In the format provided by the authors and unedited.

Antarctic blackfin icefish genome reveals adaptations to extreme environments

Bo-Mi Kim¹, Angel Amores², Seunghyun Kang¹, Do-Hwan Ahn¹, Jin-Hyoung Kim¹, Il-Chan Kim³, Jun Hyuck Lee^{1,4}, Sung Gu Lee^{1,4}, Hyoungseok Lee^{1,4}, Jungeun Lee^{1,4}, Han-Woo Kim^{1,4}, Thomas Desvignes², Peter Batzel², Jason Sydes², Tom Titus², Catherine A. Wilson², Julian M. Catchen⁵, Wesley C. Warren⁶, Manfred Schart I¹⁰,^{7,8,9*}, H. William Detrich III⁰^{10*}, John H. Postlethwait¹⁰^{2*} and Hyun Park^{1,4*}

¹Unit of Polar Genomics, Korea Polar Research Institute, Incheon, Korea. ²Institute of Neuroscience, University of Oregon, Eugene, OR, USA. ³Department of Polar Life Science, Korea Polar Research Institute, Incheon, Korea. ⁴Polar Science, University of Science and Technology, Daejeon, Korea. ⁵Department of Animal Biology, University of Illinois, Champaign, IL, USA. ⁶McDonnell Genome Institute, Washington University, St. Louis, MO, USA. ⁷Department of Developmental Biochemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany. ⁸Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, USA. ⁹Department of Biology, Texas A&M University, College Station, TX, USA. ¹⁰Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, MA, USA. *e-mail: phch1@biozentrum.uni-wuerzburg.de; w.detrich@northeastern.edu; jpostle@uoneuro.uoregon.edu; hpark@kopri.re.kr

Antarctic blackfin icefish genome reveals adaptations to extreme environments

Bo-Mi Kim¹, Angel Amores², Seunghyun Kang¹, Do-Hwan Ahn¹, Jin-Hyoung Kim¹, Il-Chan Kim³, Jun Hyuck Lee^{1,4}, Sung Gu Lee^{1,4}, Hyoungseok Lee^{1,4}, Jungeun Lee^{1,4}, Han-Woo Kim^{1,4}, Thomas Desvignes², Peter Batzel², Jason Sydes², Tom Titus², Catherine Wilson², Julian M. Catchen⁵, Wesley C Warren⁶, Manfred Schartl^{7,8,*}, H. William Detrich III^{9,*}, John H. Postlethwait^{2,*}, Hyun Park^{1,4,*}

S1 Transposable element annotation

The icefish genome contains 50.36% repeat sequences including 47.41% TE elements such as LTR (5.58%), SINEs (0.58%), LINEs (7.25%) and DNA transposons (15.07%) (Supplementary Figure 15 and Supplementary Table 7). The size of the icefish genome is the largest reported to date for Antarctic notothenioid fishes. As the relative TE contribution impacts genome size, the relative contribution of major types of TEs, that is, LTR, LINE, and SINE retrotransposons as well as DNA transposons, was estimated in several fish genomes. According to their TE composition, most genomes showed a predominance of DNA transposons except tetraodon and takifugu. Some TE superfamilies, including gypsy, DIRs, L2, Rex retrotransposon, as well as Harbinger, hAT, P, PIF, PiggyBac and Heliton DNA transposons were detected in the majority of C. aceratus, but DRE, R1, R2 retrotransposon and IS3EU DNA transposon were not detected in the icefish genome (Supplementary Figure 16). Kimura distances (K-values) were calculated for all TE copies of each element in order to estimate the "relative age" and transposition history of TEs¹. Copy divergence is correlated with the age of activity: Very similar copies (low K-values) are indicative of rather recent activity (on the left part of the graph), while divergent copies (high K-values) have been generated by more ancient transposition events (on the right part of the graph). Results were grouped for the four different types of TEs (DNA transposons, LTR, LINE, and SINE retrotransposons) (Supplementary Figure 17). Teleost genomes generally contain fewer ancient copies (K-values >25), and significant interspecific differences in profiles were observed with generally one or two general bursts of transposition. Antarctic fishes and stickleback genome are dominated by rather recent copies (K-values <5) and strongly shaped by DNA transposons, which can be taken as indication of recent bursts of transposition in Antarctic fishes. TE expansion may have facilitated gene duplication and other events of genome evolution in particular periods of evolutionary history and thus may have contributed to adaptation to the specifics of Antarctic environments.

S2 Expansion of Olfactory receptors

Olfactory receptor (*or*) genes were annotated by manual inspection from the blackfin icefish genome. In total, 212 *or* genes were annotated and classified into 11 subclasses based on phylogenetic distance. Of the 212, 161 genes (\approx 76%) were classified into the 'delta' class, which is known to detect water-soluble odorants². When the total number of blackfin icefish *or* genes was compared to those of five teleosts that were previously annotated², we found that blackfin icefish has the largest number of *or* genes among these fish (Supplementary Table 21). In addition, sensory system related GO terms such as *sensory perception of chemical stimulus* (GO:0007606) and *sensory perception* (GO:0007600) in the biological process category and *olfactory receptor activity* (GO:0004984) in the molecular function category were enriched in the expanded *or* gene dataset of the blackfin icefish genome (Supplementary Table 10).

Supplementary Fig. 1. Photograph of a female specimen of the Antarctic blackfin icefish, *Chaenocephalus aceratus*.

Supplementary Fig. 2. Sampling sites for Antarctic blackfin icefish. The red dot shows the sampling location for the specimen used in genome and transcriptome sequencing, and the red triangle represents the sampling site for fish used to make the genetic linkage map and for the microRNA-seq experiments. Map was based on the updated Figure 1 of Park et al. (2010)³.

Supplementary Fig. 4. Genetic linkage map for the blackfin icefish.

Supplementary Fig. 4. Genetic linkage map for the blackfin icefish.

Supplementary Fig. 5. Conserved synteny of *C. aceratus* chromosomes with other teleosts. a. Analysis of gene content shows a one-to-one correspondence between icefish and European sea bass chromosomes. Icefish-specific color-coded lines connect predicted orthologous genes and show that no translocations occurred in the icefish lineage after it diverged from the European sea bass lineage, b. Conservation of synteny between icefish chromosome Cac12 (LG12) and stickleback linkage group LGXIV (Gac14). Lines connecting individual orthologous genes are color coded based on the icefish genomic contig. c. Conserved synteny between sea bass LG19 (Dla19) and stickleback LGXIV (Gac14), which reveals that inversions and transpositions were frequent in the icefish lineage *after* it diverged from the sea bass lineage. d., e. The only detectable translocation in the icefish lineage involved a small section of the ancestral chromosome corresponding to medaka Ola6 and sea bass Dla6 being moved to a portion corresponding to Ola7 and Dla22-25 to provide icefish chromosome Cac7. Dot plots from Synolog (http://catchenlab.life.illinois.edu/chromonomer/) show orthologs and paralogs of genes along Cac7 in the order they appear on Cac7 with a dot directly above the positon of the icefish gene. Orthologous chromosome segments have many orthologs, while paralogous chromosome segments have a few paralogs plotted.

Supplementary Fig. 6. Conservation of gene order between orthologous icefish and sea bass chromosomes. a, icefish LG1. b, icefish LG9. c, icefish LG16. d, icefish LG20. Lines connecting orthologous genes are color coded relative to the icefish genomic contig. Comparisons show many inversions and a few transpositions that distinguish these two species, whose lineages diverged more than 100 million years ago.

Sea Bass LG18-21

Supplementary Fig. 7. Divergence time estimation of teleost fish. Blue bars depict 95% highest posterior density (HPD) time estimates (time scale: Million years ago).

Supplementary Fig. 8. Venn diagram of orthologous gene clusters for six teleost fishes.

Supplementary Fig. 9. Conserved syntenies for zpc3 and zpc5 genes identified in the icefish genome. The icefish *zpc3 and zpc5* genes are tandemly duplicated in Ice_000114.

Supplementary Fig. 10. **Transcriptional profile of zona pellucida (zp) protein family genes in blackfin icefish organs**. The transcriptional profile of *zp* genes was measured in twelve organs of icefish (i.e. brain, eye, gill, heart, intestine, kidney, liver, muscle, ovary, skin, spleen, and stomach). The level of expression for each mRNA is represented by color gradations in the heat map.

Supplementary Fig. 11. Syntenic comparisons of icefish globin gene clusters. Teleosts have two globin gene clusters. The LA cluster, which encodes both hemoglobin α - and β -subunits, is adjacent to the *lcmt1* and *aquaporin* genes on one side and *rhbdf1b* on the other side. The MN cluster, which also encodes both hemoglobin α - and β -subunits, has *rhbdf1a*, *mpg*, and *nrpl3* on one side and *kank2* on the other side. Loss of complete copies of α - and β -globin genes is observed for both the LA and MN clusters in the icefish genome. Each arrow indicates a gene in the 5' \rightarrow 3' direction. α - and β -globin clusters are shown by green and red boxes. The partial alpha globin gene containing only exon 3 is identified in the icefish LA cluster by a dashed box . This figure was updated from figure 1 of Opazo et al.⁴.

Supplementary Fig. 12. Syntenic comparison of myoglobin and cytoglobin genes identified in icefish genome. Genomic structure and syntenic comparisons for **a**. cytoglobin (cygb1) **b**. cygb2, **c**. myoglobin (mb) and **d**. neuroglobin (ngb) genes are shown within representative sequenced teleost genomes.

Supplementary Fig. 13. Cladogram depicting expansion of NAD(P)H quinone dehydrogenase 1 (*nqo1*) genes in the icefish genome. Comparison of genomic structure, conserved synteny, and phylogenetic relationships of icefish *nqo1* genes shown within representative sequenced teleost genomes. Icefish *nqo1* genes are distributed on five different contigs.

Supplementary Fig. 14. The 8-oxoguanine DNA glycosylase (*ogg1*) gene is duplicated in the icefish genome. Other teleost genomes contain a single gene.

Supplementary Fig. 15. **Percentages of TEs in teleost genomes.** The amounts of LTR, SINE and LINE retrotransposons, DNA transposons, and unclassified elements (Unknown), as well as their respective proportions were estimated based on RepeatMasker outfiles.

Supplementary Fig. 16. **Diversity and abundance of TE superfamilies in teleosts.** Presence or absence of TE superfamilies was determined using automatic annotation, manual verification, and literature information. The relative proportion of superfamilies is shown in squares according to the gradient scale (log) at the bottom.

Supplementary Fig. 17. **Kimura distance-based copy divergence analysis of transposable elements in teleost genomes.** Graphs represent genome coverage (Y-axis) for each type of TE (DNA transposons, SINE, LINE, and LTR retrotransposons) in the different genomes analyzed, clustered to their corresponding consensus sequence according to Kimura distances (X-axis, K-value from 0 to 50). Right inserted square shows axes for all graph.

Library	No. of Cells	No. of Reads	Total data (Mbp)	N50 read length (bp)	Mean read length (bp)
Polymerase read	16	6,562,134	89,275	22,250	13,605
Subread		8,434,974	89,045	16,203	10,557

Supplementary Table 1. Statistics for icefish genome sequencing using PacBio Sequel.

	Actinopterygii Gene Set	%
Complete BUSCOs (C)	4,123	89.9
Complete and single-copy BUSCOs (S)	3,930	85.7
Complete and duplicated BUSCOs (D)	193	4.2
Fragmented BUSCOs (F)	164	3.6
Missing BUSCOs (M)	297	6.5
Total BUSCO groups searched	4,584	

Supplementary Table 2. BUSCO scores for the completeness of the icefish genome sequence. (<u>http://busco.ezlab.org</u>)

Organ	No. reads	Total data (bp)	% reads mapping*
Brain	42,517,602	4,294,277,802	94.76
Eye	48,799,334	4,928,732,734	95.45
Gill	51,072,374	5,158,309,774	94.35
Heart	56,781,088	5,734,889,888	92.23
Intestine	51,113,066	5,162,419,666	96.66
Kidney	53,863,870	5,440,250,870	90.35
Liver	78,598,880	7,938,486,880	86.68
Muscle	45,374,108	4,582,784,908	87.23
Ovary	49,080,678	4,957,148,478	91.09
Skin	45,497,130	4,595,210,130	89.49
Spleen	43,778,336	4,421,611,936	89.57
Stomach	57,809,718	5,838,781,518	86.44

Supplementary Table 3. Sequencing statistics for icefish transcriptome analysis.

*Data from each organ was mapped to assembled icefish genome using Tophat.

		Number	Percent (%)
Total		30,773	
Annotated	Blastp	23,923	77.74
	Interpro	20,684	67.21
	GO	16,671	54.17
	KEGG	19,893	64.64

Supplementary Table 4. General statistics of the functional annotation.

Organ	Number of reads retained for analysis*	Number of reads being annotated	% reads being annotated
Pronephric kidney	4,818,658	4,281,988	88.86
Pectoral girdle bone	9,459,845	7,820,112	82.67
Heart ventricle	596,018	545,265	91.48
Pectoral adductor muscle	2,715,548	2,343,132	86.29
Skeletal muscle	5,750,328	4,822,711	83.87

Supplementary Table 5. Sequencing statistics for icefish small-RNA transcriptome analysis.

