴, Christopher Horn¹⁵, Mark A. Jenkins¹⁶, James G Kench^{3,17}, Maarit A. Laaksonen¹⁸, Barbara Leggett¹⁹, Gillian Mitchell^{20,21}, Susan Morris^{9,22}, Bonny Parkinson²³, D James St John^{6,24}, Linda Taoube², Katherine Tucker^{25,26}, Melanie Wakefield⁶, Robyn L Ward³, Aung Ko Win^{16,27,28}, Daniel Worthley¹⁴, Bruce K Armstrong², Finlay A Macrae^{24,28}, Karen Canfell ^{1,2,26}

Corresponding author: Eleonora Feletto, Cancer Council NSW, 153 Dowling St, Woolloomooloo, NSW 2011 Australia email: eleonoraf@nswcc.org.au

Keywords: colorectal cancer, prevention, early detection, screening

¹Cancer Council NSW, Sydney, NSW, Australia

² School of Public Health, Sydney Medical School, University of Sydney, NSW, Australia

³ Faculty of Medicine and Health, University of Sydney, Sydney, Australia

⁴ National Centre for Epidemiology and Population Health, Australian National University, Canberra, ACT, Australia

⁵Northern Clinical School, University of Melbourne, Melbourne Medical School, VIC, Australia

⁶Cancer Council Victoria, Melbourne, VIC, Australia

⁷Research Strategy Office, University of New South Wales, Australia

⁸Deakin Health Economics, Institute for Health Transformation, Faculty of Health, Deakin University, Victoria, Australia

⁹Research Advocate

¹⁰Faculty of Science Biotech & Biomolecular Science, University of New South Wales

¹¹Department of Gastroenterology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.

¹²Centre for Cancer Research and Department of General Practice, University of Melbourne.

¹³Inherited Tumour Syndromes Research Group, Division of Cancer & Genetics, Cardiff University, UK

¹⁴South Australian Health and Medical Research Institute, Adelaide, Australia

¹⁵Cancer Institute NSW

 $^{^{16}}$ Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health

University of Melbourne, Australia

¹⁷ Department of Tissue Pathology & Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, Australia

¹⁸ Centre for Big Data Research in Health, University of New South Wales, Australia

¹⁹ QIMR Berghofer Medical Research Institute, Queensland, Australia

²⁰ Familial Cancer Centre, Peter MacCallum Cancer Centre, Melbourne VIC Australia

²¹ Sir Peter MacCallum Dept of Oncology, University of Melbourne, Melbourne, VIC Australia

²² Lynch Syndrome Australia, Queensland, Australia

²³ Macquarie University Centre for the Health Economy, Macquarie University, NSW, Australia

²⁴ Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, VIC, Australia

²⁵ Hereditary Cancer Centre, Prince of Wales Hospital, Randwick, New South Wales, Australia

²⁶ Prince of Wales Clinical School, The University of New South Wales, Australia

²⁷ Precision Prevention and Early Detection, University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Victoria, Australia

²⁸ Genetic Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia

Abstract

Introduction

With almost 50% of cases preventable and the Australian National Bowel Cancer Screening Program in place, colorectal cancer (CRC) is a prime candidate for investment to reduce cancer burden. The challenge is determining effective ways to reduce morbidity and mortality and their implementation through policy and practice. *Pathways*-Bowel is a multi-stage program that aims to identify best-value investment in CRC control by integrating expert and end-user engagement; relevant evidence; modelled interventions to guide future investment; and policy-driven implementation of interventions using evidence-based methods.

Methods and analysis

Pathways-Bowel is an iterative work program incorporating a calibrated and validated CRC natural history model for Australia (*Policy1-Bowel*) and assessing the health cost outcomes and resource use of targeted interventions. Experts help identify and prioritise modelled evaluations of changing trends and interventions and critically assess results to advise on their real-world applicability. Where appropriate the results are used to support public policy change and make the case for optimal investment in specific CRC control interventions. Fourteen high priority evaluations have been modelled or planned, including evaluations of CRC outcomes from the changing prevalence of modifiable exposures, including smoking and body fatness; potential benefits of daily aspirin intake as chemoprevention; increasing CRC incidence in people aged <50 years; increasing screening participation in the general and Aboriginal and Torres Strait Islander populations; alternative screening technologies and modalities; and changes to follow-up surveillance protocols. *Pathways*-Bowel is a unique, comprehensive approach to evaluating CRC control; no prior body of work has assessed the relative benefits of a variety of interventions across CRC development and progression to produce a list of best-value investments.

Ethics and dissemination

Ethics approval was not required as human participants were not involved. Findings are reported in a series of papers in peer-reviewed journals and presented at fora to engage the community and policymakers.

Article summary

Strengths and limitations

- Pathways-Bowel leverages a fully calibrated natural history microsimulation model for CRC (Policy1-Bowel) to model evaluations of existing and hypothetical trends and interventions to improve CRC outcomes for Australians.
- It aims to bridge the gap between end-user priorities, epidemiological and statistical research outputs, and practical applicability from health, resource, and health system cost perspectives.
- Findings from the *Pathways*-Bowel program are applicable to Australia; however, the
 flexibility of *Policy1-Bowel* enables its future adaptation to other settings where locationspecific data are available.
- The predictive modelling used is limited by and dependent on the available data sources and assumptions made when empirical data are absent.
- The overarching *Pathways* program generates evidence on the best-value investments or "best buys" in cancer control across multiple cancers to inform future decision making.

