Multifunctional Carbon Aerogels with Hierarchical Anisotropic Structure Derived from Lignin and Cellulose Nanofibers for CO₂ Adsorption and Energy Storage

Shiyu Geng,^{1*} Jiayuan Wei,¹ Simon Jonasson,¹ Jonas Hedlund,² Kristiina Oksman^{1,3,4*}

¹Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-971 87, Luleå, Sweden

²Chemical Technology, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97 187, Luleå, Sweden

³Fibre and Particle Engineering, University of Oulu, FI-90014, Oulu, Finland

⁴Mechanical & Industrial Engineering (MIE), University of Toronto, Toronto, ON, Canada, M5S 3G8

Sample coding	Porosity (%)	Density (g cm ⁻³)		
LTCA8	91.6	0.175		
LTCA10	91.9	0.169		
LTCA12	93.4	0.138		

Table S1. Porosity and density of the LTCAs.

Figure S1. Contact angle demonstration in which one droplet of distilled water was deposited on the surface of LTCA12. The image was taken from the first second after the deposition.

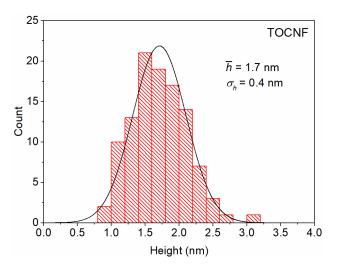


Figure S2. Histogram of the TOCNF width measured from AFM height images.

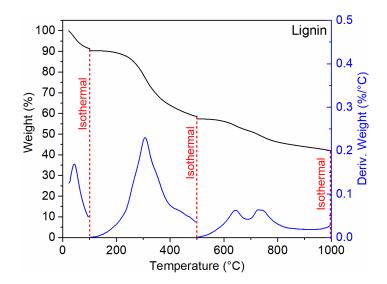


Figure S3. TGA curves of lignin used in this study.

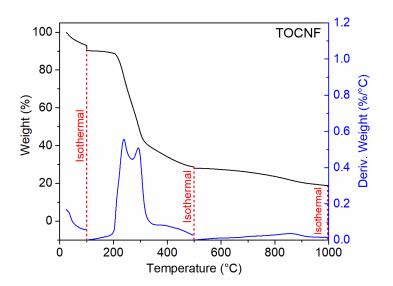
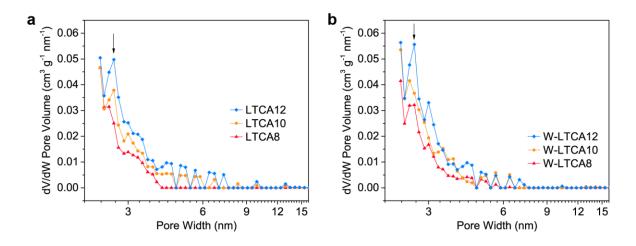



Figure S4. TGA curves of TOCNF used in this study.

Figure S5. Pore size distribution of (a) LTCAs and (b) W-LTCAs calculated using non-local density functional theory (NLDFT) for N_2 adsorption at 77 K.

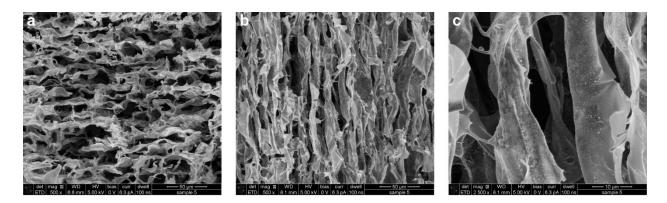
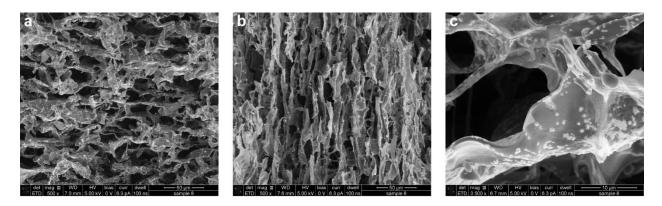



Figure S6. SEM images of LTCA8 from the (a) cross-section, (b) longitudinal section and (c) magnified view.

Figure S7. SEM images of LTCA10 from the (a) cross-section, (b) longitudinal section and (c) magnified view.

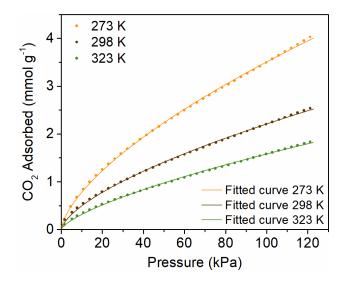


Figure S8. CO₂ adsorption isotherms of LTCA10 at different temperatures and the related Langmuir fitted curves.