*Passed sequence quality filter; passed size filter; have minimum of 5 counts

Gene Name	Sequence	Location	Strand
cac-let-7a-2	GCTCCCAGGTTGAGGTAGTAGGTTGTATAGTTGAGAATTACACCCCGGG AGATAACTGTACAACCTCCTAGCTTTCCCTGAGGTAC	LG13:9475996- 9476081	+
cac-let-7a-3	TCCTTTTGGGTGAGGTAGTAGGTTGTATAGTTTTAGGGTCAATCCCGAG CTGTAAAATGACTATACAATTTACTGTCTTTCCTGAAGCGACC	LG23:16144495- 16144586	+
cac-let-7a-4	TCCCTCAGGTTGAGGTAGTAGGTTGTATAGTTCAGAGTGACACCTCAGG AGATAACTGTACAGCCTCCTAGCTTTCCCTGAGGAAAC	LG14:29507401- 29507487	_
cac-let-7a-5	TCTTTCAGGGTGAGGTAGTAGGTTGTATAGTTTGGTGGGTG	LG7:23011503- 23011599	+
cac-let-7a-6	CCTGGCAAGGTGAGGTAGTAGGTTGTATAGTTTGTGGGATGGAGTAAA TCCTACTCAGGCGATAACTATACAGTCTAATACCTTCTTGAGGGGGTACA ATGA	LG5:14697071- 14697171	+
cac-let-7a-7	TCCTTTGGGGTGAGGTAGTAGGTTGTATAGTTTTAGGGTCATACCCTTC CTGTCAGATAACTATACAACTTACTGTCTTTCCTGAAGTGGCTG	LG6:31060983- 31061075	-
cac-let-7b-1	TCGTACAGGGTGAGGTAGTAGGTTGTGTGGGTTTCAGGGTTGTGATTGTA CCCCATCAGGAGCTAACTGTACAACCTACTGCCTTCCCTGGAGGGC	LG23:16145238- 16145332	+
cac-let-7b-2	TCGAACAGGGTGAGGTAGTAGGTTGTGTGGGTTTCAGGGTAGTGATTTTG CCCAATAAGGAGATAACTGTACAACCTACCGCCTTCCCTGAAGGGCA	LG6:31060415- 31060510	-
cac-let-7c-2	GCATCCGGGTTGAGGTAGTAGGTTGTATGGTTTAGAATGACATCCTGGG AGTTAACTGTACAACCTTCTAGCTTTCCTTGGAGCAC	LG14:5184609- 5184694	+
cac-let-7d-1	CTCTGCAGTGTGAGGTAGTTGGTTGTATGGTTTCGCATAATAAACAGCA CGGAGATAACTCTACAACCTTCTAGCTTTCCCTGCGGAGTC	LG16:19224686- 19224775	+
cac-let-7d-2	CTCTGCAGTTTGAGGTAGTTGGTTGTATGGTTTCGCATCATAAACAGCC TGGAGATAACTGTACAACCTTCTAGCTTTCCCTGCGGCGT	Ice_Fa_000667F :208836-208924	-
cac-let-7e-1	TCCTTGGGGCTGAGGTAGTAGATTGAATAGTTGTGGGGGTTGTGTAACCT CTTTTTGAGATAACTATACAATCTACTGTCTTTCCCAAGGAGAC	LG7:23011252- 23011344	+
cac-let-7e-2	TCCTTAAGGCTGAGGTAGTAGATTGAATAGTTGTGGGGGTTTTTGTCCTC CCTCTGAGATAACTATACAATCTACTGTCTTTCCTAAGGAGAC	LG5:14696745- 14696836	+
cac-let-7g-1	AGCTGTGGGATGAGGTAGTAGTTTGTATAGTTTTAGGATCACACCAGAT CTGGGAGATAACTATACAGCCTACTCTCTTTCTCACGGCAACC	LG7:32952936- 32953027	-
cac-let-7g-2	TGCTGTGGGATGAGGTAGTAGTTTGTATAGTTTTAGGATCACACCAGAT CTGGGAGATAACTATACAGTCTACTGTCTTTCTTATGGCTACG	LG7:21074106- 21074197	+
cac-let-7h-1	TGTGCTGTGGTGAGGTAGTAAGTTGTTGTTGTTGTGGGGATAAGGATTG TTCACCCCGTTCAGGAGATAACTATACAACTTACTGCCTTCCTCAGTGC AGGC	LG7:21074284- 21074385	+
cac-let-7i-1	ATGCACTGGCTGAGGTAGTAGTTTGTGCTGTTGGTTGGGTTGTGACACT GCCCGCTATGGAGATGACTGCGCAATCTACTGCCTTGCTAGTGCTGGT	LG6:31422588- 31422684	+
cac-let-7i-2	ATGCGCTGGTTGAGGTAGTAGTTTGTGCTGTTGGTCGGGTTGTTATATT ACCCCTTGTGGAGATGACTGCGCAATCTACTGCCTTGCTGGCGCTGGT	LG23:15956748- 15956844	-
cac-let-7j	CACTTTGGTCTGAGGTAGTTGTTGTACAGTTTGAGGGTCTGTGATTCTG CCCCATACAGGAGCTAACTGTACAACTGACTGCCTTGCCCACGGTTGA	LG5:25524602- 25524699	-
cac-mir-100-1	CATGGTCCCAAACCCGTAGATCCGAACTTGTGTTATCTGACACCACAAG CTTGTGTCTACAGGTCTGCGTCTG	LG13:9475205- 9475277	+
cac-mir-100-2	AGCTGCCACAAACCCGTAGATCCGAACTTGTGGTGACTGGCTGCACAA GCTCGTATCTATAGGTATGTGTCTTCCTG	LG14:29508344- 29508420	-
cac-mir-101a	CTTCCCTGGTTCAGTTATCACAGTGCTGATGCTGTCCCCATCGAAGGTA CAGTACTGTGATAACTGAAGGATGGCTGCC	Ice_Fa_000733F :206957-207035	+
cac-mir-101b	CTGTCCATTTTCAGTTATCATGGTACCGGTGCTGTGTCCCTCTTAAGTAC AGTACTATGATAACTGAAGATTGGCAGTG	LG12:15446173- 15446251	+
cac-mir-103a	CTTTGCGTTCAGCCTCTTTACGGTGCTGCCTTGTGACGTCTTGATCAAGC AGCATTGTACAGGGCTATGAAGGCGTAGAG	LG22:23549660- 23549739	+

Supplementary Table 6. Information of miRNA sequence of blackfin icefish.

cac-mir-103b	CTACGCTTTTAGCCTCTTTACAGTGCTGCCTTGTCTGATCATGTTCAAGC AGCATTGTACAGGGCTATGACAGCATAGAG	LG10:28275928- 28276007	-
cac-mir-107a	GTGTGCTGTGAGCTTCTTTACAGTGTTGCCTTGTGGCATGGGGATCAAG CAGCATTGTACAGGGCTATCACTGCACAC	LG15:28318936- 28319013	-
cac-mir-10a	CACCTATATATACCCTGTAGATCCGAATTTGTGTAAAAATAGCAGCAGC CACAAATTCGCTTCTTGGGGAGTATGTAGGTGA	LG19:6743208- 6743289	-
cac-mir-10b-1	CGTCTATATATACCCTGTAGAACCGAATTTGTGTGATAAAACCACAATC ACAGATTCGATTC	LG21:18076974- 18077054	-
cac-mir-10b-2	TGTCTATATGTACCCTGTAGAACCGAATTTGTGTGAAGTACAAACAA	LG7:22098995- 22099075	+
cac-mir-10c	CTTCTATATCTACCCTGTAGATCCGGATTTGTGTACAAATCATTGAAAC AATCACAAATTCGCTTCTAGGGGAGTATATAGTG	LG8:1699781- 1699863	+
cac-mir-10d	CGCCCCTACATACCCTGTAGAACCGAATGTGTGCGGAGCTGCTTCAGAC ACAGATTGGGTTCTAGGGGAGTCTATGGGCGATGACTAACCA	Ice_Fa_000968F :130223-130313	-
cac-mir-1-1	TGCTTGGGGGACATACTTCTGTATATGCCCATATGAACAAGAGCAACTA TGGAATGTAAAGAAGTATGTATCCCAGGTTGG	Ice_Fa_000302F :824290-824370	-
cac-mir-1-2	CTCCTTGGTGTACATACTTCTTTATGTACCCATATGAACATATGATAGCT ATGGAATGTAAAGAAGTATGTATTCTTAGTGGG	LG17:22231114- 22231196	-
cac-mir-122	TCCAGAGCTGTGGAGTGTGACAATGGTGTTTGTGTCCTGTGAATCAAAC GCCATTATCACACTAAATAGCTCCAGTGTGAAA	LG12:8779683- 8779764	+
cac-mir-124-1	TTGAGCTCTTTGTGTTCACAGTGGACCTTGATTTAATTTCAATACAATTA AGGCACGCGGTGAATGCCAAGAGAGAGAGCC	Ice_Fa_000169F :967395-967474	+
cac-mir-124-2	TGTGTCTCTCCGTGTTCACAGCGGACCTTGATTTAATGTCTTACAATTAA GGCACGCGGTGAATGCCAAGAGATGAGCC	LG20:18871716- 18871794	+
cac-mir-124-3	TGTCACTCTGCGTGTTCACAGCGGACCTTGATTTAATGTCCATACAATT AAGGCACGCGGTGAATGCCAAGAGAGAGAATC	LG7:26145867- 26145946	-
cac-mir-124-5	CGTCTCTCCTCGTGTTCACAGCGGACCTTGATTTAAATGTCCATACAATT AAGGCACGCGGTGAATGCCAAGAGAGTGACC	LG24:30332422- 30332502	-
cac-mir-125a-1	TGCCCCTCTGTCCCTGAGACCCTTAACCTGTGAGGTCAAAGTAGGTCAC AGGTGAGGTCCTCGGGAACAGGGCTGCAT	LG16:19230756- 19230833	+
cac-mir-125a-2	TGCTTCATTGTCCCTGAGACCCTTAACCTGTGATGATGTGAAAGGTCAC AGGTGAGGTCCTTGGGAACAAAGTCGCAT	Ice_Fa_000667F :204664-204741	-
cac-mir-125b-2	CCTCTCTCATTCCCTGAGACCCTAACTTGTGACGTTTTCGTCATGTGCAC GGGTTGGGTT	LG14:29502955- 29503034	-
cac-mir-125b-3	CTTCACCTGCTCCCTGAGACCCTAACTTGTGAGCTCTTTTAATAAAAAA CCACGGGTTAGGCTCTTGGGACGTGGGCGGAGG	LG14:5192530- 5192611	+
cac-mir-125c	TCTCTCTCCGTCCCTGAGACCCTAACTTGTGACGTTGTGTTTTCATGTCC ACGGGTTAGGCTCTCGGGAGCTGAGGGGGGAT	LG13:9481803- 9481883	+
cac-mir-126b	CCTCGCGGTCCATTATTACTTTTGGTACGCGCTATGCCACTCTCAACTCG TACCGTGAGTAATAATGCACTGCGACTGG	LG12:3547849- 3547927	+
cac-mir-128-1	AGGCGGGATTCGGGGCCGGGACGCTGTCTGAGAGACCTCTATGAATCT CACAGTGAACCGGTCTCTTTTGCAGCCTCT	Ice_Fa_000589F :76688-76765	+
cac-mir-128-2	CAGTAGAGGAGGGGGGCCGTTACACTGTCAGAGATGTAGTCTGAGGGTC TCACAGTGAACCGGTCTCTTTTCCTGCTGCT	LG11:10319945- 10320023	+
cac-mir-128-3	AGGCGGGATTCGGGGCCGGGACGCTGTCTGAGAGACCTCTATGAATCT CACAGTGAACCGGTCTCTTTTGCAGCCTCT	LG2:10617292- 10617369	+
cac-mir-129-1a	CTTCACGAATCTTTTTGCGGTCTGGGCTTGCTGTTCATAACTATTAATCT GGGAAGCCCTTACCCCAAAAAGCATTTGCGGAGGG	LG6:34110770- 34110854	-
cac-mir-129-1b	CGTCACGAATCTTTTTGCGGTCTGGGCTTGCTGTGCATACATGAATCTG GGAAGCCCTTACCCCAAAAAGCATTTGTGGAGGA	LG3:18585819- 18585901	-
cac-mir-129-2a	CTTTTCAGGTCTTTTTGCGGTCTGGGCTTGCTGTCAAATGACTATCCAGG AAGCCCTTACCCCAAAAAGCATCTACAAGGGA	LG6:20318027- 20318108	-
cac-mir-129-2b	CTGTGTGGGTCTTTTTGCGGTCTGGGCTTGCTGTTCCTAAGGCAGTAGC CAGGAAGCCCTTACCCCAAAAAGTATCTGCACTGGACTCTGG	LG23:6689968- 6690058	+

cac-mir-130b	TCTGCTTGACACTCTTTCCCTGTTGCACTACTGTGGGAGCTGCAGCAAG CAGTGCAATAATGAAAGGGCATCGGTCAGCT	LG9:1598929- 1599008	-
cac-mir-130c-1	GTTGTCCAAAGCCTTTTTTCTGTTGTACTACTGTGAAATCAGATGAGCA GTGCAATATTAAAAGGGCATTGGCTGACA	LG9:1604812- 1604889	-
cac-mir-130c-2	GGAGTCTGATGGTGTCCATGTTGTTGTCCACTGCCCTTTTTTTGGTGCA CTACTGGACATTGAGGTGAGCAGTGCAATATTAAAAGGGCATTGGCTG ATG	LG12:14133244- 14133344	-
cac-mir-132-1	CTCCATGGCGACCGTGGCATTAGATTGTTACTGTAGCAACAGCACCACT GGTAACAGTCTACAGCCATGGTCGCTAGGGGGGCA	LG13:18746562- 18746644	-
cac-mir-132-2	CTCCATGGCGACCGTGGCTTTAGATTGTTACTCTAGCAACAGCACCATG GTAACAGTCTACAGCCATGGTCGTTAGGGGGCAG	LG14:22162712- 22162793	+
cac-mir-133a-1	TTGCTAAAGCTGGTAAAATGGAACCAAATCACCTCTTGAATGGATTTGG TCCCCTTCAACCAGCTGTAGCTATGCTT	LG17:22227837- 22227913	-
cac-mir-133a-2	TTGCTAAAGCTGGTAAAATGGAACCAAATCAACCGTTCAATGGATTTG GTCCCCTTCAACCAGCTGTAGCTGTGCAT	Ice_Fa_000302F :800380-800456	-
cac-mir-133b	CCTTGCTGTGGCTGGTCAAACGGAACCAAGTCAGGTGTTTCTGTGAGGT TTGGTCCCCTTCAACCAGCTACTGCGTCGTG	Ice_Fa_000312F :266116-266195	+
cac-mir-135a-1	CGTTGTGTCTTATGGCTTTTTATTCCTACGTGATGGCCGATGGGTTCATG TAGGAGTAGAAGCCACTAAACACGCGG	Ice_Fa_001615F :35347-35423	+
cac-mir-135a-2	CAACGTGTACTATGGCTTTTTATTCCTATGTGATGATGAAACATGTTCGT GTAGGGATAGAAGCCATTTTACACG	LG6:22856818- 22856892	+
cac-mir-135b	TAGTGCGCTGTATGGCTTTTTATTCCTATCTGACTGTACTGATGGTTCAT ATAGGGATGGAAGCCATGCACCGCGCGGG	LG7:15956568- 15956647	-
cac-mir-135c-1	GCTGTGTTTTTATGGCTTTCTATTCCTATGTGATTTTTCTCTGGCATGTCA CATAGGGTCTTAAGCCATTGGGTACAGAGCGGGAGATCTGCAGACGGG GA	LG5:39674953- 39675053	+
cac-mir-135c-2	AACTGTGTCTTATGGCTTTCTATTCCTATGTGAGTTTGTTCGAACATTTC ATGTAGGGTTCAAAGCCATTGGATACACACTGGATAGTCAC	LG7:30997971- 30998061	+
cac-mir-137-1	AGGTGGAACGACCGTTTGCTCCCGTCTCGACCACGGGTATTCTTGGGTT GATAATACAGATGTCGATGTTATTGCTTGAGAATACGCGTAGCTGAGCG GAA	LG8:29677814- 29677914	-
cac-mir-137-2	GGAGGTGGGCCTCTTTTGCTCCGGTCTCGACCACGGGTATTCTTGGGTT GATAATACAGATGTGGATGTTATTGCTTGAGAATACGCGTAGTCGAGTG GAA	LG1:23865642- 23865742	-
cac-mir-138	GGGGAGGGTCAGCTGGTGTTGTGAATCAGGCCGCTGACGCGTCACACA CGGCTTCTTCACAACCCCAGGGACCCTCCCTACTACTTCCTGC	Ice_Fa_000630F :37231-37321	-
cac-mir-1388	TAGTTCTTCGAGGACTGTCCTACCTGAGAATGGTGATTTCAGGCTCAAT CTCAGGTTCGTCAGCCCATGAAAAGCTAAC	LG7:25907325- 25907403	+
cac-mir-138b	TGTGTGCTGCAGCTGGTGTTGTGAATCAGGCCGATGACAGACA	LG6:10428335- 10428425	-
cac-mir-138bb	GGGGCGGGACAGCTGGTGTTGTGAATCAGGCCGCCGAAATCCAAGGAC CGGCTACTTCCCAACACCAGGGTCCCACCCTCACCCCTCACAT	LG11:20343644- 20343734	-
cac-mir-139	TTGGCTGTATTCTACAGTGCATGTGTCTCCAGTGTTAGTGATGCTACTG GAGACCAAGCTCTGTTGGAATAACAATCA	LG13:30614625- 30614702	+
cac-mir-140	AGTGTCACGTCAGTGGTTTTACCCTATGGTAGGTGACATCATGCTGTTC TACCACAGGGTAGAACCACGGACGGGATGTTG	LG7:4303492- 4303572	+
cac-mir-142a	CAGTCATCCATAAAGTAGAAAGCACTACTAAACTCCTCGCCACAGTGT AGTGTTTCCTACTTTATGGATGAGTGT	LG14:11530310- 11530384	+
cac-mir-142b	TTGTCACCCATAAAGTAGAAAGCACTACTAAACGTCATTACACAGTGTA GTGTTTCCTACTTTATGGATGAGTAT	LG13:17534039- 17534113	-
cac-mir-143	CCAATCCAGACAGATGAGGTGAGGGTCAGAGTTTGAGAAGGGGGGGAG GGGGGCGTGTTCAGATCTATGGTTCAGATGAAGCTCTGTAGCTCAAGGC AGTTT	LG24:26719997- 26720097	-
cac-mir-144	TGCCCCGGACAGGATATCATCTTATACTGTAAGTTTAATAAAGAGACAC TACAGTATAGATGATGTACTATCCAGGGT	LG14:11099725- 11099802	-