Word count:

- Abstract: 300

- Body: 3944

Introduction

Background

Colorectal cancer (CRC) was the third most commonly diagnosed cancer in Australia in 2017, with estimated incidence of 63.4 per 100,000 and 45.8 per 100,000 in males and females, respectively (1,2). A small proportion of CRC cases are found in higher-risk patients and associated with strong family history of CRC or hereditary syndromes. Lynch syndrome and Familial Adenomatous Polyposis account for ~3% and less than 1% of new CRC cases, respectively (3-5). The Australian Burden of Disease Study found there were over 95,000 years of healthy life lost due to CRC in 2015 which accounted for 2% of the total disease burden in Australia (6). From 1982 to 2015, CRC incidence and mortality rates decreased (from 58.3 to 57.4 and 32.3 to 19.2 per 100,000, respectively) (7), with noted gender, socio-economic and geographic disparities in these reductions (8-11). The 5-year overall survival from CRC in Australia increased from 51% in 1985-1989 to 70% in 2010-2014 (12). A recent analysis highlighted increasing CRC incidence in people under 50 years of age, which could be partially attributable to the rising prevalence of harmful risk factors, but there are, as yet, no confirmed causes (13). Nearly half (49.8%) of new CRC cases in Australia are attributable to known modifiable risk factors (14) and therefore could be influenced by primary prevention interventions. Evidence on policies and interventions for preventing CRC through lifestyle change varies widely between risk factors. On current evidence, the best buy in CRC control is increasing participation in Australia's National Bowel Cancer Screening Program (NBCSP)(15) however fewer than half the eligible population are participating. From 2020, all Australians aged 50-74 will be invited to participate in biennial screening using an immunochemical faecal occult blood test (iFOBT) (12). Further decreases in incidence and mortality of 23% and 36%, respectively, are anticipated by 2040 at current participation rates with full implementation of the NBCSP. (15).

Pathways

"Pathways to a cancer-free future" ('Pathways') is a program of research developed to focus investment where the biggest impact can be made at a population level. It aims to identify the best-value investments, or "best buys", in cancer control to inform future decision making. First described in relation to cervical cancer (16), the Pathways model is now being applied to five major cancers: cervical, lung, colorectal, prostate, and breast cancer, and to cancers relating to Lynch syndrome and early work has commenced in melanoma and cancers of the ovary and liver. Pathways-Bowel refers to the program focused on CRC, with a detailed assessment of high-risk individuals with Lynch syndrome and other Lynch-related cancers incorporating evidence-based intervention implementation currently underway (17,18), as part of Pathways-Lynch. Pathways-Bowel will span

the CRC control continuum from primary prevention to survivorship. It aims to model comparative evaluations of CRC interventions guided by the best available evidence to underpin future research investment and policy implementation. The aim of the current article is to outline the design and objectives of *Pathways*-Bowel. *Pathways*-Bowel will inform ongoing and planned modelled evaluations of CRC interventions by integrating expert and end-user engagement; relevant evidence; modelled interventions to guide future investment; and policy-driven implementation of interventions using evidence-based methods.

Methods and Analysis

Study design

Pathways as an overarching program was previously described (16). Since that description, Pathways has changed from a staged approach to a more iterative process. As modelled evaluation results become available, they are immediately reviewed and disseminated as appropriate to support potential policy change.

Patient and Public Involvement Statement

Multisectoral stakeholder involvement in *Pathways*-Bowel is achieved via a multidisciplinary Scientific Advisory Committee (SAC) including academics, clinicians, consumers and advisers on policy. The SAC is designed to ensure involvement from relevant stakeholders outside the core research team and confirm the relevance of modelled evaluations and their translation. The SAC was first convened to discuss CRC in March 2018. Since then, members continue to be consulted based on their area of expertise to guide, critique and support the program and its recommendations, thus ensuring there is involvement from interested parties throughout the process.

Processes and analysis for modelled evaluations of interventions

Modelling platform: Policy1-Bowel

We use a previously developed microsimulation model platform, *Policy-1 Bowel*, to perform predictive modelled evaluations of CRC interventions in Australia (19). *Policy1-Bowel* is a comprehensive platform that synthesises clinical, epidemiological, demographic, behavioural and economic data and has been used to simulate the impact of CRC screening in Australia (15). Existing *Policy1-Bowel* evaluations have assessed a range of screening scenarios and provided estimates of CRC outcomes, resource utilisation and costs. They have, for example, analysed the use of various CRC screening test technologies and target age ranges for the NBCSP to inform Australian guidelines (20,21). The model platform is implemented in C++ and includes several interconnected elements to

evaluate the NBCSP. It incorporates the development of CRC from adenoma (via the adenoma-carcinoma pathway) and sessile serrated lesions (via the serrated pathways) and survival from CRC (see Figure 1). *Policy1-Bowel* then incorporates screening for average-risk people, including post-screening diagnosis, treatment, and surveillance (Figure 2 summarises the current NBCSP screening delivery pathways included). As evaluations are conducted, single- or multiple-cohort approaches are used to simulate the development of polyps and CRC, screening, diagnosis and other downstream NBCSP processes in the target population over a time period of interest. The resulting evaluation is informed by Australian-specific demographic data and economic and health utilities data obtained from national and international literature (including cost and quality-adjusted life-years) to produce cross-sectional results for the population. For modelled evaluations of CRC interventions, data are sourced from national surveys and data collection agencies (e.g. Australian Institute of Health and Welfare: AIHW) and the published literature including meta-analyses, systematic reviews, randomised controlled trials, cohort studies and other relevant publications. Where empirical data are not available, the SAC and other experts are consulted to guide the assumptions used.

Policy1-Bowel validation

Extensive calibration of the model has been carried out against a wide range of current NBCSP outputs and other Australian data sources (15). The model has also been validated against the findings of other well-established microsimulation models and multiple large randomised-controlled trials with long-term follow-up. Further details of the model used in this work, and descriptions of its development, parameterisation, data sources, calibration, and validation outcomes, have been published previously and technical appendices are available (15,19–21).

Economic Analysis

The modelled evaluations result in economic analyses to develop a business case for investment. Pathways-Bowel (and all Pathways) uses a common framework so the best value investment, or "best buy", can be compared within and between analyses. This framework is in development and will be based on similar initiatives internationally (22). The populations of interest are average-risk Australians and sub-groups relevant to the modelled evaluations. For each evaluation, several primary outcomes are considered, including:

- i) health benefits—e.g. reduction in lifetime risk of CRC incidence and mortality;
- ii) harms e.g. hospitalisations, adverse events of colonoscopy;

- iii) resource use e.g. health costs of CRC (hospitals, workforce, screening and diagnostic tests, program communications etc.); and
- iv) health-economic outcomes e.g. discounted and undiscounted lifetime cost, life-years, quality-adjusted-life years, disability-adjusted life years and cost-effectiveness.