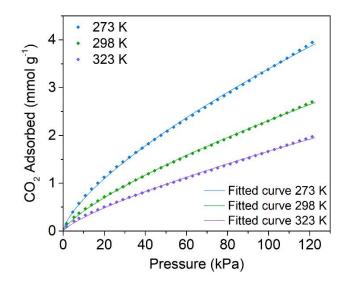
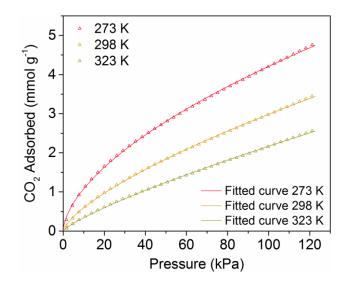



Figure S9. CO_2 adsorption isotherms of LTCA12 at different temperatures and the related Langmuir fitted curves.

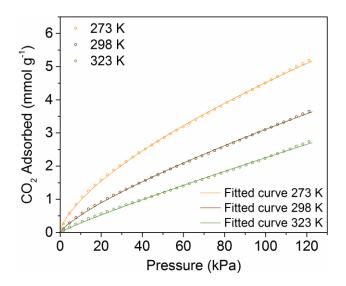

Sample	BET surface area (m ² g ⁻¹)	t-Plot micropore area (m ² g ⁻¹)	Pore volume [*] $(cm^3 g^{-1})$	Pore size (nm)
LTCA8	413	289	0.20	1.92
LTCA10	704	458	0.34	1.93
LTCA12	806	487	0.39	1.95
W-LTCA8	617	476	0.27	1.72
W-LTCA10	839	542	0.40	1.91
W-LTCA12	1101	638	0.55	1.99

 Table S2. The data collected from the BET surface analysis.

*Total pore volume of the pores having the diameter less than 200 nm

Figure S10. CO₂ adsorption isotherms of W-LTCA8 at different temperatures and the related Langmuir fitted curves.

Figure S11. CO₂ adsorption isotherms of W-LTCA10 at different temperatures and the related Langmuir fitted curves.

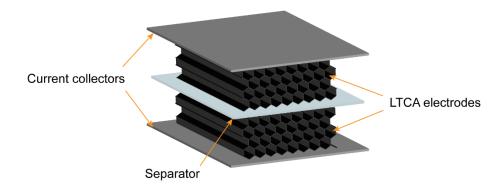
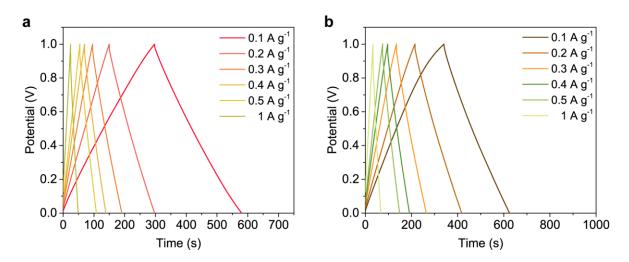



Figure S12. Schematic of the two-electrode setup used in the electrochemical tests.

Figure S13. GCD curves of the SCs with (a) LTCA8 and (b) LTCA10 electrodes tested at different current densities.

Sample	Currer	nt density	C_g	C_{cell}^{*}	Ca	E_d	P_d
	(A g ⁻¹)	$(mA cm^{-2})$	(F g ⁻¹)	(F g ⁻¹)	(F cm ⁻²)	(Wh kg ⁻¹)	(W kg ⁻¹)
LTCA8	0.1	3.1	113.2	28.3	1.74	3.93	50
	0.2	6.1	110.0	27.5	1.69	3.82	100
	0.3	9.2	106.4	26.6	1.63	3.69	150

Table S3. Electrochemical properties of the SCs with LTCA electrodes.

	0.4	12.3	103.5	25.9	1.59	3.59	200
	0.5	15.3	100.9	25.2	1.55	3.50	250
	1	30.7	91.1	22.8	1.40	3.16	500
	2	61.4	76.4	19.1	1.17	2.65	1000
	3	92.1	56.0	14.0	0.86	1.94	1500
	4	122.8	42.7	10.7	0.65	1.48	2000
	5	153.5	31.1	7.8	0.48	1.08	2500
	0.1	3.0	113.5	28.4	1.71	3.94	50
	0.2	6.0	113.3	28.3	1.71	3.93	100
	0.3	9.0	108.8	27.2	1.64	3.78	150
LTCA10	0.4	12.1	105.6	26.4	1.59	3.67	200
	0.5	15.1	102.9	25.7	1.55	3.57	250
	1	30.1	93.2	23.3	1.41	3.24	500
	2	60.3	77.1	19.3	1.16	2.68	1000
	0.1	1.9	123.4	30.8	1.20	4.28	50
	0.2	3.9	124.4	31.1	1.21	4.32	100
	0.3	5.8	120.7	30.2	1.18	4.19	150
	0.4	7.8	119.9	30.0	1.17	4.16	200
LTCA12	0.5	9.7	118.1	29.5	1.15	4.10	250
	1	19.5	111.8	27.9	1.09	3.88	500
	2	39.0	100.5	25.1	0.98	3.49	1000
	3	58.4	92.3	23.1	0.90	3.20	1500
	4	77.9	85.5	21.4	0.83	2.97	2000
	5	97.4	80.6	20.2	0.79	2.80	2500

*Cell capacitance (C_{cell}) of the SCs was calculated using:

$$C_{cell} = \frac{I \cdot \Delta t}{\Delta V \cdot m} = C_g/4$$
 Eq. S1