cac-mir-145	CTTCCATTGTGGCCAGTTTTCACAGGAATCAGGAAGTCAATGTTTATAG IGATAATATCTATTACATCTTATATTTGTTGTGTGAGTCTTAGGCTGACA GA	LG17:32176763- 32176863	-
cac-mir-146a	TGCTGTACTATGAGAACTGAATTCCATAGATGGTGGTGTGTTCAGGTGT CATCTATGGGCTTAGTTCTTTTGGAATGGTACT	LG15:18765471- 18765552	+
cac-mir-148	TTTCCAAATAAAGTTCTGTGATACACTTAGACTCTAATTGCCTGCAGTC AGTGCATTACAGAACTTTGTTTTGT	LG21:17936178- 17936255	_
cac-mir-152	TTCCTGGTCTAAGTTCTGTGATACACTCCGACTGTGAATCTATGCTAGTC AGTGCATAACAGAACTTTGTCCCGGCTCT	LG8:2567655- 2567733	-
cac-mir-153a-1	CCTCCTCCCCCCTCCTAACTAGCGGTTGCCAGTGTCATTTTTGTGATGTTG CAGCTAGTAATATGAGCCCAGTTGCATAGTCACAAAAGTGATCATTGG AGA	Ice_Fa_001706F :9962-10062	-
cac-mir-153a-2	CACTAAGCGCTTTTCTACCTCGTTCTTAGGTTCAGCTCTTTGGGAGAATT GTGTAACTCACACCCCAAACATTGCATAGTCACAAAAGTGACTTTGAAC GG	LG22:23619626- 23619726	+
cac-mir-153b	GCGGCGGGTTAAACTTGAACATATCTGTCTGTGTGTCATTCTTGTGGTTTG CAGCTAGTTTGTGTCTCCAGTTGCATAGTCACAAAAATGATCATGGACT GAT	Ice_Fa_003589F :21741-21841	-
cac-mir-153c	CCAGTGTCATTTTGTGATTTGCAGCTAGTACTCTGGCTCCAGTTGCATA GTCACAAAAATGAGCATTGGCAGGT	LG21:26060585- 26060659	-
cac-mir-155	CATGGTGAGGTTAATGCTAATCGTGATAGGGGTTGTTTATTACCAGACA CCTAACATGTTAGCATTAGCTTCACTCTGGG	LG3:26468235- 26468314	+
cac-mir-15a-2	GGCGATGCTGTAGCAGCACGGAATGGTTTGTGGGTTACACAGAGATGC AGGCCATGCTGTGCTG	LG21:28574032- 28574109	+
cac-mir-15b	GGGTGCGCTCTAGCAGCACATCATGTTTTGCAGATATTTGCTGAATCAC TCCAAATCATTTTGTGCTGCCACCGTGAGCCCTG	LG18:1184741- 1184823	-
cac-mir-15c	TAGACTGCTATAGCAGCGCATCATGGTTTGAAACAGTGTGGAAAAGGT GCGAACCATTATTTGCTGCTTTAGAATTTT	LG13:22636013- 22636090	+
cac-mir-16a	TGCCACGCTTTAGCAGCACGTAAATATTGGCGTGTGAGACCCCAACCCC AATATTGGCAGTGCTGCTTCAGTGTGGCCGG	LG13:22636252- 22636331	+
cac-mir-16c	CGCCTTACTGTAGCAGCACGTAAATATTGGAGTTAAGACTTTAGCTGAA GCCTCCAGTATTGATCGTGCTGCTGAAGCAAAGCTG	LG21:28574235- 28574319	+
cac-mir-1788	ATACAGTCCAGCTTTCGAGGCTTGTTTTAAGTTGCCTGCGACTCTTACTT GGACACAGGCAGCTAAAGCAAGTCTGGGATGCAGAGACA	LG21:12236854- 12236942	+
cac-mir-17a-1	TGTGTATTGTCAAAGTGCTTACAGTGCAGGTAGTTCTATGTCATACCTA CTGCAATGGAGGCACTTACAGCAATACCCTGA	LG3:26485595- 26485675	+
cac-mir-17a-2	ACTGTAGTGTCAAAGTGCTTACAGTGCAGGTAGTTTTATAAGATCTACT GCAGTGAAGGCACTTTCAGCACTATTCTGA	LG21:17070943- 17071021	+
cac-mir-17a-3	AGTTTGTGATAAAGTGCTTACAGTGCAGGTAGTGATTATAACCTGGCCT ACTGCAATGTGAGCACTTCTTTCCCACGGCG	LG10:28714426- 28714505	-
cac-mir-181a-1	TGCCCCAGTGAACATTCAACGCTGTCGGTGAGTTTCAACGAAATTGAAA ACCATCGACCGTTGATTGTACCCTGTGGCCAG	LG4:11780372- 11780452	+
cac-mir-181a-2	GCTCACGGAGAACATTCAACGCTGTCGGTGAGTTTGAGCTCTGACCAA ACCATCGACCGTTGCATGTACCCTGAGGGACG	LG9:10820887- 10820966	+
cac-mir-181a-3	TGCCTCGGTGAACATTCAACGCTGTCGGTGAGTTTTGATATGGATCACA TAAAAACCATCGACCGTTGACTGTGCCCCCGGGGCTTG	LG17:15578636- 15578721	+
cac-mir-181b-1	GGTCACAATCAACATTCATTGCTGTCGCTGGGTTGGACTGTGTAGAAAG CTCACTGAACAATGAGTGCAACTGTGGCCCAGATCTGCCCGA	LG17:15578849- 15578939	+
cac-mir-181b-2	GGCTGCAATAAACATTCATTGCTGTCGGTGGGTTTACTTGAGAACAACT CACTGATCAATGAATGCAGACTGCGGTTCA	LG9:10821192- 10821270	+
cac-mir-181b-3	GGTCACAATTAACATTCATTGCTGTCGGTGGGTTTAACTATGTAGAAAA GCTCGCTGAACGATGAATGCAACTGTGTCCC	LG4:11780572- 11780651	+
cac-mir-182-1	TCTGGTGGTGTTTGGCAATGGTAGAACTCACACTGGTGAGGTAGATGG ATCCGGTGGTTCTAGACTTGCCAACTACTACCTGAG	LG23:4351801- 4351884	+
cac-mir-182-2	GACGGCTGCACTCTCCCACAGTGTTTGGCAATGGTAGAACTCACTC	LG6:18739153- 18739263	+

cac-mir-183-1	TGTTCTGTGTATGGCACTGGTAGAATTCACTGTGAGCGCTCACTATCAG TGAATTACCATAGGGCCATAAACAGAGCAGAG	LG23:4350972- 4351062	+
cac-mir-183-2	TGTTCTGTGTATGGCACTGGTAGAATTCACTGTCACGGCACACAATCAG TGAATTACCATAGGGCCATAAACAGAGTAGAGACTGAACCAC	LG6:18738739- 18738829	+
cac-mir-184-1	TTCTGTGGGTCGCTCACATCTCCTTATCACTTTTCCAGCCCAGCTATAGAT TTTGTATCCGTTGGACGGAGAACTGATAAGGGCATGTGCAT	LG3:37654036- 37654126	+
cac-mir-184-2	TAATGTTGTCGAGCACATCTCCTTATCACTTTTCCAGCCCAGCTATCTAT	LG6:23917881- 23917971	-
cac-mir-187-2	CTGGGCCAGGGCTGCAACACAGGACATGGGTCCCGCTTGTCCTCCCCGC TCGTGTCTTGTGTTGCAGCCAGTGGTCTCGC	LG11:10758791- 10758870	+
cac-mir-18a	AGTCCTTTGCTAAGGTGCATCTAGTGCAGATAGTGAAGTAGACTAGCAC CTACTGCCCTAAGTGCTCCTTCTGGCATAA	LG21:17071379- 17071457	+
cac-mir-18b	GTCTTTGTGCTAAGGTGCATCTAGTGCAGATAGTGAAATAGACTAGCAC CTACTGCCCTAAGTGCTCCTTCTGGCATAA	LG3:26485722- 26485800	+
cac-mir-18c	GTCCTCCAGCTAAGGTGCATCTAGTGTAGTTAGTGAAATAATTCAGAAT CTACTGCCCTAGTTGCTCCTTCTGGCTGGAGGGCTTGTTGTT	LG10:4337230- 4337320	+
cac-mir-1905-1	AACGATGTACGTGCAGGTTTGCTGCTGGATGCGTTTGATGGTGGAGCCT TTAGGCCCGACTACCAGCCCCACCACGCGGTATGGCACTCTCACCTGAA TGGT	LG16:24403958- 24404059	-
cac-mir-1905-2	CACGATGTAGGTGTGGGTCTGCTGCTGGATGCGCTTGATGGTGGCCCCT TTGGGACCTACAACGAGCCCCACCACACGGTAAGGCACCCGCACCTGG ATGGT	LG3:5431636- 5431737	-
cac-mir-1905-3	CACGATGTAGGTGTGAGTCTGCTGCTGGATGCGCTTGATAGTCGCTCCC TTTGGTCCAACAACTAAACCAACT	LG17:14689748- 14689820	+
cac-mir-190a-1	GGGCTCTGTCTGATATGTTTGATATATTAGGTTGTTATTCAGTCCCAACT ATATATCAAACATATTCCTACAGTGTCCCG	LG3:37443038- 37443117	+
cac-mir-190a-2	GGGCTCTGTCTGATATGTTTGATATATTAGGTTGTTATTCAGTCCAACTA TATATCAAACATATTCCTACAGTGTCCC	LG6:24299041- 24299118	-
cac-mir-190b	AGAAGCTGTGTGATATGTTTGATATTCGGTTGTTCTTGTGCTTCATCGTG TCAACTAAATATCAGACATATTCCTACAGAGTCTGGCAAAA	LG16:21893141- 21893231	+
cac-mir-192	ACACAAGGGGATGACCTATGAATTGACAGCCAGTGATCGTAACATTTG CCTGTCAGTTCTGTAGGCCACTGCTGTGTTGTCCATCTGACTG	LG14:9134974- 9135064	-
cac-mir-193a	AGTTAGATGCTGGGTCTTTGCGGGCAAGGTGAGTCCTCACTTCGTTCAA CTGGCCTACAAAGTCCCAGTTTCTGGCT	LG1:24202776- 24202852	-
cac-mir-194a	GCTCGCTGGATGTAACAGCAACTCCATGTGGAAGCTGTGAGTGTTCCAG TGGAGGTGCTGTTACCTGCAGAG	LG14:9135142- 9135213	-
cac-mir-194b	GCCTTGTCTGTGGGTCTCACCAGCTGTAACAGCATCTCCATATGGAACA ACTCTGGCTTCCAGTGGAGCTGCTGTTATCTGTGGTGGGACACCTCTTG	LG10:23391190- 23391287	-
cac-mir-196a-1	TCGAGTGGTTTAGGTAGTTTCATGTTGTTGGGGGTCCATTTCTAACTCTGC AACATGAAACTGTCTTAATTGCCCCAG	LG11:19356718- 19356794	-
cac-mir-196a-2	GAAGCGTGGTTAGGTAGTTTCATGTTGTTGGGGTTGGCTTCCTGGCTCG GCAACAAGAAACTGCCTTGATTACGTCAGTTCGTCTTCATCAAGGGCAC AAT	LG7:22062661- 22062761	+
cac-mir-196b	CTGTGTGATGTAGGTAGTTTCAAGTTGTTTGGGCTGGATGTTTAAGAAC ACAGGAACCTGAACTGCCCTGAATCACACCGACCTCAACTGCACAGAG GAAA	LG8:18332982- 18333082	-
cac-mir-196d	TTGAGTGGTTTAGGTAGTCTCATGTTGTTGGGCTTTTATATTTCTCCCAC AACACGAAACTGTCTTGATTACCACAGT	LG16:17946285- 17946362	-
cac-mir-199-1	AGCCCGCCTGCCCAGTGTTCAGACTACCTGTTCAGGAAGTAGTGGTTGT ACAGTAGTCTGCACATTGGTTAGGCTGGCCGG	LG12:11666948- 11667028	-
cac-mir-199-2	CCCCCGCCTGCCCAGTGTTCAGACTACCTGTTCATCAGGTTACAGCTGA ACAGTAGTCTGCACATTGGTTAGGCTGGGCTG	LG8:19542342- 19542422	+
cac-mir-199-3a	GCTCCGTCTACCCAGTGTTCAGACTACCTGTTCATTGTCATACTGGTGTA CAGTAGTCTGCACATTGGTTAGACTGGGCAT	LG17:6603714- 6603794	-
cac-mir-199-3b	GCTCCGTCATCCCAGTGTTCAGACTACCTGTTCAGGATCTTACTGGTGT ACAGTAGTCTGCACATTGGTTAGACTGTGCAA	LG4:29844093- 29844173	+