For each intervention, the primary outcomes listed may be expanded or differ. The comparator for analyses is the general population or specific sub-group of interest without the influence of the intervention being assessed. The potential harms associated with interventions are often minimal, but *Pathways* will enable their characterisation and quantification. For example, the health benefits and harms for screening would also include colonoscopy-related adverse events and number-needed-to colonoscope per CRC death prevented.

A health services perspective is applied, and efforts are being made to expand to the societal perspective including characterisation of out-of-pocket expenses. From a health services perspective, costs incurred by governments and the health system over a person's lifetime are incorporated. For each evaluation, multiple time horizons may be chosen as appropriate to the specific intervention, but the common time horizon is to 2050 (as this timeline indicates a change within a generation). In terms of an indicative willingness-to-pay (WTP) threshold, \$30,000-50,000 per life-year saved has previously been used for evaluations of interventions for CRC and cervical cancer (20,23,24). In *Pathways*, a 5% annual discount rate and the indicative WTP threshold of \$30,000-50,000/life-year saved are used, with alternative WTP thresholds included for comparability. Our focus is to quantify and compare cost-effectiveness in all our analyses. One-way and probabilistic sensitivity analyses and uncertainty analyses will be conducted as required to assess the impact of model parameter uncertainties on the key model findings.

Rationale for modelled evaluations of CRC interventions

Under the guidance of the SAC, a list of priority modelled evaluations for CRC interventions was compiled. Evaluations are preceded by exploratory scoping reviews of the literature to identify potential interventions, and are escalated to a full systematic review to source evidence for predictive modelling as required and determined by the SAC. The ongoing and planned interventions are listed in Table 1 and represent the first series of evaluations. Broadly, these evaluations cover interventions to reduce CRC risk, interventions in light of changing incidence trends, modifications to the NBCSP via target age groups, increased participation and alternative screening methods, and improved surveillance management. Findings have and will continue to be reviewed by the SAC as required. At a later date, these evaluations will grow and could include topics of growing public

interest, such as the promotion of healthy diet, and extend to later stages of CRC control as evidence becomes available.

While *Policy1-Bowel* has been used to evaluate the NBCSP, it is a flexible and dynamic model which can be adapted to incorporate both alternative screening interventions as well as interventions addressing other stages of the CRC continuum. *Policy1-Bowel* proves a critical tool for assessing the "best buys" for CRC. The section below outlines how *Pathways*-Bowel is being used in the contexts of primary prevention, screening and early detection and treatment for CRC.

Primary Prevention: Reducing risk

Promoting healthy behaviours and reducing risk through primary prevention can play an important role in CRC control (14). Targeted primary prevention interventions to reduce CRC risk could address any or all of the following: tobacco use, alcohol use, body fatness, insufficient physical activity, insufficient dietary fibre intake, and excess red and processed meat intake (25-27). Except for tobacco use, the prevalence of these risk factors has increased in Australians in recent decades and for some key risk factors, such as body fatness, prevalence in children is rising and calls for action are increasing (28). The 2017 Australian clinical practice guidelines for CRC recommend low-dose daily aspirin use for all people aged 50-70, as evidence suggests its potential effectiveness in CRC primary prevention (29,30). More recent studies have begun exploring the role of the gut microbiota in the development of CRC, which can be indirectly affected by diet (31). In practice, evidence-based interventions addressing these risk factors are challenging to comprehensively evaluate without information on medium to long term CRC outcomes. Pathways-Bowel will synthesise the available evidence from national and international data sources and published evidence to estimate the likely impact on CRC outcomes in the future for modelled evaluations. Initially, the priorities in this area (Table 1) are: (1) changing smoking prevalence, (2) changing body fatness prevalence and distribution, and (3) impact of daily aspirin prophylaxis. Other behaviours, such as alcohol consumption and diet, may be added at a later stage.

Screening and Early Detection: NBCSP outcomes

Identification and removal of precancerous adenomas can prevent CRC development, and early detection of malignancies improves survival. The technology for these interventions is effective, available, affordable and acceptable, making CRC an ideal candidate for an organised population screening program (32). The NBCSP participation rate over 2016-2017 period was about 40% nationally (12). Current reported rates of colonoscopy for assessment of individuals with a positive

NBCSP-iFOBT test are approximately 66%, with known underreporting (12). Recommended screening for people at intermediate or high CRC risk due to family history of CRC or hereditary syndromes is more intense, beginning at a younger age, and may include iFOBT and colonoscopy screening depending on level of risk, informed by evidence (33). In addition, ongoing surveillance of individuals with either a positive iFOBT or polyps removed at colonoscopy follows varying management recommendations based on individual risk and colonoscopy results (34).

National reports issued by the AIHW, along with other studies, have drawn attention to NBCSP participation disparities by gender, geographic location, Indigenous status, place of birth and language spoken at home (12,35–37). Interventions to promote CRC screening that are used revolve largely around general population awareness and health organisation or practitioner endorsement of participation and follow-up (38–40). Efforts are now being made by government and not-for-profit organisations to improve NBCSP participation (41–43). Such interventions are likely to be cost-effective investments (41,42). Evaluations of interventions to support compliance with recommendations for screening, follow-up and surveillance and to assess the best use of existing health resources could also be conducted, when data on the performance of these interventions are available.

Australia has a national organised, federally funded screening program that began in 2006. It has undergone phased roll-out, nearing full implementation, and should be taken into account in any modelled evaluation. The *Pathways*-Bowel priority areas cover predictive modelling of the NBCSP outcomes under a range of conditions or changes in the external environment or program (Table 1). These scenarios are: (1) changing temporal incidence trends, (2) targeting NBCSP participation in population subgroups, (3) targeting NBCSP participation to a broader age range, (4) long-term NBCSP participation at varying rates, (5) NBCSP participation increased by simulated mass-media campaigns, (6) using alternative technologies, and (7) modifying surveillance management.

Treatment

Once diagnosed, surgery is generally considered as initial treatment, with or without adjuvant chemotherapy or radiation therapy (44,45). The goal of surgery is to remove any tumour as well as surrounding tissue either laparoscopically or via traditional open surgery (46). Variations in treatment pathways more often relate to adjuvant chemotherapy where there are differences in guidelines and outcomes based on stage, location and genetic mutations. Metastatic disease is treated with systemic chemotherapy and biological therapies. Bevacizumab, added to the

Pharmaceutical Benefit Schedule (PBS) for Australian Government subsidies in 2009, can be used in addition to chemotherapy in metastatic CRC cases and has been found to prolong both progression-free survival (from 7.1 to 9.7 months) and overall survival (from 17.7 to 20.5 months) in first- and second-line therapy (47). Cetuximab and panitumumab are also PBS-subsidised for use in patients with RAS wild-type CRC (48). Besides these, there have been few modifications to the PBS related directly to CRC therapies. Immunotherapy has proven effective in early and advanced microsatellite unstable CRC tumours, which can comprise 15% of all CRC or more for those under 50 years.

Research continues in this area with an active interest in the concept of personalised medicine with therapies for specific CRC subtypes, including the possible use of organoids to predict therapy response (49,50). There have been calls for further research into several new immune agents and other therapies that could change patient outcomes. In future, evaluations of treatment options and their associated outcomes can be conducted as part of *Pathways*-Bowel to determine both the therapeutic- and cost-effectiveness of existing and novel therapies as evidence becomes available in Australia.

Survivorship

With 70% 5-year overall survival (2010–2014) and declines in mortality predicted to continue (12), survivorship issues are growing in relevance and importance. Most evidence is focused on patient surveillance for recurrence with differences across available guidelines on the frequency and timing of follow-up tests (51). Survivorship issues include physical, psychological and social challenges as well as ongoing healthcare needs (51–54). Australian evidence has suggested care is highly variable in CRC survivors and disparities by socio-economic group are apparent (53). American guidelines for CRC survivorship have highlighted the role of risk-based health care and there has been a shift in focus to improving patient outcomes through survivorship care plans and coordinated care (51,52). Evaluations of survivorship issues and related interventions to improve outcomes will be integrated into future versions of *Pathways*-Bowel.

Preliminary Results

This program formalises an existing ongoing body of research which has already produced outputs. Work initially focused on evaluating the NBCSP using both predictive modelling and epidemiological research (15,20,21,37,41). An evaluation of NBCSP effectiveness and cost-effectiveness at various participation levels showed that increasing participation from 40% to 60% would prevent 83,800 deaths from 2015-2040 and reduce annual expenditure on CRC control within a decade of full NBCSP rollout (15). We also explored the impact of optimistic NBCSP adherence rates, possibly beyond

those achievable in practice, to determine whether the impact of such an intervention is substantial and worth pursuing further (55).

Alternative screening methods using different NBCSP screening modalities or different screening age groups have also been evaluated (20,21). The alternative technologies evaluated were plasma DNA testing, faecal DNA testing, computed tomography colonography, flexible sigmoidoscopy, and colonoscopy (21). Extensions to the target age range for the general population included extending to people in their 40s and/or people in their 80s (20). Considering the health outcomes and cost-effectiveness, the studies concluded that the planned NBCSP using biennial iFOBT and targeting people aged 50-74 years is currently the best option for CRC screening in Australia, and achieving higher screening participation within that age range can save more lives and improve the long-term cost-effectiveness (20,21). These results had a direct impact on clinical practice and policy as they were used to inform the 2017 "Clinical practice guidelines for the prevention, early detection and management of colorectal cancer", approved by the National Health and Medical Research Council, and guided recommendations for the NBCSP (29).

In addition to the planned modelled evaluations, epidemiological data will also be assessed to quantify and characterise screening occurring outside the NBCSP, which is thought to be considerable and may impact estimates of the benefits of increasing participation in NBCSP (56). Further work has been undertaken and continues to inform guidelines and policy in areas of CRC management, such as the updated national surveillance colonoscopy guidelines (34). As additional evidence accumulates for potential interventions, these will be explored in future modelled evaluations and used to inform guidelines and policy change discussions. Notably, the *Policy1-Bowel* platform was used to evaluate a recent pilot mass-media campaign aimed at increasing NBCSP participation; its results prompted a \$10 million government investment in a national mass-media campaign (43). This provides a clear demonstration on the usefulness of *Pathways*-Bowel in guiding investment and policy implementation (41–43).

Discussion

The proven ability and future capacity of the *Pathways* program to identify the best-value investments in cancer control is critical in public health decision making. *Pathways* is a way to assess the impact of many more interventions than could be subject to clinical trials; the interventions can even be complementary, provided they are anchored in the real world. Internationally it has been recognised that demonstrating the cost-effectiveness of public health interventions helps to

underpin commitment from policymakers and funders (57). However, the varying methods by which interventions are evaluated makes them difficult to compare and subject to methodological confounding (57).

Pathways-Bowel is a unique, evidence-based, comprehensive approach to CRC control initially focused on screening interventions and their effectiveness in relation to the evolving knowledge of the natural history of CRC. There is relevant evidence in CRC, but no prior body of work has assessed the relative benefits of interventions across the CRC spectrum in a systematic way using a health economics framework and producing "best buys" for the nation. By providing uniformly obtained, high quality evidence guided by a standardised framework, which is in development, Pathways-Bowel has the capacity to drive CRC control change and improve outcomes for Australians across the entire spectrum of risk.