cac-mir-19a-1	GTTCTCTGCTAGTTTTGCATAGTTGCACTACAAGAATAGATGAGTTGTG CAAATCTATGCAAAACTGATGGTGGCCT	LG3:26485865- 26485941	+
cac-mir-19a-2	GTTCTCTATTAGTTTTGCATAGTTGTACTGCAAGAAGAATTGAGTTGTG CAAATCTATGCAAAACTGATGGTGGCCT	LG21:17071527- 17071603	+
cac-mir-19b-1	TCACTTGGTCAGTTTTGCTGGTTTGCATCCAGCTTTTTCTGATGTTCGCT GTGCAAATCCATGCAAAACTGACTAGGTTGA	LG3:26486210- 26486290	+
cac-mir-19b-2	GTCTCTGGTTAGTTTTGCTGGTTTGCTTTCAGCTTATCACTGTACTGCTG TGCAAATCCATGCAAAACTGATCATAGAAC	LG21:17071813- 17071892	+
cac-mir-19c	GTTTACAGCCAGTTTTGTTGGTTTGCTCTCAGCTGTTGCCAGTCTCTGCT GTGCAAATCCATGCAAAGCTCTCTGTGTCTCA	LG10:4338682- 4338763	+
cac-mir-19d	GATCCTGGCCAGCTTTGCAGGGTCGGCAGTCAGCCTGTGTACTCTAGGT GCCGCTGTGCAAACCCATGCAAAACTGACCATGGCCA	LG10:28713961- 28714046	-
cac-mir-200a	TCTCAGGATCCATCTTACCTTACAGTGCTGGATTGTACTTATGTGGTTCT AACACTGTCTGGTAACGATGTTTCCTGGGT	LG7:13021182- 13021261	+
cac-mir-200b	TGATTATCTCCATCTTACGAGGCAGCATTGGATACTCATCACTCTCTA ATACTGCCTGGTAATGATGATGATAGTCAT	LG7:13020998- 13021077	+
cac-mir-202	CTGTTCCTTTTTCCTATGCATATACCTCTTTCAGATGTCACTTTAAAGAG GCATAGGGCATGGGAAAATGGGGCTGCAGAGGTTTTCCGCC	Ice_Fa_000412F :424132-424222	+
cac-mir-203b	CCTCTGATTAAGTGGTTCTCAACAGTTCAACAGTTCTTACAAAAATTG TGAAATGTTTAGGACCACTTGACCAGTCAGA	LG22:16832204- 16832283	+
cac-mir-204-1	GCCCGTGGGCTTCCCTTTGTCATCCTATGCCTGGAGCTCGGTTAAGGCA GGGACAGCAAAGGGATGCTCAAATGTCACCAAAGACTTCACT	LG6:24937925- 24938015	+
cac-mir-204-2	ACCAGTGGGTTTCCCTTTGTCATCCTATGCCTTGAGCTGTGTAAGGCAG GGACAGCAAAGGGAGGCCCAGCCGTCACTACCTTCAGCTTTA	Ice_Fa_002768F :3032-3122	+
cac-mir-204-3	ACCTATGGACTTCCCTTTGTCATCCTATGCCTGGACTCATACAAAAGGG GCTGGGAAGGCAAAGGGACGGCCAGTCGTCACACAAGCGTCT	LG9:36657568- 36657658	+
cac-mir-205-1	ATGTGTTCTATCCTTCATTCCACCGGAGTCTGTATCTGCATCCAACCAG ATTTCAGTGGTGTGAAGTGTAAGAGACATGGGG	LG7:38173290- 38173371	+
cac-mir-205-2	ATGTATTCTATCCTTCATTCCACCGGAGTCTGTGTAAAGTGCCAATCAG ATTTCTGTGGGTTTGAAGAGTAAAACACATG	LG5:12875409- 12875487	-
cac-mir-206-1	CTTGTGAGGACATGCTTCCTTATATCGCCATATTAATTCACCACTTATGG AATGTAAGGAAGTGTGTGGGTTTCAATG	Ice_Fa_000312F :265355-265431	+
cac-mir-20a-1	TCGGTAGTATTAAAGTGCTTATAGTGCAGGTAGTTGTATGCATTTCTAC TGCAGTGTGAGCACTTGCAGTACTCCTA	LG21:17071688- 17071764	+
cac-mir-20a-2	TCAGCAGTGCTAAAGTGCTTATAGTGCAGGTAGTGTCTTTCTCCTATCT ACTGCAATGTAAGCACTTAAAGTACTTCTAAC	LG3:26486074- 26486154	+
cac-mir-20b	CTGGTAGTCCCAAAGTGCTCACAGTGCAGGTAGTACTCACTGACCTACT GCAGTTTGTGCACTTCAGGTGCTGCCGGTCACCTTCCCTCAC	LG10:4338559- 4338649	+
cac-mir-210	AAAAGCAGGTAAGCCACTGACTAACGCACATTGTGCCAGTTGACAATT CCACTGTGCGTGTGACAGCGGCTAACCTGGTTTT	LG6:18152801- 18152882	+
cac-mir-21-1	GCCTGTCAGATAGCTTATCAGACTGGTGTTGGCTGTTAACGTTGCAAGG CGACAACAGTCTGTAGGCTGTCTGACATTTC	LG14:29216399- 29216478	-
cac-mir-21-2	CTGCGTCAGCTAGCTTATCAGACTGGTGTTGGCTGTTATATTTAAAAGG CAACATTGGTTTGTAAGCTGGCTGAAGTCTG	LG13:35444789- 35444868	+
cac-mir-212-1	GTGCATCAATACCTTGGCTCTAGACTGCTTACTGCTAAAACTCCTCCAA AGTACAGTAACAGTCTACAGTCATGGCTACTGACGT	LG13:18746823- 18746907	-
cac-mir-212b	GAGCATCAGCACCTTGGCTTTAGACTGCTTACTGCTTATACAGCGTTGC AGTACAGTAACAGTCTACAGTCATGGCTACTGAAGC	LG14:22162343- 22162427	+
cac-mir-214a	GCAGTGTGTCTGCCTATCTACACTTGCTGTGCAGAATATCCTCCAACCT GTACAGCAGGCACAGACAGGCAGATAGACA	LG17:6602196- 6602274	-
cac-mir-214b	GTGATGTGTCTGCCTGTCTACACTTGCTGTGCAGACCTTCTGCTCCTGTA CAGCAGGCACAGACAGGCAGACAGATG	LG4:29846779- 29846855	+
cac-mir-216a-1	IGTTTTGGTGAAATCTCAGCTGGCAACTGTGAGTCGTTCACTAGCTGCT CTCACAATGGCCTCTGGGATTATGCTAAACGCAG	LG15:20465579- 20465661	+

cac-mir-216a-3	TGGTCCAGTTTAATCTCAGCTGGCAACTGTGAGCTTTGAACGCCTCACA GAGCCGGCTAGGGTTCTCCTGAACGCAGCACCATCATTTCCT	LG1:36596133- 36596223	-
cac-mir-216b-1	GAGGACTGGGTAATCTCTGCAGGCAACTGTGATGGTGCTTTATATTCTC ACAATCACCTGGAGAGATTCTGCAGTTTAGTC	LG15:20464861- 20464941	+
cac-mir-216b-2	GTCGCCTTGTTAATCTCTGCAGGCAACTGTGATGTCACGTTTTCTCACA ATCACCTGCAAAGATGATCCAGTCGCTCTGCTCAGACCAGCA	LG1:36596298- 36596388	-
cac-mir-217a	ATGTGGATGATACTGCATCAGGAACTGATTGGCTGATGCTCAATAGCCA ACAGAACCTGATGCATTGCCTTCAGCATCA	LG15:20466090- 20466168	+
cac-mir-217b	ATGTTGAAGATACTGCATCAGGAACTGATTGGAGAGCGATGAGGCCAT CAGCTCCTGATGCAATGCCTTCAGCATTAAAAGACACTTCCCC	LG1:36594737- 36594827	-
cac-mir-2184	CTCAGCCCTGAACAGTAAGAGTTTATGTGCTGTTGTTAATCTGTCAGCA CATGAGCTTTTACGGTGCAGGGAAGCAGACGACCAACATCTT	LG14:22164003- 22164093	-
cac-mir-2187a	GGAAGATCTGATTGATGATTCTGGCTTTAATTAGTATAGCCTGTTTTAG TGATATCAGCAATTCTTTACAGGCTATGCTAATCTGTGCCAGAATTAGC AATGCAATTGGAACGGACGCA	LG15:25192894- 25193012	-
cac-mir-2187b	TGAGGAGATGTGATGGTTCTGGCTTTAATTAGTACAGCCTGTATTAGTA ATGTCATCTATTCTTTACAGGCTATGCTAATCTATGCCAGAACCAGCAA TGCAATGGGAGACAGAAC	LG19:1662919- 1663034	+
cac-mir-2188	TGGTGTGGGAAAGGTCCAACCTCACATGTCCTGTGCGGCTGAAGGAAG	LG9:35226710- 35226789	-
cac-mir-218a-1	CAGCTGTCTCTTGTGCTTGATCTAACCATGTGGCCCCGCCTACTGTGGC ATCACATGGTTCCGTCAAGCGCCAGGGACCGCCGAGCACACT	LG10:29435375- 29435465	+
cac-mir-218a-2	GGTTGTTCCTTTGTGCTTGATCTAACCATGTGGCTGCAAGGTTCCTAAA GTGGAACATGGTTCCGTCAAGCACCATGGAACGGC	LG1:21010467- 21010550	+
cac-mir-218b	CAGGACCCCATTGTGCTTGATCTAACCATGCAGTGTATCTTCTGTCCAT GGTTCTGCCAAGCACCTTGGAGGCTTGTGAGCACTCTCGGCA	LG12:14063738- 14063828	-
cac-mir-219-1	CTCTAGCTGCTGATTGTCCAAACGCAATTCTTGTTACATTTAATCCAAC CCGAGAATTGTGCATGGACATCTGTTGCTTGACGCTCGTGC	LG9:3032198- 3032288	-
cac-mir-219-2	AGTCTGGCGTTGATTGTCCAAACGCAATTCTTGTGTTGATTCTCCATATC CAGGAGTTGTGCATGGACATCTTGCCTCAGACTCTCATTTA	LG16:18536377- 18536467	+
cac-mir-219-3	CTTTAGCGACTGATTGTCCAAACGCAATTCTTGAGTAAACTCAAATTCA ACCCCAAGAATTGTGTATGGACATCTGTTGCTGCAGACTCAC	LG12:15027720- 15027810	-
cac-mir-219-4	GGTCCGGAGCTGATTGTCCAAACGCAATTCTTGCGTCTGCCTTTGTGAA ACCAGGAGTTGTGCATGGACATCACGCCCCTGACCTCTGAAA	LG11:7309399- 7309489	+
cac-mir-2196	GTGCATGTCGGGGTAGTTGCTGCGGATGTTCCTCTCTGTGCTCCCGTTC GGGACCGTCCCAAAGCGAAAAGGAGGATAATGCTCATGTGGTTTCTGG AACTGTAGGAAGACA	LG19:11335126- 11335237	-
cac-mir-221a	TTTGTCCTGAACCTGGCATACAATGTAGATTTCTGTGTGGTTTATTTCTA CAGCTACATTGTCTGCTGGGTTTCTGGCTAGCA	Ice_Fa_003231F :26032-26114	-
cac-mir-221b	TGAGGTTTGAACCTGGCATACAGTGTAGGATGCTGTGTGTG	LG2:6896178- 6896259	-
cac-mir-222a	TGCTGTCAGTTGCTCAGTAGGCAGTGTAGATCCTGTGTAGAAATCAGCA GCTACATCTGGCTACTGGGTCTCTGACGGCTCTG	Ice_Fa_003231F :26824-26906	-
cac-mir-222c	GCCCAGCAGTTGCTCAGTAGTCAGTGTAGATCCTGTGGGGGCTGGCAGC AGCTACATCTGGCTACTGGGTCTCTGCTGGCATCC	LG2:6896411- 6896493	_
cac-mir-223	CCCCACTTCGTGTATTTGACAAGCTGAGTTTGACACTCTTGTTTCGCTGA GTGTCAGTTTGTCAAATACCCCAAGTGAGGTGT	LG14:6538352- 6538434	-
cac-mir-22a-1	GACCTACAGCAGTTCTTCACTGGCAAGCTTTATGTCCTCATGTACCAGC TAAAGCTGCCAGCTGAAGAACTGTTGTGGTCGGC	LG13:27228880- 27228962	-
cac-mir-22a-2	GACACACAGCAGTTCTTCACTGGCAAGCTTTATGTTCCTGTACACATGC TAAAGCTGCCAGCTGAAGAACTGCTCTGGTCTG	LG14:21486247- 21486328	-
cac-mir-22b	GCCTCACAGTCGTTCTTCACTGGCTAGCTTTATGTCCCACGCCCCACACT AAAGCTGCCAGTTGAAGAGCTGTTGTGTGC	LG9:34049271- 34049350	+
cac-mir-23a-1	GTGGTGGGGAGGGTTCCTGGCACCGTGATTTGATGCACAAAGAGAAAC AAAAATCACATTGCCAGGGATTTCCACTCCTTCACAG	LG4:39604012- 39604096	-

cac-mir-23a-2	GATGGCCAGGGGAATTCCTGGTAGAGTGATTTTTGAGACTACAGGACT GAATCACATTGCCAGGGATTTCCAATGGCTGACA	LG8:22605266- 22605347	-
cac-mir-23a-3	TTAGCTGGAGGGATTCCTGGCAGAGTGATTTGGTTGTGATGTCATGTAA ATCACATTGCCAGGGATTTCCAACCAGCTACA	LG17:22723991- 22724071	-
cac-mir-23a-4	CCCAGTGTGTGTGTGGTGATGAAACAGAAAAAGAGTCTGGTGCATATG GCAGCTATCTGGCTTAATTGCCAGGGATTTCCATTCCCATCGC	LG2:6958299- 6958389	-
cac-mir-23b-1	GTGAGGGTCTCTGGCATGATGATTTGGGACAGAAAACGAAAATCACAT TGCCAGGGATTACTACACTGCTG	LG12:23509140- 23509210	+
cac-mir-23b-2	GAGACGGTCTTGTTCTTTCATGTCTGGGCTGTGAGGGTTCCTGGCGTGC TGATTTGTGATTTATGATAAAATCACATTGCCAGGGATTACCACAACCC TGA	LG9:19563022- 19563122	+
cac-mir-24-1	GATTACTCCCAGGAAACATCTGGCCTCCCTCTGGTGCCTTCTGAGCTGA GCGCAGTTAGATCTCCACACACTGGCTCAGTTCAGCAGGAACCGGAGT CACG	LG12:23510684- 23510784	+
cac-mir-24-2	TCAGTCTCCTGTGCCTGCTGTGCTGATAATCAGTGTGTGATGTCGGCTG GCTCAGTTCAGCAGGAACAGGAGACTGGT	LG8:22603570- 22603647	-
cac-mir-24-3	TGGCTTCCTGTGCCTACTGAACTGATTAACAGTCCTACAGAACCACTGG CTCAGTTCAGCAGGAACAGGAGTCCAG	LG9:19569675- 19569750	+
cac-mir-24-4a	TACCTTCCCGTGCCTACTGAACTGGTATCAGTGTTTTACCAAAAAAACT GGCTCAGTTTCAGCAGGACCAGGAGTGAAGTCCACTTTCAACCACATGT GAC	LG4:39600098- 39600198	-
cac-mir-24-4b	TGTACTCTTGTGCCTACTGGACTGGATTCAGTGTGTCTCTGCAAAACTG GCTCAGTCCAGCAGGAACAAGAGTGACT	LG17:27201815- 27201891	-
cac-mir-24-6	CAATCTCCTGTGCCTACTGAGCTGATAACAGTTTGATGTTAAACAAAC	LG17:22722005- 22722084	-
cac-mir-25	TGGTGTTGAGAGGCGGAGACTTGGGCAATTGCCGGCCATACCAGAGGG CATTGCACTTGTCTCGGTCTGACAGTGCCGGC	LG10:28713761- 28713840	-
cac-mir-26a-1a	CTGGGTCTGTTTCAAGTAATCCAGGATAGGCTTGTTAAAGTGGGGAAA GCCTATACGGGATGACTTGGTTCAGAAACAAGG	LG21:10818639- 10818719	+
cac-mir-26a-1b	CTGGGCCTGATTCAAGTAATCCAGGATAGGTTTGTTCAGACAAGCAAA GCCTATTCCGTATGACTTGATTCAGGAACGCTA	LG2:3487349- 3487429	+
cac-mir-26a-2	TGTGATCCAGTTCAAGTAATCCAGGATAGGCTGTGTGTATCCTGATTGG CCTATTCATGATTACTTGCACTGGGTGGCAGC	LG17:9186821- 9186901	+
cac-mir-26b	CTCTGCCTGGTTCAAGTAATCCAGGATAGGCTGGTTAACTCTGGCACGG CCTATTCTTGATTACCTGTTTCAGGAACTGGC	LG7:33407907- 33407987	+
cac-mir-27a	ATGGAGGGGCAGGACTTAGCTTGCTCCGTGAACAGTGCAGTTGAAGCC TGTGTTCACAGTGGCTAAGTTCCGCTCCTCACAAG	LG17:22723484- 22723566	-
cac-mir-27b	CAGCCAGGCACAGAGCTTAGCTGATTGGTGAACAGTGATTGAT	LG9:19563482- 19563563	+
cac-mir-27c	TTGCGGCAGCAGGACTTAGCCCACATGTGAGCAGTGAGTG	LG8:22605049- 22605128	-
cac-mir-27d	CTGCTGTTTCTGATCAGGTGCAGAGCTTAGTCGACTGCTGGACAGGGAG TCTCAGCAATTTGTTCACAGTGGCTAAGTTCTTCACTTGTGC	LG12:23509392- 23509482	+
cac-mir-27e-1	CTAAAGGCACAGAGCTTAGCTAATTGGTGAGCATTGATCCCTGCTATGT GTTGTTCACAGTGGCTAAGTTCAGTGCCTGAGGTG	LG4:39603464- 39603547	-
cac-mir-27e-2b	TTTCTGAAGATGCAGAACTTAGCTCATTAGTGAGCATTGAAACAAAC	LG17:27202143- 27202228	-
cac-mir-2985-1a	GCTACGCCGAAAGGATCCTCATTAAGGTGGGTGGAATAGTATAACAAT GTGTCCAATGTTGTTATAGTATCCCACCTACCCTGATGTAGCTTTGCTTA TTT	LG10:30161300- 30161400	+
cac-mir-2985-2b	AAGGCTCACAGTTAAGGTGGGTGGAATAGTGTAACAATAGAAGACAGT AACAAAGCTGATACTGTCCTATTGCTGCAATATTCCACCTACCCTGCTG TGCCTTTTATACTTC	LG13:29395312- 29395423	-
cac-mir-2985a	GCGACGCCCAAAGGCTCAGCATTAGGGTGGGTGGAATAATATAACAAT ATCCTCCCTGTTGTTATAGTATTCCACCTACCCTGATGTCCCCCTTGTTT	LG10:11512999- 11513095	-
cac-mir-2985b	ACCTAAAGGCTCTGCATTAGGGTGGGTGGGATAATATAACAATATCCTC CATGTTGTTATAGTATTCCACCTACCCTGATGTTTTCTTTTGCCA	LG14:28054216- 28054309	-

cac-mir-29a-1	TCTCCAGGGAACTGGTTTCGGATGGTGTTTTAGAGTGTAACATATGATC TAGCACCATTTGAAATCGGTGTTCTTGAG	LG5:13035688- 13035765	+
cac-mir-29a-3a	CCCTTGGAAGCTGGTTTCATGTGGTGGCTTAGAGTCTCATCATCTATCT	LG7:38610704- 38610780	-
cac-mir-29a-3b	CTAAAAGATGACTGATTTCTCCTGGTGTTTAGAGCCCGCTGCAGCCTTC TAGCACCATTAGAAATCGGTTATAAAACTGTG	LG23:19621638- 19621718	+
cac-mir-29b-1a	CCCCCAGAAGCTGGTTTCCCATGGTGGATTAGATGTTCCCATTGTCTAG CACCATTTGAAATCAGTGTTCTTGGCGA	LG23:19621492- 19621568	+
cac-mir-29b-1b-1	CCCTTGGAAGCTGGTTTCATGTGGTGGCTTAGAGTCTCATCATATATCT AGCACCATTTGAAATCAGTGGTCTTGGGGT	LG7:38604864- 38604942	-
cac-mir-29b-1b-2	CCCTTGGAAGCTGGTTTCATGTGGTGGCTTAGAGTCTCATCATATATCT AGCACCATTTGAAATCAGTGGGTCTTGGGG	LG7:38608321- 38608399	-
cac-mir-29b-2	ACCAAGGCTGACCGTTTTCGTCTGGTGTTCAGAGTTTCCATCATGTCTA GCACCATTTGAAATCGGTTACAATGTA	LG5:13036020- 13036095	+
cac-mir-29b-4	CACTCAGAAACTGATTTCATTTGGTGACGTAGATGTTTGTACCCAGTCT CTAGCACCATATGAAATCAGAGTTCTGGGAGGT	LG6:28927436- 28927517	-
cac-mir-301a	GTTGGCAGGTGCTCTGACTTCATTGCACTACTGTATCAGACAGCTAGCA GTGCAATAGTATTGTCAAAGCATCTGAAAAC	LG14:5442428- 5442507	-
cac-mir-301b	GAGGTCAGCTGCTTTGACGATGTTGCACTACTGTACCATCCTAAAGCAG TGCAATAGTATTGTCATAGCATCCGGCCTT	LG9:1604473- 1604551	-
cac-mir-301c	AGAGTCAGCTGCTTTGACAATGTTGCACTACTGTACCATCCAT	LG12:14132784- 14132864	-
cac-mir-30a	AGTTTGGGGCTGTAAACATCCCCGACTGGAAGCTTTTTATCCACAGAGC TTTCAGTCCGATGTTTGCCGCTGCCGACTGC	Ice_Fa_000685F :92951-93030	-
cac-mir-30bb	ACTCAGTCCATGTAAACATCCTACACTCAGCTGTGAGAGGCTGAGGGA AGGTTGTTTACTTGGACTGGCTGGA	Ice_Fa_000685F :92776-92848	-
cac-mir-30c-1	TTATAGGCAGTGTAAACATCCTACACTCTCGGTGTCTCCCCCTGGTGGC CGGGAGGGGGTATGTTTATTCTGCCTGGCTCAGGAACTCAAC	LG15:7695779- 7695869	+
cac-mir-30c-2	TCTCCAGGCATGTAAACATCCTACACTCTCAGCTGTGTTATCATGGAGC TGGGAGAAGGGTGTTTACCCTCCTGGTGATA	LG11:11863439- 11863518	+
cac-mir-30e-1	AGGTGCTGTAAACATCCTTGACTGGAAGCTGGGGTTAGACAGCGTGAG CTTTCAGTCGGATGTTTGCAGCATCTTATTG	LG11:11863113- 11863191	+
cac-mir-30e-2	GGCTACTGTAAACATCCTTGACTGGAAGCTGGTGTTTGGTTCTTGGGCT TTCAGTCGGATGTTTGCAGCAGCCAACTG	LG15:7691932- 7692009	+
cac-mir-31	CCAGGAAGGAAGGCAAGATGTTGGCATAGCTGATGAAGTTAAAACCCT GCTATGCCACCACATTGCCATCTTTCTCCCCCCCTCTGCAGCAA	LG18:7892411- 7892501	-
cac-mir-338-1a	TGCTTCCTGGAACAATATCCTGGTGCTGCCTGAGTGATCCTCACAGACT CCAGCATCAGTGATTTTGTTGCAGGTGGT	LG19:5395655- 5395732	-
cac-mir-338-1b	CTCTCCCTGCAACAACATCCTGGTGCTGCCTGAGTAATTGTCACAAACT CCAGCATCAGTGATTTTGTTGCCGGGGGGC	LG8:20402927- 20403004	-
cac-mir-338-2	GCCTCCTGGGAACAGCATCCTGATGCTGTCAGGGTGTGTGAAGCAGAA CTCCAGCATCAGTGATTTTGTTGCCAGGGGG	LG19:22095349- 22095427	+
cac-mir-33a-1	GGTGGCTGTGGTGCATTGTAGTTGCATTGCATGGTCCTGATGACGAGTG CAATGTGTCTGCAGTGCAACACAGAGGCCTC	LG8:27616571- 27616650	-
cac-mir-33a-2	CAGAGCTGTGGTGCATTGTAGTTGCATTGCATGTTGGGTAACTCCGTGC AATGGATCTGCTCTGC	LG19:22527441- 22527516	-
cac-mir-33b	CAGAGCTGTTGTGCATTGTAGTTGCATTGCATGTGTGTCTCAGCGGAGT GCAATGTTCCTGCAGTGCAACACAGAGCTGGC	LG8:18223309- 18223389	+
cac-mir-34a	GGTGTTTCTCTGGCAGTGTCTTAGCTGGTTGTTGTGAGGAGTGAAAACG AAGCAATCAGCAAGTATACTGCCGCAGAAACTCTTC	Ice_Fa_000343F :226310-226394	+
cac-mir-3618	AATGCATTGTTGATTTCCAATAATTGAGACAGTGATTCTGAAAGCTGTC TACATTAATGAAAAGAACAATGTAGACAGCT	LG9:41067940- 41068019	+

cac-mir-363	TGACATTGCTGCTTGTCTCGCTGTTTTCGGGTGGATGACTTCACAATTTC AATACTCGAAAAAATTAGAAATTGCACAGTATCCATCTGCAAGCCGCC AGA	LG10:4338916- 4339016	+
cac-mir-365	GGGAGAGAGAAAAAGGCAGCAAGAAAAGTGAGGACTTTTAAGGGCAG CTGTGTTTTATTAACCCAGTCATAATGCCCCTAAAAATCCTTATTGCTCT TGCA	LG1:24200163- 24200263	-
cac-mir-375	GTATTTGCTTCACGTTGAGCCTCACGTACAATACCTGAAGATTAAGTTT TGTTCGTTCGGCTCGCGTTACGCAGGTACG	LG21:12224058- 12224136	+
cac-mir-429	TCCTTCCAGCCTGTTGATAGGCGTCTTACCAGACATGGTTAGATGTAAT TATTGGTGTCTAATACTGTCTGGTAATGCCGTCCATTAAATG	LG7:13022488- 13022578	+
cac-mir-449	ATGCTCATATTGTGGGTGGTTGGTAGGCAGTGTCTTGTTAGCTGGTTTG TTCTTTGCGTGCCAGCTTACCTGCTGCTGCCCCCCAACTTTCCATTCAAA CCCAC	LG9:17977903- 17978006	+
cac-mir-451	GGGGGCCGTCAAACCGTTACCATTACTGAGTTTCAGTTAGGGTAAGGGT TATACGGCCCTCGC	LG14:11099605- 11099667	-
cac-mir-454b	ACGCACCCCTATGTTGCCTCTGCTTTCAATAGAGTCAACAGAGTAGTGC AATATGGCTTAGGGTCTTGACTCTGAGGGGGGGGTCGTCTCT	LG9:1599902- 1599988	-
cac-mir-455a	GATGTGAGGGTATGTGCCCTTGGACTACATCGTGGAACCCAGCACCAT GCAGTCCATGGGCATATACACTTTCCTCAAGG	LG9:14598393- 14598472	-
cac-mir-455b	GGCGTGAGGGTATGTGCCCTTGGACTACATCGTGGAAGCCAGCACCAT GCAGTCCATGGGCATATACACTTGCCTCATGG	LG12:1228182- 1228261	+
cac-mir-456	AGGCAGCTGCTGGCTCTGTGAGCAGGCATCTTCCCAGCCTACATGTAGA TCCAGGAATCTGCAGGCTGGTTAGATGGTTGTCACATGTCTG	LG15:1466389- 1466479	+
cac-mir-458	TGCAGACGGCAGCGCCATTTTCAGAGCTATCAGTGTGAAAGTGATCAT AGCTCTTTAAATGGTACTGCTGTCGGTAT	LG10:37571761- 37571837	+
cac-mir-459	CGTGTCGCTGTCAGTAACAAGGATTCATCCTGTTGTGACTCTGCA	LG2:5672106- 5672150	-
cac-mir-460-1	CTTTACAGTTCCTGCATTGTACACACTGTGCGTATAAGTGACTTAAGCA CAGCGCATACAATGTGGATGCTGTGCTA	LG17:21784965- 21785041	-
cac-mir-462	GGTGGGATTGTAACGGAACCCATAATGCAGCTGTAATTCTGAGCTCCA GCTGGTTATAGGCTCCGTTTCCATCCCATGATG	LG7:15851978- 15852058	-
cac-mir-489	GGTGGCCTGGTGGTCGTATGTATGACGTCATTTACTTCAGTGTTTGGAG TGACATCATATGTACGGCTGCTAAACTGCTAC	LG11:18260879- 18260959	-
cac-mir-499	ACGGAGGCAGTTAAGACTTGCAGTGATGTTTAGGGCAATGATCACATG AACATCACTTTAAGTCTGTGCTGGCTCTCTC	LG5:35637055- 35637133	-
cac-mir-551	TGCCTCCACAGATACATTCTGCCTGCCCTTAGAAACCAAGTGTGGGTGT GGCCGGGTTAAACACACAATGGCGACCCATCCTTAGTTTCTGAGGTCCT GCA	LG13:36890714- 36890814	-
cac-mir-7132	TTTGCCCCTGGACTTGGTCAAAGCTCCTCAGCAGAATAAGAGACTCTGA GGCGTTTAGAACAAGTGCAGGGTCCTGGA	LG1:25135918- 25135995	-
cac-mir-7133	AAATGGCTCAGATGTTGAGTATCAAACTGTATGTTGTATACGTCATATA TAGTTTGATACACAGCACAATAAGCCATTTCC	LG7:7476438- 7476518	+
cac-mir-7147	TGCCCAGTGCTGTACCATGCTGGTAGCCAGTGTGTGGTCGGCTTTGCTG GTGACCAGTGTTGTGCCTCACTGGCTGCTCAGTGGAGAGCCC	LG20:14488165- 14488255	+
cac-mir-722a	GACTGGAACAGAGTGGAATTTGAAACGTTTTAGCCAAAAATGTTTCCAT GGTCAAGGTGTTTTTTGCAGAAACGTTTCAGATTTCGTTTTG	LG1:13532886- 13532976	+
cac-mir-722b	GACTGGAACAGAGTGGAATTTGAAACGTTTTCGCCAAAAATGTTTCAAT GGTCAAGGTGTTTTTTGCAGAAACGTTTCAGATTTCGCTCCG	LG8:19731018- 19731108	+
cac-mir-723a	GCTGGTCTATAAAGGCATGGATAAAGGCAGTTTTGATGATGTTACTTCT TTTATTTTTAAGAAGACATCAGATAAATCTGTGCTTATCTTT	Ice_Fa_000509F :337262-337352	+
cac-mir-723b	CCCATATACTACGGCAAGGATAACGGCAGCTTTGTATGATGTTACTTCT GACATATCGGAGAAGACATCAGATAAATCTGTGCTTATCCTT	LG8:7011400- 7011490	-
cac-mir-724a	AGACTGGATTTAAAGGGAATTTGCGACTGTTAGTCAAAACATTAGAAC AGCCACACCTTCCTTTTAAGATCTTGCCTGCTG	LG5:31878431- 31878511	-
cac-mir-724b	AGACTGGGTTTAAAGGGAATTTGCGACTGTTAATCAAACCTTTCGAACA GCCACACCTTCCTTTTAAGATCTTGTCTGCTG	LG7:3006957- 3007037	+