Pathways-Bowel engages and involves researchers, clinicians, consumers, policymakers and other key stakeholders from its outset and throughout the process. Findings are presented so stakeholders can use the information to guide policy change priorities, funding recommendations and decisions, and evidence-based advocacy for improved outcomes. Early results are integrated with policy and advocacy efforts through local independent cancer control agencies with a track record in changing policy. The findings may also identify areas where further research could facilitate evaluations and guide research priority setting by funders.

The predictive modelling used in the *Pathways* program is not without its limitations. It is dependent on the available data sources and assumptions made in the absence of robust data. In Australia we are fortunate to have high quality data available on CRC incidence and mortality and regular monitoring reports made publicly available on the performance of the NBCSP. These data have been used to develop a robust and sound *Policy1-Bowel* platform. Nevertheless, the modelled results remain predictions. It is through extensive validation with trial outcomes, continual improvement of the model, and input of updated real world observational information as it becomes available, that the outputs are strengthened.

In terms of health economics, the health services perspective used limits the interpretation of results. Economic modelling, by itself, does not explicitly aid policymakers to maximise equity. However, more broadly, the *Pathways*-Bowel program of research embeds equity as a pillar. Through *Pathways*, standard economic analyses are complemented by systematic predictive

modelling for specific groups and issues. Although applicable to the Australian general population, the outcomes can be evaluated for other contexts where data are available. Aboriginal and Torres Strait Islander peoples, for example, have seen varying trends in CRC incidence and mortality over time when compared to the Australian population, with significant increase in incidence, no statistically significant trend in mortality, and a lower 5-year relative survival (58%) (58). Evaluations are being done for this population group to assess the impact of NBCSP screening from age 40 to 74, and modelling of sub-groups can be extended to culturally and linguistically diverse populations living in Australia as required. Overall, the flexibility of the modelling platform used in *Pathways*-Bowel allows for its application to other settings in the future, both for developed and developing countries, and this has already begun for China.

While the current focus is on prevention and screening, *Pathways*-Bowel and the *Policy1-Bowel* platform have the flexibility to evaluate diagnosis, treatment and survivorship interventions as evidence is gathered. The capacity of the model is continually being extended and strengthened with each new modelled evaluation performed. There is much promise in current research to identify optimal approaches to population-based screening for CRC in Australia. The *Pathways* program has already been established based on a comprehensive analysis of the associated benefits, harms, and costs. The next step, implementation of interventions and policies into practice, is crucial for ensuring the benefits of optimal approaches are realised by the Australian population, and has begun for Lynch Syndrome patients (18). Evidence-based approaches to inform "best buys" in policy reform, accounting for context, system complexity and stakeholder perspectives, is a fundamental prerequisite for successful and sustained translation of discoveries into real world settings. The *Pathways* program presents the opportunity to continually optimise evidence-based support for cancer control interventions.

Ethics and dissemination

The *Pathways*-Bowel protocol for modelled evaluations has been reviewed and approved by the SAC. No human participants are involved to perform modelled evaluations and therefore Human Research Ethics Committee was not required. Where epidemiological analyses are planned and require ethics approval, it will be sought. No deviations from the protocol will be made without prior review and approval of the relevant working party leads from the SAC.

Study status

Pathways-Bowel officially commenced in early 2017 and is an ongoing collaboration with the SAC and other CRC-specialist researchers. As results become available, they are reviewed and prepared for peer-reviewed publication. The status is outlined in Table 1. The expected completion date for the currently outlined evaluations is 2023.

List of figures:

Figure 1: Schematic diagram of the *Policy1-Bowel* microsimulation model platform.

Figure 2: Modelled screening delivery pathway (based on NBCSP) modelled in the *Policy1-Bowel* microsimulation model platform.

Table 1: Priority modelled evaluations for CRC interventions

Evaluation	Focus Area	Status
Impact* of changing smoking prevalence on CRC	Reducing risk of CRC	Ongoing
Impact* of changing body fatness prevalence and distribution on CRC	Reducing risk of CRC	Ongoing
Impact* of daily aspirin prophylaxis on CRC	Reducing risk of CRC	Ongoing
Impact* of NBCSP in the long term due to the increasing CRC incidence in younger cohorts	NBCSP outcomes: Changing temporal trends	Ongoing
Impact* of extending the NBCSP to younger ages for birth cohorts with increasing CRC rate	NBCSP outcomes: Changing temporal trends	Ongoing
Impact* of extending the NBCSP to people aged 40-49 years for the Aboriginal and Torres Strait Islander peoples	NBCSP outcomes: Targeting population subgroups with different CRC risk profiles	Ongoing
Impact* of extending the NBCSP to younger (40-49 years) and/or older (75-84 years) ages of average-risk Australians	NBCSP outcomes: Targeting NBCSP participation to a broader age range	Published
Impact* of the NBCSP at currently observed rates in the long term	NBCSP outcomes: Long-term NBCSP participation	Published
Impact* of increasing NBCSP participation to 60 and 70%	NBCSP outcomes: Increasing NBCSP participation rates	Published
Impact* of optimising NBCSP adherence (iFOBT screening and diagnostic assessment) to 90% and quantifying a maximum threshold for cost-effective investment towards improving NBCSP adherence	NBCSP outcomes: Increasing NBCSP participation rates	Complete
Impact* of mass media campaigns aimed at increasing participation in NBCSP	NBCSP outcomes: Increasing NBCSP participation rates	Complete
Impact* of including twice-off screening colonoscopies at age 40 and 60 in addition to the current NBCSP	NBCSP outcomes: Alternative screening methods	Complete
Impact* of 13 alternative screening approaches involving use of iFOBT, colonoscopy, sigmoidoscopy, computed tomographic colonography, faecal DNA, and plasma DNA for the NBCSP	NBCSP outcomes: Alternative screening methods	Published
Impact* of modifications to colonoscopic surveillance protocols, especially the newly ratified Australian colonoscopy surveillance guidelines to the previous guidelines	NBCSP outcomes: Modifying colonoscopic surveillance management	Ongoing

^{*}The impact of listed evaluations assessed in terms of health outcomes, resource use and costs.

Abbreviations: NBCSP: National Bowel Cancer Screening Program; CRC: Colorectal Cancer; iFOBT: immunochemical faecal occult blood test

References

- 1. Australian Institute of Health and Welfare. Cancer in Australia 2019. Canberra: AIHW; 2019. Report No.: Cancer series no.119. Cat. no. CAN 123.
- 2. Australian Institute of Health and Welfare. Cancer in Australia: Actual incidence data from 1982 to 2013 and mortality data from 1982 to 2014 with projections to 2017. Asia Pac J Clin Oncol. 2018;14(1):5–15.
- 3. Lynch HT, Lynch PM, Lanspa SJ, Snyder CL, Lynch JF, Boland CR. Review of the Lynch syndrome: history, molecular genetics, screening, differential diagnosis, and medicolegal ramifications. Clin Genet. 2009 Jul;76(1):1–18.
- 4. Karstensen JG, Burisch J, Pommergaard H-C, Aalling L, Højen H, Jespersen N, et al. Colorectal Cancer in Individuals With Familial Adenomatous Polyposis, Based on Analysis of the Danish Polyposis Registry. Clin Gastroenterol Hepatol. 2019 Oct 1;17(11):2294-2300.e1.
- 5. Hampel H, Frankel WL, Martin E, Arnold M, Khanduja K, Kuebler P, et al. Feasibility of screening for Lynch syndrome among patients with colorectal cancer. J Clin Oncol. 2008 Dec 10;26(35):5783–8.
- 6. Australian Institute of Health and Welfare. Australian Burden of Disease Study: impact and causes of illness and death in Australia 2015. Canberra: AIHW; 2019. Report No.: Australian Burden of Disease Study series no. 19. Cat. no. BOD 22.
- 7. Australian Institute of Health and Welfare. Australian Cancer Incidence and Mortality (ACIM) books [Internet]. 2019 [cited 2019 Jan 31]. Available from: http://www.aihw.gov.au/acim-books/
- 8. Yu XQ, O'Connell DL, Gibberd RW, Armstrong BK. A population-based study from New South Wales, Australia 1996-2001: area variation in survival from colorectal cancer. Eur J Cancer Oxf Engl 1990. 2005 Nov;41(17):2715–21.
- 9. Jong KE, Smith DP, Yu XQ, O'Connell DL, Goldstein D, Armstrong BK. Remoteness of residence and survival from cancer in New South Wales. Med J Aust. 2004 Jun 21;180(12):618–22.
- 10. Yu XQ, O'Connell DL, Gibberd RW, Armstrong BK. Assessing the impact of socio-economic status on cancer survival in New South Wales, Australia 1996-2001. Cancer Causes Control. 2008 Dec;19(10):1383–90.
- 11. Stanbury JF, Baade PD, Yu Y, Yu XQ. Cancer survival in New South Wales, Australia: socioeconomic disparities remain despite overall improvements. BMC Cancer. 2016 Feb 1;16.
- 12. Australian Institute of Health and Welfare. National Bowel Cancer Screening Program: monitoring report 2019. Canberra: AIHW; 2019. Report No.: Cancer series no. 125. Cat. no. CAN 125.
- 13. Feletto E, Yu XQ, Lew J-B, St John DJB, Jenkins MA, Macrae FA, et al. Trends in colon and rectal cancer incidence in Australia from 1982 to 2014: Analysis of data on over 375,000 cases. Cancer Epidemiol Biomarkers Prev. 2019;28(1):83–90.
- 14. Whiteman DC, Webb PM, Green AC, Neale RE, Fritschi L, Bain CJ, et al. Cancers in Australia in 2010 attributable to modifiable factors: summary and conclusions. Aust N Z J Public Health. 2015 Oct 1;39(5):477–84.

- 15. Lew J-B, St John DJB, Xu X-M, Greuter MJE, Caruana M, Cenin DR, et al. Long-term evaluation of benefits, harms, and cost-effectiveness of the National Bowel Cancer Screening Program in Australia: a modelling study. Lancet Public Health. 2017 Jul 1;2(7):e331–40.
- 16. Velentzis LS, Smith MA, Simms KT, Lew J-B, Hall M, Hughes S, et al. Pathways to a cancer-free future: A protocol for modelled evaluations to maximize the future impact of interventions on cervical cancer in Australia. Gynecol Oncol. 2019 Jan 1;152(3):465–71.
- 17. Kang Y-J, Killen J, Caruana M, Simms K, Taylor N, Frayling IM, et al. The predicted impact and cost-effectiveness of systematic testing of people with incident colorectal cancer for Lynch syndrome. Med J Aust. 2019;212(2).
- 18. Morrow A, Hogden E, Kang Y-J, Steinberg J, Canfell K, Solomon MJ, et al. Comparing theory and non-theory based implementation approaches to improving referral practices in cancer genetics: a cluster randomised trial protocol. Trials. 2019 Jun 20;20(1):373.
- 19. Cancer Council NSW. Policy1 [Internet]. 2019 [cited 2019 Aug 21]. Available from: http://www.policy1.org/models/bowel
- 20. Lew J-B, St John DJB, Macrae FA, Emery JD, Ee HC, Jenkins MA, et al. Benefits, harms and costs of potential age-extensions to the National Bowel Cancer Screening Program in Australia. Cancer Epidemiol Biomarkers Prev. 2018;27(12):1450–61.
- 21. Lew J-B, St John DJB, Macrae FA, Emery JD, Ee HC, Jenkins MA, et al. Evaluation of the benefits, harms and cost-effectiveness of potential alternatives to iFOBT testing for colorectal cancer screening in Australia. Int J Cancer. 2018 Jul 15;143(2):269–82.
- 22. Emerson J, Panzer A, Cohen JT, Chalkidou K, Teerawattananon Y, Sculpher M, et al. Adherence to the iDSI reference case among published cost-per-DALY averted studies. PLOS ONE. 2019 May 1;14(5):e0205633.
- 23. Simms KT, Laprise J-F, Smith MA, Lew J-B, Caruana M, Brisson M, et al. Cost-effectiveness of the next generation nonavalent human papillomavirus vaccine in the context of primary human papillomavirus screening in Australia: a comparative modelling analysis. Lancet Public Health. 2016 Dec 1;1(2):e66–75.
- 24. Lew J-B, Simms KT, Smith MA, Hall M, Kang Y-J, Xu XM, et al. Primary HPV testing versus cytology-based cervical screening in women in Australia vaccinated for HPV and unvaccinated: effectiveness and economic assessment for the National Cervical Screening Program. Lancet Public Health. 2017 Feb 1;2(2):e96–107.
- 25. World Cancer Research Fund / American Institute for Cancer Research. Continuous Update Project Report. Diet, Nutrition, Physical Activity, and Colorectal Cancer. World Cancer Research Fund; 2017.
- 26. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. IARC Monographs: Personal habits and indoor combustions. Vol. Volume 100E. A review of human carcinogens. Lyon: International Agency for Research on Cancer; 2012.
- 27. Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F, Straif K. Body Fatness and Cancer Viewpoint of the IARC Working Group. N Engl J Med. 2016 Aug 25;375(8):794–8.
- 28. Australian Institute of Health and Welfare. Risk factors contributing to chronic disease. Canberra: AIHW; 2012. Report No.: Cat No. PHE 157.