cac-mir-725-1	TTATCCGCACAGCTGGAAACTTTGCCTGGGTATTTATGTGCTTAAAATT TCAGTCATTGTTTCTGGTCGTGTGTGTAAG	LG4:27912239- 27912317	-
cac-mir-726	TGTTTCGAGGGTAGGTCTGGAATTCCGCTAGTTCTGAACTATTCATGGT TGGTAAAAGTTCTCTACTAGCAGAACTCGGATTTGCTCCCGACTAGCGA CGG	LG5:35909231- 35909331	-
cac-mir-727a	TTTCAGTCTTCAGTTCCTCCCAGCCCATAACTATGGCAGAAGTGTGTTG AGGCGAGTTGAATACTTAAAGCGCTGCA	LG20:11563739- 11563815	+
cac-mir-727b	ACTGAATGTCCTGTATGTCATTTTCAGTCTTCAATTCCTCCCAGCCCGTT ACTATGGAAACTGTGAGTTGAGGCGAGTTGAAGACTAAAAATGCTGTA CAGATACAAGGAA	LG17:7384846- 7384956	+
cac-mir-728a	GCCCTGGGGAAATGTAGTTGACTTAAAGTATACGTGTGGAACCAGAGA GTATACTAAGTACACTACGTTTAT	LG20:11565444- 11565515	+
cac-mir-728b	TTTTGCGCTCATGAGAAAATGTAGTAGACTATAAGTATACCTGAACATG TACGTATACTAAGTATACTACGTTTACTCAAGAGTGGCGTCTTC	LG17:7390537- 7390629	+
cac-mir-730	TGTTCAGGCCTCCTCATTGTGCATGCTGTGTGTATTTCTGTGAGTACCAC ACAGCGCCTGCAATGTGGAGGCTGAGACACGCAGAGACGCCTCACACA CAC	LG18:14296988- 14297088	-
cac-mir-731	GCTTTTCCTCAATGACACGTTTTCTCCCGGATTGCTGAGAACAGGAAAC GCAACCGGGAATTTCGTGTCAGCAAAGAATGACA	LG7:15851506- 15851588	-
cac-mir-734	CCTCACCGCGCTGCCTTTGATTTCAAGAGCTGAACTATTCTGCAACATT TGTTGATGTGGTCCTGCAAGTAAATGCTGCAGAATTGTGCTCCTCTTGG AAT	LG21:14805856- 14805956	+
cac-mir-736	GCAGATCAGCTTTTTGTTTGTGTTATGTTCCTACTAAAATGTAAGACGA ACAAAAAGTGTGTCTGTTAGAT	LG17:12203394- 12203464	-
cac-mir-737	CTCCTCTGTTGTTTTTTAGGTTTTGATTTTTGTAAGCGCTAAATGAGAA AATCAAAACCTAAAGAAAGTCCAGCGCTGAC	Ice_Fa_004695F :7602-7682	-
cac-mir-7552a	TCTCTTTTCTTTACAATTAAAGGATATTTCTCGTGAAACATCGACACAG AAATGTATTTTAATTGTTTGGATAAGTTTAGTCCGGCTCACG	Ice_Fa_001027F :25872-25962	+
cac-mir-7552b	AGGCATAATCTTACAATTAAAGGATATTTCTCGTGACTGCAATAAAAAC GGAAATATCTCTTAATTGCTTGGTTACGTCTGTCAGAGGCAC	LG15:25894555- 25894645	+
cac-mir-7a-1	TTACGCGTTGTGGAAGACTAGTGATTTTGTTGTTGTACATTTTCGTTCAT GACAACAAGTCCCAGTCTCCCTCAGCGAGTCACGCCACCAC	LG6:6287604- 6287694	+
cac-mir-7a-3	TGGTGCTGAGTGGAAGACTAGTGATTTTGTTGTGATGCTGATCAATGAA CAACAAGTCCCAGTCTCCCTCTCAGCACAAGCAGAGCTCTTC	LG17:14995766- 14995856	+
cac-mir-7a-4	CATAGCAGCATGGAAGACTAGTGATTTTGTTGTTTTGTGATTAAGCTGA CAACAAGTCATTGTCCTCCTCACTGCTT	LG16:24839300- 24839376	-
cac-mir-7bb	TGCTGCTGTGTGGAAGACTAGTGATTTTGTTGTTTTAGTTAG	LG9:24299842- 24299932	-
cac-mir-8159	GCCCCCAGGCTCAGTAACTGGAATCTGTCCCTGCAGAGTGAAAGAGTG CAGGGCCTGGCTGGTTACTGCTCCCAGGGGCCAGGCTACTCTCCAAAG GGGCC	LG14:24804996- 24805096	-
cac-mir-9-1	TTGTCTGTTATCTTTGGTTATCTAGCTGTATGAGTGATGCACATTTTTCA TAAAGCTAGATAACCGAAAGTAACAAGAATC	Ice_Fa_000667F :118856-118936	-
cac-mir-9-2	TAGGTTGTTATCTTTGGTTATCTAGCTGTATGAGTGTTCTGCTCGTCATA AAGCTAGATAACCGAAAGTAAAAACTACT	LG9:31822425- 31822503	+
cac-mir-92a-1	CTTTCTGTGCAGGTTGGGAGAGGAAGCAATGCTCTGTACTTGTGTGGTA TTGCACTTGTCCCGGCCTGTTGAGGACATG	LG21:17071919- 17071997	+
cac-mir-92a-2	CTTCCTGTGCAGGTGGGGGATTTGTAGCAATGCTGAGTACCTGGAGGTAT TGCACTTGTCCCGGCCTGTATAGGAACGA	LG3:26486378- 26486455	+
cac-mir-93	GCTGGGTGTCAAAAGTGCTGTTTGTGCAGGTAGCAGTCATCCACCTACT GCAAAACCAGCACTTCAGGCACACGGTTC	LG10:28714207- 28714284	-
cac-mir-9-3	TTGGTTGTTATCTTTGGTTATCTAGCTGTATGAGTGATGTACATTCTTCA TAAAGCTAGATAACCGAAAGTAACAAGAATC	LG16:37207042- 37207122	-
cac-mir-9-4	TTAGTTTTTCTCTTTGGTTATCTAGCTGTATGAGTTATGTAATATCATAA AGCTAGAGAACCGAATGTACAAACTAATT	LG4:31266933- 31267011	+
cac-mir-9-5	CCTGTTACTATCTTTGGTTATCTAGCTGTATGAGTGTTAAACCTCCATCA TAAAGCTAGATAACCGAAAGTAGGAATGACC	Ice_Fa_000223F :455562-455642	+

cac-mir-9-6	TCTGTTTCTGTCTTTGGTTATCTAGCTGTATGAGTTTTAAATACAGCATA AAGCTAGATAACCGAAAGTAGAAACGACT	LG6:15993720- 15993798	+
cac-mir-96-1	CTTTGCCCATTTTGGCACTAGCACATTTTTGCTTCTGTATATATA	LG23:4351232- 4351322	+
cac-mir-96-2	CTTTGCCCATTTTGGCACTAGCACATTTTTGCTTTGTTTCTTTTCGTTTGA GCAATCATGTGTGGTGCCAATATAGGACAAGATAGGCAAT	LG6:18738868- 18738958	+
cac-mir-9-7	TTAGTTTGTATCTTTGGTTATCTAGCTGTATGAGTTTTAATTTCATAAAG CTAGAGAACCGAAAGTACGAACTGACG	LG17:15341992- 15342068	+
cac-mir-99-2	ATTTGGCACAAACCCGTAGATCCGATCTTGTGGCGAATCTGACAGCACA AGCTCGCCTCTGTGGGTCTTTGTCATCGT	LG14:5184288- 5184365	+

		Repeats	Number	Length occupied	Percentage genome (%)
	LTR	LTR	1,512	154,453	0.01
	retrotransposon	LTR/Copia	1,423	1,254,557	0.12
		LTR/DIRS	28,935	21,963,956	2.06
		LTR/ERV1	14,347	9,558,534	0.90
		LTR/ERVK	953	147,808	0.01
		LTR/Gypsy	54,611	21,218,816	1.99
		LTR/Ngaro	3,291	1,806,225	0.17
		LTR/Pao	6,780	3,393,081	0.32
		Total	111,852	59,497,430	5.58
	non-LTR	SINE	15,410	2,555,151	0.24
	retrotransposon	SINE/5S	1,996	186,954	0.02
		SINE/ID	563	47,443	0.00
		SINE/MIR	19,288	3,038,263	0.29
		SINE/tRNA	570	206,591	0.02
		Total	37,827	6,034,402	0.57
		LINE	10,421	5,399,187	0.51
		LINE/CR1	3,384	1,119,014	0.11
		LINE/I	8,488	2,563,237	0.24
		LINE/Jockey	5,508	1,365,271	0.13
		LINE/LI	8,227	3,347,285	0.31
		LINE/L2	100,525	40,927,414	3.84
Transposable		LINE/Penelope	1,301	284,035	0.03
element		LINE/PI0102	2,374	16 705 101	0.07
		LINE/NEX	2,090	10,703,191	0.45
		Total	220 700	77 250 555	7.25
	DNA		116 939	25 573 600	2.40
	transnoson	DNA/Academ	3 694	896 244	0.08
	ti ansposon	DNA/CMC	13 082	3 359 603	0.00
		DNA/Crypton	9 700	2 343 498	0.22
		DNA/Ginger	601	194.239	0.02
		DNA/Harbinger	2.760	1.440.879	0.14
		DNA/hAT	332,737	93,810,547	8.80
		DNA/Kolobok	8,025	2,297,447	0.22
		DNA/Maverick	10,958	3,101,964	0.29
		DNA/Merlin	291	111,556	0.01
		DNA/MULE	250	19,659	0.00
		DNA/Novosib	2,194	641,603	0.06
		DNA/P	4,543	2,087,502	0.20
		DNA/PIF	32,016	12,688,102	1.19
		DNA/PiggyBac	7,135	2,199,829	0.21
		DNA/Sola	484	201,769	0.02
		DNA/TcMar	15,385	7,248,703	0.68
		DNA/Zisupton	889	198,058	0.02
		RC_Helitron	2,519	2,163,670	0.20

Supplementary Table 7. Statistics for the analysis of icefish repetitive elements.

	Total	564,202	160,578,472	15.07
	Unclassified	628,836	201,836,786	18.94
Total Interspersed	1	1,563,507	505,197,645	47.41
	Small RNA	1,074	454,551	0.04
	Satellites	5,834	2,808,492	0.26
	Simple repeats	324,248	26,602,004	2.50
	Low complexity	26,275	1,647,308	0.15
Total			536,710,000	50.36

Common name	Species	Assembly/Gene model
Icefish	Chaenocephalus aceratus	This study
Dragonfish	Parachaenichthys charcoti	PRJNA330735
Bullhead notothen	Notothenia coriiceps	GCA_000735185.1
Stickleback	Gasterosteus aculeatus	BROAD S1
Platyfish	Xiphophorus maculatus	Xipmac4.4.2
Amazon molly	Poecilia formosa	Poecilia_formosa-5.1.2
Medaka	Oryzias latipes	HdrR
Tilapia	Oreochromis niloticus	Orenil1.0
Takifugu	Takifugu rubripes	FUGU 5.0
Tetraodon	Tetraodon nigroviridis	TETRAODON 8.0
Cod	Gadus morhua	gadMor1
Zebrafish	Danio rerio	GRCz10
Cavefish	Astyanax mexicanus	AstMex102

Supplementary Table 8. Genome assemblies/Gene models used in this study.

Species name	No. of coding genes	No. of gene families	No. of genes in gene families	No. of orphan genes	No. of unique gene families	Ave. No. of genes in gene families
Icefish	30,773	18,636	24,159	6,614	581	1.3
Dragonfish	32,713	21,417	26,550	6,163	429	1.2
Bullhead notothen	32,635	20,153	23,387	9,248	34	1.2
Stickleback	20,786	16,131	19,601	1,185	48	1.2
Platyfish	20,379	16,966	19,748	631	6	1.2
Amazon molly	23,615	18,019	22,488	1,127	116	1.2
Medaka	19,699	14,981	18,136	1,563	132	1.2
Tilapia	21,437	16,282	20,541	896	139	1.3
Takifugu	18,523	14,767	17,747	776	47	1.2
Tetraodon	19,602	14,835	17,783	1,819	47	1.2
Cod	20,094	15,292	18,107	1,987	72	1.2
Zebrafish	25,397	16,334	22,815	2,582	320	1.4
Cavefish	23,042	16,014	19,522	3,520	124	1.2

Supplementary Table 9. Summary of orthologous gene clusters analyzed in 13 species*.

* Species list are Supplementary Table 8.

Supplementary Table 10. Gene Ontology of expanded genes families in the icefish genome relative to the 13 species^{*}.

Category	GO_acc	Term	p-value
Р	GO:0043623	cellular protein complex assembly	6.40E-07
Р	GO:0050906	detection of stimulus involved in sensory perception	2.00E-06
Р	GO:0034622	cellular macromolecular complex assembly	2.20E-05
Р	GO:0007606	sensory perception of chemical stimulus	3.00E-05
Р	GO:0007600	sensory perception	2.90E-05
Р	GO:0006461	protein complex assembly	4.80E-05
Р	GO:0065003	macromolecular complex assembly	0.00023
Р	GO:0071205	protein localization to juxtaparanode region of axon	0.029
Р	GO:0007626	locomotory behavior	0.0092
Р	GO:0034728	nucleosome organization	0.04
Р	GO:0032507	maintenance of protein location in cell	0.04
Р	GO:0042742	defense response to bacterium	0.027
Р	GO:0065004	protein-DNA complex assembly	0.013
Р	GO:0000050	urea cycle	0.004
Р	GO:0019627	urea metabolic process	0.004
Р	GO:0071466	cellular response to xenobiotic stimulus	0.0031
Р	GO:0002460	adaptive immune response based on somatic recombination of immune receptors built from immunoglobulin superfamily domains	0.028
Р	GO:0035113	embryonic appendage morphogenesis	0.044
Р	GO:0045185	maintenance of protein location	0.04
Р	GO:0006935	chemotaxis	0.024
Р	GO:0043604	amide biosynthetic process	0.017
Р	GO:0002449	lymphocyte mediated immunity	0.0048
F	GO:0019001	guanyl nucleotide binding	9.30E-07
F	GO:0004984	olfactory receptor activity	1.80E-06
F	GO:0017111	nucleoside-triphosphatase activity	0.001
F	GO:0004053	arginase activity	0.0011
F	GO:0004190	aspartic-type endopeptidase activity	0.0014
F	GO:0070001	aspartic-type peptidase activity	0.0014
F	GO:0016818	hydrolase activity, acting on acid anhydrides, in phosphorus-containing anhydrides	0.0019
F	GO:0016462	pyrophosphatase activity	0.0018
F	GO:0005506	iron ion binding	0.002
F	GO:0005093	Rab GDP-dissociation inhibitor activity	0.004

GO:0016813	hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds, in linear amidines	0.0091
GO:0008158	hedgehog receptor activity	0.01
GO:0004617	phosphoglycerate dehydrogenase activity	0.01
GO:0035004	phosphoinositide 3-kinase activity	0.04
GO:0004842	ubiquitin-protein ligase activity	0.012
GO:0003964	RNA-directed DNA polymerase activity	0.014
GO:0003796	lysozyme activity	0.017
GO:0020037	heme binding	0.027
GO:0003779	actin binding	0.033
GO:0019787	small conjugating protein ligase activity	0.022
GO:0032549	ribonucleoside binding	0.029
GO:0016881	acid-amino acid ligase activity	0.025
GO:0005540	hyaluronic acid binding	0.016
GO:0016303	1-phosphatidylinositol-3-kinase activity	0.04
GO:0004601	peroxidase activity	0.047
GO:0034702	ion channel complex	0.029
GO:0034703	cation channel complex	0.012
GO:0005581	collagen	0.014
GO:0043232	intracellular non-membrane-bounded organelle	0.01
GO:0005577	fibrinogen complex	0.0091
GO:0005604	basement membrane	0.024
	GO:0016813 GO:0008158 GO:0004617 GO:0035004 GO:00035004 GO:0003796 GO:0003796 GO:0020037 GO:0003779 GO:0019787 GO:0019787 GO:0016881 GO:0016881 GO:0016303 GO:0005540 GO:0016303 GO:0004601 GO:0034702 GO:0034703 GO:0005581 GO:0005577 GO:0005577 GO:0005604	GO:0016813hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds, in linear amidinesGO:0008158hedgehog receptor activityGO:0004617phosphoglycerate dehydrogenase activityGO:0035004phosphoinositide 3-kinase activityGO:0004842ubiquitin-protein ligase activityGO:0003964RNA-directed DNA polymerase activityGO:0003796lysozyme activityGO:0003796lysozyme activityGO:0003779actin bindingGO:0003779actin bindingGO:0019787small conjugating protein ligase activityGO:0016881acid-amino acid ligase activityGO:0005540hyaluronic acid bindingGO:0005540peroxidase activityGO:0004601peroxidase activityGO:0034702ion channel complexGO:0034703cation channel complexGO:0043232intracellular non-membrane-bounded organelleGO:0005577fibrinogen complexGO:0005604basement membrane

* Species list are Supplementary Table 8. Abbreviations: C, Cellular component; F, Molecular function; P, Biological process

Supplementary Table 11. Gene Ontology for contracted gene families in the icefish genome relative to the 13 species^{*}.