- 29. Cancer Council Australia Colorectal Cancer Guidelines Working Party. Clinical practice guidelines for the prevention, early detection and management of colorectal cancer [Internet]. Sydney: Cancer Council Australia; 2017 [cited 2018 Jan 3]. Available from: https://wiki.cancer.org.au/australia/Guidelines:Colorectal_cancer
- 30. Algra AM, Rothwell PM. Effects of regular aspirin on long-term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials. Lancet Oncol. 2012 May;13(5):518–27.
- 31. Hullar MAJ, Burnett-Hartman AN, Lampe JW. Gut Microbes, Diet, and Cancer. Cancer Treat Res. 2014;159:377–99.
- 32. Keum N, Giovannucci EL. Epidemiology of Colorectal Cancer. In: Loda M, Mucci L, Mittelstadt M, Van Hemelrijck M, Cotter M, editors. Pathology and Epidemiology of Cancer. Springer, Cham; 2017. p. 391–407.
- 33. Jenkins MA, Ait Ouakrim D, Boussioutas A, Hopper JL, Ee HC, Emery JD, et al. Revised Australian national guidelines for colorectal cancer screening: family history. Med J Aust. 2018 Oct 29;209(10):455–60.
- 34. Cancer Council Australia Surveillance Colonoscopy Guidelines Working Party. Clinical Practice Guidelines for Surveillance Colonoscopy. [Internet]. Sydney: Cancer Council Australia; 2019 [cited 2019 Mar 29]. Available from: https://wiki.cancer.org.au/australiawiki/index.php?oldid=200728
- 35. Weber MF, Chiew M, Feletto E, Kahn C, Sitas F, Webster L. Cancer Screening among Immigrants Living in Urban and Regional Australia: Results from the 45 and Up Study. Int J Environ Res Public Health. 2014 Aug 14;11(8):8251–66.
- 36. Weber MF, Banks E, Smith DP, O'Connell D, Sitas F. Cancer screening among migrants in an Australian cohort; cross-sectional analyses from the 45 and Up Study. BMC Public Health. 2009 May 15;9:144.
- 37. He E, Lew J-B, Egger S, Banks E, Ward RL, Beral V, et al. Factors associated with participation in colorectal cancer screening in Australia: Results from the 45 and Up Study cohort. Prev Med. 2018 Jan;106:185–93.
- 38. White B, Power E, Ciurej M, Lo SH, Nash K, Ormiston-Smith N. Piloting the Impact of Three Interventions on Guaiac Faecal Occult Blood Test Uptake within the NHS Bowel Cancer Screening Programme. BioMed Res Int. 2015;928251.
- 39. Jonah L, Pefoyo AK, Lee A, Hader J, Strasberg S, Kupets R, et al. Evaluation of the effect of an audit and feedback reporting tool on screening participation: The Primary Care Screening Activity Report (PCSAR). Prev Med. 2017 Mar 1;96:135–43.
- 40. ACE Bowel Screening Cluster. Interventions to increase bowel screening uptake: Final Report [Internet]. London: Cancer Research UK; 2017. Available from: http://www.cancerresearchuk.org/sites/default/files/interventions_to_increase_bowel_screening_uptake_v1.0.pdf
- 41. Worthington J, Lew J-B, Feletto E, Broun K, Durkin SJ, Wakefield MA, et al. Evaluating health benefits and cost-effectiveness of a mass-media campaign for improving participation in the National Bowel Cancer Screening Program in Australia. Public Health. 2020;179:90–9.