Category	GO acc	Term	p-value
Р	GO:0046835	carbohydrate phosphorylation	1.90E-13
Р	GO:0006003	fructose 2,6-bisphosphate metabolic process	1.30E-12
Р	GO:0006000	fructose metabolic process	6.70E-10
Р	GO:0044237	cellular metabolic process	4.60E-08
Р	GO:0010467	gene expression	1.30E-07
Р	GO:0006004	fucose metabolic process	4.00E-07
Р	GO:0005996	monosaccharide metabolic process	5.20E-07
Р	GO:0044260	cellular macromolecule metabolic process	5.20E-07
Р	GO:0006066	alcohol metabolic process	1.40E-06
Р	GO:0019318	hexose metabolic process	1.50E-06
Р	GO:0044238	primary metabolic process	3.90E-06
р	CO:0021145	anaphase-promoting complex-dependent proteasomal ubiquitin-	4 20E 06
r	00.0031143	dependent protein catabolic process	4.20E-00
		activation of phospholipase C activity by G-protein coupled	
Р	GO:0007200	receptor protein signaling pathway coupled to IP3 second	4.90E-06
		messenger	
Р	GO:0007202	activation of phospholipase C activity	7.60E-06
Р	GO:0010863	positive regulation of phospholipase C activity	9.40E-06
Р	GO:0007067	mitosis	9.00E-06
Р	GO:0022613	ribonucleoprotein complex biogenesis	9.60E-06
Р	GO:0000280	nuclear division	1.10E-05
Р	GO:0010518	positive regulation of phospholipase activity	1.40E-05
Р	GO:0010517	regulation of phospholipase activity	1.40E-05
Р	GO:0048285	organelle fission	1.70E-05
Р	GO:0030071	regulation of mitotic metaphase/anaphase transition	2.10E-05
Р	GO:0043170	macromolecule metabolic process	2.20E-05
Р	GO:0007091	mitotic metaphase/anaphase transition	2.10E-05
Р	GO:0060193	positive regulation of lipase activity	2.50E-05
р	GO:0007178	transmembrane receptor protein serine/threonine kinase signaling	2 90E-05
1	00.0007170	pathway	2.901 05
Р	GO:0060191	regulation of lipase activity	3.00E-05
Р	GO:000087	M phase of mitotic cell cycle	3.80E-05
Р	GO:0008152	metabolic process	3.90E-05
Р	GO:0042254	ribosome biogenesis	3.90E-05
Р	GO:0016070	RNA metabolic process	4.20E-05
Р	GO:0090092	regulation of transmembrane receptor protein serine/threonine kinase signaling pathway	4.30E-05
Р	GO:0048015	phosphoinositide-mediated signaling	4.30E-05
Р	GO:0006607	NLS-bearing substrate import into nucleus	7.90E-05
Р	GO:0045333	cellular respiration	9.30E-05
Р	GO:0007176	regulation of epidermal growth factor receptor activity	0.00011
Р	GO:0007175	negative regulation of epidermal growth factor receptor activity	0.00011
Р	GO:0018345	protein palmitovlation	0.00011
Р	GO:0010469	regulation of receptor activity	0.00011
Р	GO:0009987	cellular process	0.00011
Р	GO:0006457	protein folding	0.00012
Р	GO:0006396	RNA processing	0.00012
Р	GO:0006364	rRNA processing	0.00014
Р	GO:0055014	atrial cardiac muscle cell development	0.00014
F	GO:0003873	6-phosphofructo-2-kinase activity	3.80E-13

FGO:0019200carbohydrate kinase activity $8.80E-1$ FGO:0008443phosphofructokinase activity $3.00E-1$ FGO:0003746translation elongation factor activity $1.40E-0$ FGO:0031386protein tag $2.70E-0$ FGO:0017124SH3 domain binding $4.80E-0$ FGO:0051219phosphoprotein binding 0.0001 FGO:0001784phosphotyrosine binding 0.0001 FGO:0045309protein phosphorylated amino acid binding 0.0001 CGO:0030684preribosome $2.20E-1$ CGO:0043231intracellular membrane-bounded organelle $1.60E-0$ CGO:0043227membrane-bounded organelle $1.80E-0$ CGO:004424intracellular part $2.90E-0$ CGO:004424intracellular part $2.90E-0$ CGO:004534nucleus $3.70E-0$
FGO:0008443phosphofructokinase activity $3.00E-1$ FGO:0003746translation elongation factor activity $1.40E-0$ FGO:0031386protein tag $2.70E-0$ FGO:0017124SH3 domain binding $4.80E-0$ FGO:0051219phosphoprotein binding 0.0001 FGO:0001784phosphotyrosine binding 0.0001 FGO:0045309protein phosphorylated amino acid binding 0.0001 CGO:0030684preribosome $2.20E-1$ CGO:0043231intracellular membrane-bounded organelle $1.60E-0$ CGO:0043227membrane-bounded organelle $1.80E-0$ CGO:004424intracellular part $2.90E-0$ CGO:004424intracellular part $2.90E-0$ CGO:004534nucleus $3.70E-0$
FGO:0003746translation elongation factor activity $1.40E-0$ FGO:0031386protein tag $2.70E-0$ FGO:0017124SH3 domain binding $4.80E-0$ FGO:0051219phosphoprotein binding 0.0001 FGO:0001784phosphotyrosine binding 0.0001 FGO:0045309protein phosphorylated amino acid binding 0.0001 CGO:0030684preribosome $2.20E-1$ CGO:0043231intracellular membrane-bounded organelle $1.60E-0$ CGO:0043227membrane-bounded organelle $1.80E-0$ CGO:004424intracellular part $2.90E-0$ CGO:004424intracellular part $2.90E-0$ CGO:0005634nucleus $3.70E-0$
FGO:0031386protein tag $2.70E-0$ FGO:0017124SH3 domain binding $4.80E-0$ FGO:0051219phosphoprotein binding 0.0001 FGO:0001784phosphotyrosine binding 0.0001 FGO:0045309protein phosphorylated amino acid binding 0.0001 CGO:0030684preribosome $2.20E-1$ CGO:0030529ribonucleoprotein complex $1.70E-0$ CGO:0043231intracellular membrane-bounded organelle $1.60E-0$ CGO:0043227membrane-bounded organelle $1.80E-0$ CGO:004424intracellular part $2.90E-0$ CGO:004424intracellular part $3.70E-0$
FGO:0017124SH3 domain binding $4.80E-0$ FGO:0051219phosphoprotein binding 0.0001 FGO:0001784phosphotyrosine binding 0.0001 FGO:0045309protein phosphorylated amino acid binding 0.0001 CGO:0030684preribosome $2.20E-1$ CGO:0030529ribonucleoprotein complex $1.70E-0$ CGO:0043231intracellular membrane-bounded organelle $1.60E-0$ CGO:0043227membrane-bounded organelle $1.80E-0$ CGO:004424intracellular part $2.90E-0$ CGO:004424intracellular part $2.90E-0$ CGO:0005634nucleus $3.70E-0$
FGO:0051219phosphoprotein binding0.0001FGO:0001784phosphotyrosine binding0.0001FGO:0045309protein phosphorylated amino acid binding0.0001CGO:0030684preribosome2.20E-1CGO:0030529ribonucleoprotein complex1.70E-0CGO:0043231intracellular membrane-bounded organelle1.60E-0CGO:0043227membrane-bounded organelle1.80E-0CGO:004424intracellular part2.90E-0CGO:0045634nucleus3.70E-0
FGO:0001784phosphotyrosine binding0.0001FGO:0045309protein phosphorylated amino acid binding0.0001CGO:0030684preribosome2.20E-1CGO:0030529ribonucleoprotein complex1.70E-0CGO:0043231intracellular membrane-bounded organelle1.60E-0CGO:0043227membrane-bounded organelle1.80E-0CGO:004424intracellular part2.90E-0CGO:0045634nucleus3.70E-0
FGO:0045309protein phosphorylated amino acid binding0.0001CGO:0030684preribosome2.20E-1CGO:0030529ribonucleoprotein complex1.70E-0CGO:0043231intracellular membrane-bounded organelle1.60E-0CGO:0043227membrane-bounded organelle1.80E-0CGO:004424intracellular part2.90E-0CGO:0045634nucleus3.70E-0
CGO:0030684preribosome2.20E-1CGO:0030529ribonucleoprotein complex1.70E-0CGO:0043231intracellular membrane-bounded organelle1.60E-0CGO:0043227membrane-bounded organelle1.80E-0CGO:004424intracellular part2.90E-0CGO:005634nucleus3.70E-0
CGO:0030529ribonucleoprotein complex1.70E-0CGO:0043231intracellular membrane-bounded organelle1.60E-0CGO:0043227membrane-bounded organelle1.80E-0CGO:0044244intracellular part2.90E-0CGO:0005634nucleus3.70E-0
CGO:0043231intracellular membrane-bounded organelle1.60E-0CGO:0043227membrane-bounded organelle1.80E-0CGO:0044424intracellular part2.90E-0CGO:0005634nucleus3.70E-0
CGO:0043227membrane-bounded organelle1.80E-0CGO:0044424intracellular part2.90E-0CGO:0005634nucleus3.70E-0
CGO:0044424intracellular part2.90E-0CGO:0005634nucleus3.70E-0
C GO:0005634 nucleus 3 70E-0
$C = GO \cdot 0005622$ intracellular $3.40E-C$
$C = GO \cdot 0043229$ intracellular organelle $7.80E-C$
C = GO(0043226) intracentation organisme $(10020000000000000000000000000000000000$
C = GO(0034457 Mpn10 complex) = 110EC
$C = GO(005737 \text{ cytoplasm}) = 2.60E_{-}$
C = C = C = C = C = C = C = C = C = C =
C = C = C = C = C = C = C = C = C = C =
C = C = C = C = C = C = C = C = C = C =
C = C = C = C = C = C = C = C = C = C =
$C = C_{0.002040}$ sinan-subunit processine 2.00E-C $C_{0.0020697}$ provide an a large subunit processine 2.10E (
C GO:003068/ prendosome, large suburnt precursor 2.10E-C
$C = GO_{200044428} = 0.0000000000000000000000000000000000$
C GO:0032991 macromolecular complex 6.10E-0
C GO:0044455 mitochondrial membrane part 6.70E-0
C GO:0030665 clathrin coated vesicle membrane 9.80E-C
C GO:0016469 proton-transporting two-sector ATPase complex 0.000
C GO:0005689 U12-type spliceosomal complex 0.0001
C GO:0044452 nucleolar part 0.0001
C GO:0005680 anaphase-promoting complex 0.0001
C GO:0005687 U4 snRNP 0.0002
C GO:0031410 cytoplasmic vesicle 0.0002
C GO:0031307 integral to mitochondrial outer membrane 0.000
C GO:0044444 cytoplasmic part 0.0002
C GO:0000152 nuclear ubiquitin ligase complex 0.000
C GO:0005686 U2 snRNP 0.0004
C GO:0071564 npBAF complex 0.0004
C GO:0031982 vesicle 0.0003
C GO:0016507 fatty acid beta-oxidation multienzyme complex 0.0004
C GO:0000243 commitment complex 0.0004
C GO:0030532 small nuclear ribonucleoprotein complex 0.0005
C GO:0071011 precatalytic spliceosome 0.0005
mitochondrial proton-transporting ATP synthase complex, coupling
C $GU:00002/6$ factor F(o) 0.0007
C GO:0031306 intrinsic to mitochondrial outer membrane 0 000
C GO:0044446 intracellular organelle part 0 000
C GO:0044422 organelle part 0 0008
C GO:0030688 preribosome, small subunit precursor 0.0008

* Species list are Supplementary Table 8. Abbreviations: C, Cellular component; F, Molecular function; P, Biological process

Species	No. of coding genes	No. of Expanded families	No. of Contracted families.	No. of Genes lost
Icefish	30,773	1793 (280)	6831 (6)	6869
Dragonfish	32,713	1174 (162)	4057 (1)	4080
Bullhead notothen	32,661	1178 (8)	5534 (2)	5640
Stickleback	27,576	465 (59)	10704 (2)	10732
Platyfish	20,779	184 (3)	1928 (32)	2002
Amazon molly	24354	1195 (165)	780 (1)	781
Medaka	20459	452 (78)	4953 (3)	5018
Tilapia	27088	800 (133)	4047 (0)	4057
Takifugu	18,523	390 (47)	1924 (3)	1935
Tetraodon	23,118	530 (24)	1895 (7)	1927
Cod	22,100	391 (21)	14427 (3)	14523
Zebrafish	25,403	1183 (78)	2205 (0)	2241
Cavefish	23698	775 (8)	2542 (16)	2753

Supplementary Table 12. CAFE⁵ gene family analysis results.

Category	GO acc	Term	<i>p</i> -value
F	GO:0005488	binding	2.94E-03
F	GO:0005200	structural constituent of cytoskeleton	5.48E-03
F	GO:0030246	carbohydrate binding	5.98E-03
F	GO:0005506	iron ion binding	1.07E-02
F	GO:0003924	GTPase activity	2.12E-02
F	GO:0008199	ferric iron binding	1.79E-02
		oxidoreductase activity, acting on single donors with	
F	GO:0016702	incorporation of molecular oxygen, incorporation of two	3.04E-02
		atoms of oxygen	
F	CO.001(701	oxidoreductase activity, acting on single donors with	2.045.02
Г	GO:0016/01	incorporation of molecular oxygen	3.04E-02
F	GO:0004984	olfactory receptor activity	4.29E-02
Р	GO:0051258	protein polymerization	1.42E-02
Р	GO:0043623	cellular protein complex assembly	1.86E-02
Р	GO:0007017	microtubule-based process	2.30E-02
Р	GO:0034622	cellular macromolecular complex assembly	3.31E-02
Р	GO:0006461	protein complex assembly	4.28E-02
Р	GO:0070271	protein complex biogenesis	4.34E-02
Р	GO:0006826	iron ion transport	2.04E-02
Р	GO:0000041	transition metal ion transport	2.54E-02
Р	GO:0006879	cellular iron ion homeostasis	2.79E-02
Р	GO:0046916	cellular transition metal ion homeostasis	2.79E-02
Р	GO:0055072	iron ion homeostasis	3.29E-02
Р	GO:0055076	transition metal ion homeostasis	3.54E-02
D	CO:0050011	detection of chemical stimulus involved in sensory	4 20E 02
Г	00.0030911	perception of smell	4.2912-02
D	CO:0050007	detection of chemical stimulus involved in sensory	4 52E 02
Г	00.0030907	perception	4.33E-02
Р	GO:0050906	detection of stimulus involved in sensory perception	4.53E-02
Р	GO:0006875	cellular metal ion homeostasis	4.78E-02
Р	GO:0009593	detection of chemical stimulus	4.78E-02
С	GO:0005874	microtubule	1.00E-02
С	GO:0015630	microtubule cytoskeleton	2.79E-02

Supplementary Table 13. CAFE⁵ results for significantly expanded genes in icefish.

Abbreviations: C, Cellular component; F, Molecular function; P, Biological process

Supplementary Table 14. Positively selected genes in the icefish genome. (Likelihood ratio test: α =0.05).