- 42. Durkin SJ, Broun K, Wakefield MA. Mass media campaign impact on overall and subgroup participation rates in the Australian national bowel cancer screening program: a field experiment. 2019;In Preparation.
- 43. Australian Government Department of Health. \$10 million to boost bowel cancer screening participation [Internet]. Australian Government Department of Health; 2019 [cited 2019 Mar 29]. Available from: https://www.health.gov.au/ministers/the-hon-greg-hunt-mp/media/10-million-to-boost-bowel-cancer-screening-participation
- 44. Aran V, Victorino AP, Thuler LC, Ferreira CG. Colorectal Cancer: Epidemiology, Disease Mechanisms and Interventions to Reduce Onset and Mortality. Clin Colorectal Cancer. 2016 Sep;15(3):195–203.
- 45. Young JM, Leong DC, Armstrong K, O'Connell D, Armstrong BK, Spigelman AD, et al. Concordance with national guidelines for colorectal cancer care in New South Wales: a population-based patterns of care study. Med J Aust. 2007 Mar 19;186(6):292–5.
- 46. Kuhry E, Schwenk WF, Gaupset R, Romild U, Bonjer HJ. Long-term results of laparoscopic colorectal cancer resection. Cochrane Database Syst Rev. 2008 Apr 16;(2):CD003432.
- 47. Wagner ADADW, Arnold D, Grothey AAG, Haerting J, Unverzagt S. Anti-angiogenic therapies for metastatic colorectal cancer. Cochrane Database Syst Rev. 2009 Jul 8;(3):CD005392.
- 48. Australian Government Department of Health. Pharmaceutical Benefits Scheme (PBS) | Cetuximab, panitumumab and bevacizumab for metastatic colorectal cancer [Internet]. The Pharmaceutical Benefits Scheme. 2018 [cited 2019 Aug 15]. Available from: http://www.pbs.gov.au/info/industry/listing/participants/public-release-docs/2018-02/metastatic-colorectal-cancer-february-2018
- 49. Kalyan A, Kircher S, Shah H, Mulcahy M, Benson A. Updates on immunotherapy for colorectal cancer. J Gastrointest Oncol. 2018 Feb;9(1):160–9.
- 50. Ooft SN, Weeber F, Dijkstra KK, McLean CM, Kaing S, Werkhoven E van, et al. Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Sci Transl Med. 2019;11(513).
- 51. Jorgensen ML, Young JM, Solomon MJ. Optimal delivery of colorectal cancer follow-up care: improving patient outcomes. Patient Relat Outcome Meas. 2015 May 18;6:127–38.
- 52. El-Shami K, Oeffinger KC, Erb NL, Willis A, Bretsch JK, Pratt-Chapman ML, et al. American Cancer Society Colorectal Cancer Survivorship Care Guidelines. CA Cancer J Clin. 2015;65(6):427–55.
- 53. Young JM, Durcinoska I, DeLoyde K, Solomon MJ. Patterns of follow up and survivorship care for people with colorectal cancer in new South Wales, Australia: a population-based survey. BMC Cancer. 2018 Mar 27;18(1):339.
- 54. Drury A, Payne S, Brady A-M. Cancer survivorship: Advancing the concept in the context of colorectal cancer. Eur J Oncol Nurs. 2017 Aug 1;29:135–47.
- 55. Worthington J, Lew J-B, Feletto E, Holden CA, Worthley DL, Miller C, et al. Improving Australian National Bowel Cancer Screening Program outcomes through increased participation and cost-effective investment. PLOS ONE. 2020;15(2):e0227899.

- 56. Grogan PB, Olver IN. A bowel cancer screening plan at last. Med J Aust. 2014 Oct 20;201(8):435–6.
- 57. Owen L, Morgan A, Fischer A, Ellis S, Hoy A, Kelly MP. The cost-effectiveness of public health interventions. J Public Health Oxf Engl. 2012 Mar;34(1):37–45.
- Australian Institute of Health and Welfare. Cancer in Aboriginal & Torres Strait Islander people of Australia [Internet]. Australian Institute of Health and Welfare. 2018 [cited 2018 May 15]. Available from: https://www.aihw.gov.au/reports/cancer/cancer-in-indigenous-australians/contents/table-of-contents

Acknowledgements

Not applicable

Author statement

KC conceived Pathways and developed the scope of evaluations with EF, JBL, JW, EH, MC and input on data interpretation from all SAC members: KBut, HH, NT, EB, KBa, KBr, AB, RC, JC, AD, HE, JE, IMF, PG, CHold, CHorn, MAJ, JGK, MAL, BL, GM, SM, BP, DJSJ, LT, KT, MW, RLW, AKW, DW, BKA, FAM. EF authored the manuscript with input from all co-authors: JBL, JW, EH, MC, KBut, HH, NT, EB, KBa, KBr, AB, RC, JC, AD, HE, JE, IMF, PG, CHold, CHorn, MAJ, JGK, MAL, BL, GM, SM, BP, DJSJ, LT, KT, MW, RLW, AKW, DW, BKA, FAM and KC. All authors critically reviewed and contributed to the final manuscript.

Funding

This work was supported by Cancer Council New South Wales (CCNSW).

Conflicts of Interest

KC, EF, JW, JBL, EH, MC, NT, KB and HH receive salary support from CCNSW. KC is co-PI of unrelated investigator-initiated trial of cervical screening in Australia ('Compass') conducted by the Victorian Cytology Service, which has received a funding contribution from Roche Molecular Systems and Ventana Inc., USA. All other co-authors have no conflicts of interest to disclose.

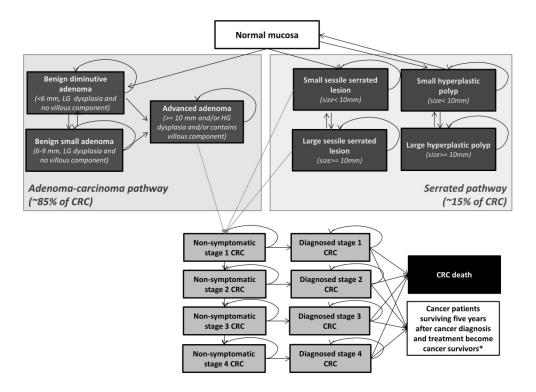


Figure 1: Schematic diagram of the Policy1-Bowel microsimulation model platform. 254x190mm~(300~x~300~DPI)

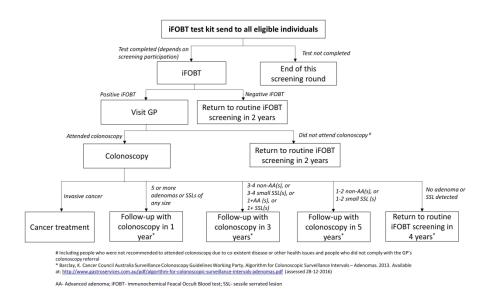


Figure 2: Modelled screening delivery pathway (based on NBCSP) modelled in the Policy1-Bowel microsimulation model platform.

338x190mm (300 x 300 DPI)