Gene ID	Descriptions
Cac000489	synaptosomal-associated protein 47
Cac000662	septin-10-like isoform X2
Cac001617	ester hydrolase C11orf54 homolog
Cac001771	T-complex protein 1 subunit alpha
Cac002279	delta-type opioid receptor-like
Cac003235	protein FAM3C
Cac003886	tripeptidyl-peptidase 1
Cac004140	poly(ADP-ribose) glycohydrolase ARH3
Cac004885	nuclear pore complex protein Nup205
Cac004994	thioredoxin domain-containing protein 5
Cac005124	integrin alpha-6
Cac005514	high-affinity choline transporter 1-like
Cac006594	phosphatidylinositol 4-kinase type 2-alpha
Cac011177	neutrophil cytosol factor 1
Cac011177	neutrophil cytosol factor 1
Cac012351	lengsin
Cac013420	cerebral cavernous malformations 2 protein isoform X2
Cac013753	sonic hedgehog protein
Cac016183	translation initiation factor eIF-2B subunit beta
Cac016183	translation initiation factor eIF-2B subunit beta
Cac019931	pyruvate dehyrogenase phosphatase catalytic subunit 1
Cac019931	pyruvate dehyrogenase phosphatase catalytic subunit 1
Cac020370	zinc finger MYND domain-containing protein 10
Cac020655	beta-1:4 N-acetylgalactosaminyl transferase 1
Cac020945	mitotic checkpoint protein BUB3
Cac020991	F-box only protein 11 isoform X4
Cac021124	NADPHcytochrome P450 reductase isoform X1
Cac021496	PX domain-containing protein 1
Cac021612	translocon-associated protein subunit alpha isoform X2
Cac022143	reticulon-4-interacting protein 1: mitochondrial isoform X1
Cac023068	UNC93-like protein MFSD11
Cac023070	mpv17-like protein
Cac025005	protein CYR61
Cac025225	rod cGMP-specific 3',5'-cyclic phosphodiesterase subunit beta
Cac025247	RNA 3'-terminal phosphate cyclase-like protein
Cac026046	AP-1 complex subunit gamma-1 isoform X2
Cac026882	sorting nexin-12
Cac027018	merlin-like
Cac027509	peripheral myelin protein 22-like
Cac027988	transcription cofactor vestigial-like protein 2 isoform X1
Cac028923	glomulin-like
Cac029538	FAST kinase domain-containing protein 1
Cac029831	general transcription factor 3C polypeptide 4

Category	GO accessory	Term	p-value
F	GO:0035091	phosphatidylinositol binding	7.25E-05
F	GO:0005543	phospholipid binding	2.48E-04
F	GO:0008289	lipid binding	2.05E-03
F	GO:0016651	oxidoreductase activity, acting on NAD(P)H	8.93E-04
F	GO:0003958	NADPH-hemoprotein reductase activity	3.26E-03
F	GO:0016175	superoxide-generating NADPH oxidase activity	3.26E-03
F	GO:0050664	oxidoreductase activity, acting on NAD(P)H, oxygen as acceptor	3.26E-03
F	GO:0016653	oxidoreductase activity, acting on NAD(P)H, heme protein as acceptor	6.50E-03
F	GO:0010181	FMN binding	1.30E-02
F	GO:0004722	protein serine/threonine phosphatase activity	3.21E-02
F	GO:0004114	3',5'-cyclic-nucleotide phosphodiesterase activity	3.53E-02
F	GO:0004112	cyclic-nucleotide phosphodiesterase activity	3.53E-02
Р	GO:0030908	protein splicing	6.50E-03
Р	GO:0016539	intein-mediated protein splicing	6.50E-03
Р	GO:0016485	protein processing	3.53E-02
Р	GO:0051604	protein maturation	3.53E-02
С	GO:0000151	ubiquitin ligase complex	3.53E-02

Supplementary Table 15. Gene ontology for positively selected genes in the icefish genome.

Abbreviations: C, Cellular component; F, Molecular function; P, Biological process

Supplementary Table 16. Comparison of zona pellucida (*zp*) gene family members in icefish and other Antarctic fish.

	ZPAX1	ZPAX2	ZPC1	ZPC2	ZPC3	ZPC4	ZPC5	ZPB	ZPD	CGL	CGH	Total
C. aceratus	29	7	22	13	7	2	33	2	1	8	7	131
*N. coriiceps	1	2	2	1	1	2	1	3	1	4	0	18
*P. charcoti	4	1	2	2	2	1	3	6	1	7	1	30
**D. mawsoni	1	1	1	1	1	1	8	1	1	1	1	18
**C. hamatus	1	4	4	2	0	2	4	1	1	0	0	19
**G. acuticeps	3	1	3	2	2	2	4	2	1	0	0	20
**T. bernacchii	1	1	2	1	1	1	2	1	1	0	0	11
**N. angustata	0	0	1	0	0	0	1	0	0	0	0	2
**D.eleginoides	1	0	1	1	0	0	5	0	0	0	0	8
**L. nudifrons	1	1	1	1	1	1	1	1	1	0	0	9
**E.maclovinus	1	1	2	1	1	1	3	1	0	0	0	11

* The number of zp genes was annotated from our previous research^{6,7}. ** The number of zp genes of 8 species of Antarctic fish was derived from the Supplementary Table 1 in Cao et al., 2016⁸.

Supplementary Table 17. Genomic distribution of icefish zona pellucida (*zp*) family genes. The total number of annotated *zp* genes on each contig is indicated. Of the 131 icefish *zp* genes, 109 are distributed on 20 different scaffolds that have more than two genes, and 22 scaffolds have a single *zp* gene.

Contig	ZPAX1	ZPAX2	ZPC1	ZPC2	ZPC3	ZPC4	ZPC5	ZP3	ZP4	ZPB	ZPD	Total
Ice 000281					2		18					20
Ice_010079			7	3								10
Ice_000114					5		5					10
Ice_030120	7	3										10
Ice_040384	3	1					4					8
Ice_051004			4	4								8
Ice_060311	1	1	4									6
Ice_070981			5									5
Ice_080050								1	3			4
Ice_090470			2	2								4
Ice_100683							4					4
Ice_110055								3				3
Ice_120371	3										1	4
Ice_130009						1				1		2
Ice_140019						1				1		2
Ice_150293	2											2
Ice_160991	2											2
Ice_171379	1	1										2
Ice_182290	2											2
Ice_192443	2											2
Ice_200015									1			1
Ice_210036									1			1
Ice_220080								1				1
Ice_230090	1											1
Ice_240126									1			1
Ice_250182				1								1
Ice_260204							1					1
Ice_270271		1										1
Ice_280276				1								1
Ice_290336								1				1
Ice_300443	1											1
Ice_310473								1				1
Ice_320486								1				1
Ice_330519	1											1
Ice_340709							1					1
Ice_350845									1			1
Ice_361246	1											1
Ice_371821				1								1
Ice_382268	1											1
Ice_392717				1								1
Ice_402947	1											1
Total	29	7	22	13	7	2	33	8	7	2	1	131

Supplementary Table 18. Annotation of antioxidant defense system related genes in five teleosts. Genes were selected from the gene set of antioxidant activity (M15021) of Gene Set Enrichment Analysis⁹ (GSEA, http://software.broadinstitute.org/gsea/index.jsp).

	Icefish	Dragonfish	Antarctic bullhead	Takifugu	Medaka	Platyfish	Zebrafish
Superoxide dismutase	5	3	3	3	3	3	4
Catalase	1	1	1	1	1	1	1
NAD(P)H:quinone acceptor oxidoreductase	33	2	2	2	3	3	1
Glutathione peroxidase	4	7	4	9	6	6	9
Selenoprotein S	1	1	1	1	0	1	1
Eosinophil peroxidase	7	4	4	3	6	4	2
Microsomal glutathione S-transferase 3	2	2	2	2	2	2	2
Cytoglobin	2	2	2	2	2	2	2
8-oxoguanine DNA glycosylase	2	1	1	1	1	1	1
Thioredoxin reductase	3	3	2	2	2	3	2
Peroxiredoxin	6	6	6	6	6	6	6
Apolipoprotein A-IV	4	2	3	6	2	1	4
Total	70	34	31	38	34	33	35

Supplementary Table 19. <i>sod</i> genes identified in teleost genomes.	The Genbank accession
number is indicated for each <i>sod</i> gene.	

	SOD1	SOD2	SOD3
Icefish	CacV3p_001772	CacV3p_016306	CacV3p_021817-1 CacV3p_021817-2 CacV3p_021817-3
Antarctic Bullhead	XP_010771234.1	XP_010770367.1	XP_010775098.1
Dragonfish	DFtranscrip-31740	DFtranscrip-29679	DFtranscrip-21872
Stickleback	ENSGACG0000020581	ENSGACG0000009000	ENSGACG0000017840
Takifugu	XP_003971372	XP_011610563	XP_011610687
Platyfish	XP_005807113	XP_005802672	XP_005807205
Amazon molly	XP_007555641	XP_007546844	XP_007551838
Medaka	XP_004076261	XP_004083519	XP_004084336
Zebrafish	NP_571369.1	NP_956270	NP_001092706 (chr7)* XP_001332758 (chr1)

* Zebrafish has two *sod3* genes (*sod3a* and *sod3b*); *sod3a* is located on chromosome 7 with similar synteny to that of other teleosts, whereas *sod3b* is located on chromosome 1.

Supplementary Table 20. **Circadian rhythm-related genes identified in teleost genomes**. The location of each gene in each chromosome or scaffold is noted for each gene. Chromosomal location was based on the updated Supplementary Material 13 of Toloza-Villalobos et al. (2015)¹⁰. Updated information is marked with an asterisk (*). A dash means that the gene was not found on a defined chromosome or scaffold.

	Icefish	Stickleback	Takifugu	Medaka	Platyfish	Zebrafish
perla	-	-	-	-	-	Chr10:23010981- 23028617
per1b	Cacp_005339 Ice_000086:22558582264187	groupIII:1517985- 1529008	Scaffold_63:506313- 512694	Chr18:15189752- 15199550	JH556673.1:326107- 343686*	Chr7:52277645- 52301471
per2a	-	groupI:1855721- 1863275*	Scaffold_344:165475- 173866	Chr13:31788175- 31800229	JH556784.1:457717- 480890	-
per2b	Cacp_024627 Ice_000019:29275592939828	groupVII:3993749- 4000926*	Scaffold_123:243442- 251642	Chr17:25658720- 25680938	JH556667.1:3479242- 3504286	Chr2:48423772- 48489514
per3	-	-	Chr19:11805147- 11815446*	Chr5:29288111- 29298254	JH556773.1:1356945- 1376982	Chr11:41435220- 41490992
crylaa	Cacp_026503 Ice_000025:34459913456768	groupIV:32004462- 32008670	Scaffold_4395:1-440	Chr23:19786254 - 19805276	JH556703.1:1996368- 2009995	Chr4:12011692- 12027887*
crylab	-	groupXIX:17896031- 17900731:1*	Scaffold_21:12588914- 1264794	Chr6:30902546- 30911031	Chr2:17084212- 17094297*	Chr18:15104200- 15132014*
cry1ba	Cacp_006784 Ice_000125:18480291834983	groupXII:13140358- 13147524*	Scaffold_278:81132- 99203*	Chr7:28299032 - 28474995*	Chr1:29806902 - 29840394*	Chr8:21222300- 21255421*
cry1bb	-	-	-	-	-	Chr22:783514- 811211*
cry2	-	groupXIX:1002682- 1016637	Scaffold_591:4558- 10348*	Chr6:22492682- 22503706	Chr2: 4478878- 4495387*	Chr25:13845092- 13873484
clocka	Cacp_021314 Ice_000042:10916341109722	-	Scaffold_13:1587298- 1594020	-	JH557215.1:159758- 185684	Chr20:22202472- 22246469

clockb	Cacp_021654 Ice_000015:9975551012718	groupIX:489361- 499374	Scaffold_563:28933- 37732	Chr1:14996520- 15007939	JH556907.1:802434- 820177	Chr1:18174899- 18208348
npas2a	Cacp_011192 Ice_000386:348502366485	groupVII:17209951- 17217908	Scaffold_6:1321121- 1331856	Chr14:17135493- 17147943	-	Chr5:24572014- 24614052
arntla	Cacp_017407 Ice_000301:749264791055	groupXIX:1196030- 1206038	Scaffold_30:314818- 322668	Scaffold212:822889- 852119	JH556669.1:1164407- 1191899	Chr25:18381074- 18406100
arntlb	-	-	-	-	-	Chr7:67945182- 68002908
arntl2a	Cacp_009803 Ice_000337:138232147037	-	Scaffold_105:333609- 341010	Chr6:16473669- 16484384	JH556735.1:1789641- 1801148	Chr18:15249987- 15289314
arntl2b	Cacp_026454 Ice_000025:673361679455	groupIV:22530990- 22537106	Scaffold_657:8465- 12073	Chr23:2931241- 2954154	JH556873.1:690137- 707607	-
csnklea	Cacp_012338 Ice_001973:1237433989	groupV:5628628- 5633878	Scaffold_3:2837555- 2840657	Chr19:803568- 811280	JH559539.1:29-8132	Chr12:20401738- 20414656
csnkleb	Cacp_029385 Ice_000244:4510972	groupXI:4260952- 4268829	Scaffold_253:334382- 342511	Chr8:19677134- 19684994	JH556752.1:1560221- 1567996	-
csnk1da	Cacp_014005 Ice_000322F:247084274355	Scaffold54:477509- 486247	Scaffold_41:895893- 902348	Chr8:25232642- 25239805	JH557172.1:17306- 26673	-
csnk1db	Cacp_006446 Ice_000123F:682442704673	groupXI:1303431- 1312998	-	-	-	Chr12:34815412- 34831695
csnk1dc	-	-	-	-	-	Chr3:36172321- 36209462
timeless	Cacp_000716 Ice_000119F:944982953940	Scaffold27:1143834- 1158386	Scaffold_47:1354118- 1362657	Chr5:27745117- 27758015	JH556773.1: 50419- 64006	Chr11:3195071- 3229802

	Icefish	Medaka	Stickleback	Takifugu	Tetraodon	Zebrafish
alpha	0	0	0	0	0	0
beta	1	3	1	1	0	7
gamma	2	1	3	0	0	1
delta	161	44	112	55	14	69
epsilon	2	4	4	3	2	13
zeta	10	12	23	10	2	41
eta	35	30	12	31	12	45
theta	0	1	1	1	1	1
theta-2	0	0	0	0	0	1
kappa	1	1	3	1	1	2
lambda	0	1	1	0	0	1
Total	212	97	160	102	32	181

Supplementary Table 21. The number of olfactory receptor genes in 6 teleost species.

References

- Chalopin, D., Naville, M., Plard, F., Galiana, D. & Volff, J.-N. Comparative analysis of transposable elements highlights mobilome diversity and evolution in vertebrates. *Genome Biol. Evol.* 7, 567-580 (2015).
- Niimura, Y. On the origin and evolution of vertebrate olfactory receptor genes: comparative genome analysis among 23 chordate species. *Genome Biol. Evol.* 1, 34-44 (2009).
- Park, H., Lee, S. H., Kim, M., Kim, K. H. & Lim, H. S. Polychlorinated biphenyl congeners in soils and lichens from King George Island, South Shetland Islands, Antarctica. Ant. Sci. 22, 31-38 (2010)
- Opazo, J. C., Butts, G. T., Nery, M. F., Storz, J. F. & Hoffmann, F. G. Whole-genome duplication and the functional diversification of teleost fish hemoglobins. *Mol. Biol. Evol.* 30, 140-153 (2013).
- Han, M. V., Thomas, G. W., Lugo-Martinez, J. & Hahn, M. W. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. *Mol. Biol. Evol.* 30, 1987-1997 (2013).
- 6. Shin, S. C. *et al.* The genome sequence of the Antarctic bullhead notothen reveals evolutionary adaptations to a cold environment. *Genome Biol.* **15**, 468 (2014).
- Ahn, D.-H. *et al.* Draft genome of the Antarctic dragonfish, Parachaenichthys charcoti. *GigaScience* 6, 1-6 (2017).
- 8. Cao, L. *et al.* Neofunctionalization of zona pellucida proteins enhances freeze-prevention in the eggs of Antarctic notothenioids. *Nat. Commun.* **7**, 12987 (2016).
- Subramanian, A. *et al.* Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. *Proc. Natl. Acad. Sci. U.S.A.* 102, 15545-15550 (2005).
- Toloza-Villalobos, J., Arroyo, J. I. & Opazo, J. C. The Circadian Clock of Teleost Fish: A Comparative Analysis Reveals Distinct Fates for Duplicated Genes. *J. Mol. Evol.* 80, 57-64 (2015).